Navigating Big Data with High-Throughput,
Energy-Efficient Data Partitioning

Lisa Wu
lisa@cs.columbia.edu

Raymond J. Barker
rjb2150@columbia.edu martha@cs.columbia.edu kar@cs.columbia.edu

Martha A. Kim Kenneth A. Ross

Department of Computer Science
Columbia University
New York, New York

ABSTRACT

The global pool of data is growing at 2.5 quintillion bytes per
day, with 90% of it produced in the last two years alone [24].
There is no doubt the era of big data has arrived. This
paper explores targeted deployment of hardware accelerators
to improve the throughput and energy efficiency of large-
scale data processing. In particular, data partitioning is a
critical operation for manipulating large data sets. It is often
the limiting factor in database performance and represents
a significant fraction of the overall runtime of large data
queries.

To accelerate partitioning, this paper describes a hard-
ware accelerator for range partitioning, or HARP, and a
hardware-software data streaming framework. The stream-
ing framework offers a seamless execution environment for
streaming accelerators such as HARP. Together, HARP and
the streaming framework provide an order of magnitude im-
provement in partitioning performance and energy. A de-
tailed analysis of a 32nm physical design shows 7.8 times
the throughput of a highly optimized and optimistic soft-
ware implementation, while consuming just 6.9% of the area
and 4.3% of the power of a single Xeon core in the same
technology generation.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems]:
Microprocessor/microcomputer applications

General Terms

Design, Measurement, Performance

Keywords

Accelerator, Specialized functional unit, Streaming data, Mi-
croarchitecture, Data partitioning

This research was supported by grants from the National
Science Foundation (CCF-1065338 and IIS-0915956).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISCA 13 Tel Aviv, Israel

Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

date gt sku
711N e

3/1/11 o=

date qty sku 5/6/11

5/6/11 6/1/11

2/2/11 5/20/11

7/27/11 71111 <

6/1/11 S 17777213 I R

B ;5 N

9/3/11 10/1/11 -

5/20/11 10/10/11 | R R R
w 12/6/11 | NN

Input Table Splitters Partitioned Data

Figure 1: An example table of sales records range
partitioned by date, into smaller tables. Processing
big data one partition at a time makes working sets
cache-resident, dramatically improving the overall
analysis speed.

1. INTRODUCTION

In the era of big data, a diverse set of fields, such as nat-
ural language processing, medical science, national security,
and business management, depend on sifting through and
analyzing massive, multi-dimensional data sets. These com-
munities rely on computer systems to process vast volumes
of data quickly and efficiently. In this paper we deploy spe-
cialized hardware to more effectively address this task.

Databases are designed to manage large quantities of data,
allowing users to query and update the information they
contain. The database community has been developing al-
gorithms to support fast or even real-time queries over rela-
tional databases, and, as data sizes grow, they increasingly
opt to partition the data for faster subsequent processing.
As illustrated in the small example in Figure [1} partition-
ing assigns each record in a large table to a smaller table
based on the value of a particular field in the record, such
as the transaction date in Figure Partitioning enables
the resulting partitions to be processed independently and
more efficiently (i.e., in parallel and with better cache local-
ity). Partitioning is used in virtually all modern database
systems including Oracle Database 11g [40|, IBM DB2 [23],
and Microsoft SQL Server 2012 [34] to improve performance,
manageability, and availability in the face of big data, and
the partitioning step itself has become a key determinant of
query processing performance.

As the price of memory drops, modern databases are not
typically disk I/O bound [1} [20], with many databases now
either fitting into main memory or having a memory-resident

SALES

After partitioning, small table
partitions are cache resident,

Without partitioning, even smaller
tables exceed cache capacity.
Consequently, lookups thrash and
the join operation is slow.

WEATHER

partition
(SALES)

===z

accelerating per-partition joins.

SALES_1

SALES_3
]
SALES_2
|
] ! WEATHER 3
| 1 WEATU’ER”Z‘; j s— | SALES 4
HER_1 ':[j] S—
 =p _WEATHER_4
partition join(1) join(2) join(3) join(4)

(WEATHER)

join(SALES, WEATHER)

Figure 2: Joining two large tables easily exceeds cache capacity. Thus, state of the art join implementations
partition tables first and then compute partition-wise joins, each of which exhibits substantially improved
cache locality |29, [2]. Joins are extremely expensive on large datasets, and partitioning represents up to half

of the observed join time [29].

working set. At Facebook, 800 servers supply over 28 T'B of
in-memory data to users [44]. Despite the relative scarcity
of memory pins, there is ample evidence that these and
other large data workloads do not saturate the available
bandwidth and are largely compute-bound. Servers running
Bing, Hotmail and Cosmos (Microsoft’s search, email, and
parallel data analysis engines, respectively) show 67 — 97%
processor utilization but only 2 — 6% memory bandwidth
utilization under stress testing [30]. Google’s BigTable and
Content Analyzer (large data storage and semantic analy-
sis, respectively) show fewer than 10 K /msec last level cache
misses, which represents just a couple of percent of the total
available memory bandwidth [50].

Noting the same imbalances between compute and mem-
ory bandwidth, others have opted to save power and scale
down memory throughput to better match compute through-
put [33,|12] or to adjust the resource allocation in server mi-
croarchitectures [21]. We propose to resolve the imbalance
by deploying specialized hardware to alleviate compute bot-
tlenecks and more fully exploit the available pin bandwidth.
In this paper we demonstrate that software implementations
of data partitioning have fundamental performance limita-
tions that make it compute-bound, even after parallelization.
We then describe and evaluate a system that both acceler-
ates data partitioning itself and frees processors for other
computations.

The system consists of two parts:

e An area- and power-efficient specialized processing el-
ement for range partitioning, called the Hardware Ac-
celerated Range Partitioner, or HARP. Synthesized,
placed and routed, a single HARP unit would occupy
just 6.6% of the area of a commodity Xeon processor
core and can process up to 3.13 GB/sec of input, 7.8
times faster than a single software thread and match-
ing the throughput of 16 threads.

e A high-bandwidth hardware-software streaming frame-
work that transfers data to and from HARP and inte-
grates seamlessly with existing hardware and software.
This framework adds 0.3 mm? area, consumes 10 mW
power, and provides a minimum of 4.6 GB/sec band-
width to the accelerator without polluting the caches.

Since databases and other data processing systems represent
a common, high-value server workload, the impact of im-
provements in partitioning performance would be widespread.

2. BACKGROUND AND MOTIVATION

To begin we provide some background on partitioning: its
role and prevalence in databases, and its software character-
istics.

2.1 Partitioning Background

Partitioning a table splits it into multiple smaller tables
called partitions. Each row in the input table is assigned
to exactly one partition based on the value of the key field.
Figure [1| shows an example table of sales transactions parti-
tioned using the transaction date as the key. This work fo-
cuses on a particular partitioning method called range parti-
tioning which splits the space of keys into contiguous ranges,
as illustrated in Figure[l| where sales transactions are parti-
tioned by quarter. The boundary values of these ranges are
called splitters.

Partitioning a table allows fine-grained synchronization
(e.g., incoming sales lock and update only the most re-
cent partition) and data distribution (e.g., New York sales
records can be stored on the East Coast for faster access).
When tables become so large that they or their associated
processing metadata cannot fit in cache, partitioning is used
to improve the performance of many critical database op-
erations, such as joins, aggregations, and sorts |54} [2| [29].
Partitioning is also used in databases for index building, load
balancing, and complex query processing [§8]. More gener-
ally, a partitioner can improve locality for any application
that needs to process large datasets in a divide and conquer
fashion, such as histogramming, image alignment and recog-
nition, MapReduce-style computations, and cryptoanalysis.

To demonstrate the benefits of partitioning, let us ex-
amine joins. A join takes a common key from two dif-
ferent tables and creates a new table containing the com-
bined information from both tables. For example, to an-
alyze how weather affects sales, one would join the sales
records in SALES with the weather records in WEATHER where
SALES.date == WEATHER.date. If the WEATHER table is too

g
= 80%
c
2
S 60%
O
S
o 40%
>
@
S 20%
o
0 RAE NSRS En LR
NO " IODMNONT"TNNT—TOOOINMOTOTMOQY
— — ~ ~ N~ - ~ - - >
<
TPC-H Query Other ¥ Join

Figure 3: Several key database operations such as
join, sort, and aggregation use partitioning to im-
prove their performance. Here we see joins con-
suming 47% of the TPC-H execution time on Mon-
etDB. With state of the art join algorithms spending
roughly half of the join time partitioning [29], we es-
timate that partitioning for joins alone accounts for
roughly one quarter of query execution time.

NumRecs + 108
in < malloc(NumRecs - RecSize)
for r = 0..(NumRecs — 1) do
in[r] < RandomRec()
end for
for p = 0..(NumParts — 1) do
out[p] < malloc(NumRecs - RecSize)
end for
for i = 0..NumRecs do
T+ in[i]
p < Partition Function(r)
*(out[p]) < r
out[p] < out[p] + RecSize
end for

> Alloc. and init. input

> Alloc. output

> Partitioning inner loop

Figure 4: After initializing an input table and
pre-allocating space for the output tables, the
partitioning microbenchmark iterates over the in-
put records, computes the output partition using
PartitionFunction(), and writes it to that partition.

large to fit in the cache, this whole process will have very
poor cache locality, as depicted on the left of Figure [2] On
the other hand, if both tables are partitioned by date, each
partition can be joined in a pairwise fashion as illustrated
on the right. When each partition of the WEATHER table fits
in the cache, the per-partition joins can proceed much more
rapidly. When the data is large, the time spent partition-
ing is more than offset by the time saved with the resulting
cache-friendly partition-wise joins.

Join performance is critical because most queries begin
with one or more joins to cross reference tables, and as the
most data-intensive and costly operations, their influence on
overall performance is large. We measured the fraction of
TPC-H [51] query execution time attributable to joins using
MonetDB [6], an open-source database designed to provide

high performance on queries over large datasets.! Figure

plots the percent TPC-H runtime spent joining tables. The
values shown are the median across the ten runs of each

'Data collected using MonetDB 11.11.5 (release configu-
ration, compiled with maximal optimization) on a dual-
processor server (Intel Xeon X5660, 6C/12T, 2.8 GH z, with
12 M B LLC) with 64 GB DRAM. MonetDB used up to 24
threads per query, each of which was executed ten times in
random order to minimize the impact of cached results.

inline unsigned int
PartitionFunction(register parttype key) {

register unsigned int low = O0;
register unsigned int hi = N+1;
register unsigned int mid = hi >> 1;

for(imt i = 0; i < D; i++) {
asm__ volatile("CMP %4, %2\n"
"CMOVG %3, %0\n"
"CMOVL %3, %1\n"
"=a"(low), "=b"(hi)
"r"(key), "r"(mid), "r"(R[midl)
"a"(low), "b"(hi)
)
mid = (hi + low) >> 1;
}
return (mid << 1) - (key == R[midl);

Figure 5: The implementation of PartitionFunction()
for range partitioning. For each record, the range
partitioner traverses an array of N splitters. This
optimized code performs a binary search up to D =
log2(N) levels deep.

query. Ranging from 97% to 5%, on average TPC-H spends
47% of its execution time in a join operation. State of the
art implementations of joins spend up to half their time in
partitioning 29|, thus placing partitioning at approximately
25% of TPC-H query execution time.

In addition to performance, a good partitioner will have
several other properties. Ordered partitions, whereby there
is an order amongst output partitions, is useful when a query
requires a global sort of the data. Record order preserva-
tion, whereby all records in a partition appear in the same
order they were found in the input table, is important for
some algorithms (e.g. radix sorting). Finally, skew toler-
ance, maintains partitioning throughput even when input
data is unevenly distributed across partitions. HARP pro-
vides all three of these properties as well as high performance
and low energy.

2.2 Software Partitioning Evaluation

We now characterize the performance and limitations of
software partitioning on general purpose CPUs. Since par-
titioning scales with additional cores |9} |29} [2], we analyze
both single- and multi-threaded performance.

For these characterizations, we use a microbenchmark whose
pseudocode is shown in Figure |4l First, it initializes an in-
put table with a hundred million random records. While
actual partitioning implementations would allocate output
space on demand during partitioning, we conservatively pre-
allocate space for the output tables beforehand to stream-
line the inner loop. The partitioning inner loop runs over an
input table reading one record at a time, computing its par-
tition using a partition function, and then writing the record
to the destination partition. We compare three partitioning
methods which are differentiated by the implementations of
the partition function:

e Hash: A multiplicative hash of each record’s key de-
termines its destination partition.

e Direct: Like hash partitioning, but eliminates hashing
cost by treating the key itself as the hash value.

e Range: Equality range partitioning using the state of
the art implementation [43|, which performs a binary

System Configuration

Chip 2X Intel E5620

4C/8T, 2.4 GHz, 12 M B LLC
Memory 24 G B per chip, 3 Channels, DDR3
Max Memory BW 25.6 GB/sec per chip
Max TDP 80 Watts per chip
Lithography 32 nm
Die area 239 mm? per chip

Table 1: Hardware platform used in software parti-
tioning and streaming experiments (Sectionsand
[3.3 respectively). Source: Intel [25].

search of the splitters. We show the exact code in
Figure [5] as this is the software against which we will
evaluate HARP.

The software partitioners were compiled with gcc 4.4.3
with -O3 optimization and executed on the hardware plat-
form described in Table[I] Each reported result is the me-
dian of 10 runs, partitioning 10% records per run. We exper-
imented with 8 byte records as in [29] and 16 byte records as
in prior work [9, 2], but show the latter results here as they
provide higher throughput and are most directly comparable
to HARP. These software measurements are optimistic. The
input keys are evenly distributed across partitions, while this
is not typically the case in real-world data. Moreover, the
microbenchmark pre-allocates exactly the right amount of
memory and performs no bounds checking during partition-
ing, whereas, in the real world, it is impossible to know ex-
actly how many records will land in each partition, making
it impossible to pre-allocate perfectly.?

Figure |§| shows the throughput of the hash, direct, and
range partitioners for 128-way and 256-way partitioning (i.e.,
128 and 256 output partitions). Examining single-threaded
performance, we see that the hash function computation
incurs negligible cost relative to the direct method. Our
per-record hash partitioning times match prior studies [29],
as does the drop in throughput between 128- and 256-way
single-threaded partitioning which is consistent with earlier
observations that 128-way partitioning is the largest parti-
tioning factor that does not incur excessive L1 TLB thrash-
ing.

Range partitioning’s throughput is lower than direct or
hash partitioning because it must traverse the splitter ar-
ray to determine the destination partition for each record,
despite the heavily optimized implementation shown in Fig-
ure[5| It is possible to improve the traversal even further by
using SIMD instructions as described by Schlegel et al. [46]
and we found that a SIMD-enhanced binary search improves
the throughput of range partitioning up to 40%. However,
the overall throughputs, 0.29 GB/sec without SIMD, and
0.4 GB/sec with, represent a tiny fraction of the 25.6 GB/sec
maximum throughput potential of the machine. There are
inherent bottlenecks in software range partitioning. In par-
ticular, to determine the correct partition for a particular
record, the best-known software algorithm, used here, tra-

2To pre-allocate partitions, Kim et al. [29] make an addi-
tional pass through the input to calculate partition sizes
so that partitions are free of fragmentation, arguing that
since the partitioning process is compute-bound, the extra
pass through the data has only a small performance impact.
An alternate approach is simply to allocate large chunks of
memory on demand as the partitioning operation runs.

256 way

e-Direct -®=-Hash Range

Partitioning Throughput
(GB/sec)
N
4 []

16 0 4 8 12
Number of Threads

0 4 8 12
Number of Threads
Figure 6: Range partitioning is the most costly for

both 128- and 256-way partitioning. As parallel
threads are added, throughput improves.

verses a binary tree comparing the key to a splitter value
at each node in the tree. The comparisons for a key are
sequentially dependent, and the path through the tree is
unpredictable. The combination of these properties results,
unavoidably, in pipeline bubbles.

Because partitioning scales with multiple threads, we also
consider the performance of multithreaded software imple-
mentations. As the data in Figure [f] indicate, 16 threads
improve range partitioning throughput by 8.5X peaking at
2.9 and 2.6 GB/sec for 128- and 256-way partitioning re-
spectively. Even after deploying all compute resources in
the server, partitioning remains compute-bound, severely
underutilizing the available memory bandwidth. In contrast,
we will demonstrate that a single HARP-accelerated thread
is able to achieve the throughput of close to 16 software
threads, but at a fraction of the power.

3. HARDWARE ACCELERATED RANGE
PARTITIONING SYSTEM

As we saw in Section [2] a partitioner’s input is a large ta-
ble and its output is a set of smaller tables that are easier to
process by virtue of their smaller size. Here we describe the
architecture and microarchitecture of a system that incor-
porates a hardware accelerated range partitioner or HARP.

3.1 Overview

Figure [7] shows a block diagram of the major compo-
nents in a system with range partitioning acceleration. Two
stream buffers, one running from memory to HARP (SB;y)
and the other from HARP to memory (SBout), decouple
HARP from the rest of the system. The range partition-
ing computation is accelerated in hardware (indicated by
the double arrow in Figure , while inbound and outbound
data stream management is left to software (single arrows),
thereby maximizing flexibility and simplifying the interface
to the accelerator. One set of instructions provides config-
uration and control for the HARP accelerator, which freely
pulls data from and pushes data to the stream buffers, while
a second set of streaming instructions, moves data between
memory and the stream buffers. Because data moves in a
pipeline: streamed in from memory via the streaming frame-
work, partitioned with HARP, and then streamed back out,
the overall throughput of this system will be determined by
the lowest-throughput component.

As Figure 8| illustrates, the existing software locking poli-
cies in the database provide mutual exclusion during parti-
tioning both in conventional systems and with HARP. As in

core | [New structures

Software controlled

5B data streaming
I Hardware-accelerated

L2 L2 data partitioning
Memory, rolrl):er

Figure 7: Block diagram of a typical 2-core system
with HARP integration. New components (HARP
and stream buffers) are shaded. HARP is described
in Section followed by the software controlled
streaming framework described in Section

conventional systems, if software does not use proper syn-
chronization, incorrect and nondeterministic results are pos-
sible. Figure |8 shows two threads contending for the same
table T'; once a thread acquires the lock, it proceeds with
partitioning by executing either the conventional software
partitioning algorithm on the CPU, or streaming loads to
feed the table to HARP for hardware partitioning. Existing
database software can be ported to HARP with changes ex-
clusively in the partitioning algorithm implementation. All
other aspects of table layout and database management are
unchanged.

3.2 HARP Accelerator

Instruction Set Architecture The HARP accelerator
is managed via the three instructions shown in the top of
Table[2] set_splitter is invoked once per splitter to delin-
eate a boundary between partitions; partition_start sig-
nals HARP to start pulling data from the SB;,; parti-
tion_stop signals HARP to stop pulling data from SBip,
and drain all in-flight data to SBoy:. To program a 15-way
partitioner, for example, 7 set_splitter instructions are
used to set values for each of the 7 splitter values, followed
by a partition_start to start HARP’s partitioning. Since
HARP’s microarchitectural state is not visible to other parts
of the machine, the splitter values are not lost upon inter-
ruption.

Microarchitecture HARP pulls and pushes records in
64 byte bursts (tuned to match system vector width and
DRAM burst size). The HARP microarchitecture consists
of three modules, as depicted in Figure [J] and is tailored to
range partition data highly efficiently.

1. The serializer pulls bursts of records from SB;,, and
uses a simple finite state machine to pull each indi-
vidual record from the burst and feed them, one after
another, into the subsequent pipeline. As soon as one
burst has been fed into the pipe, the serializer is ready
to pull the subsequent burst.

2. The conveyor is where the record keys are compared
against splitters. The conveyor accepts a stream of
records from the serializer into a deep pipeline with one
stage per splitter. At each stage, the key is compared
to the corresponding splitter and routed either to the

TO HLock acquire+ ——Table partition— —Lock release—
T1 F——>=Lock acquire—— —

Software

Conventional [TO FLock.{ld,st}— —Table.{ld,st} ...— ——Lock.st—
Hardware |4 —Lock.{ld, st}— —

HARP Augmented [TO FLock.{ld,st}— Table.{sbload,sbstore}... ——Lock.st—
Hardware |, +——Lock.{ld,st}—— —

Time

Figure 8: With or without HARP, correct multi-
threaded operation relies on proper software-level
locking. As illustrated here, the streaming frame-
work works seamlessly with existing synchronization

and data layouts.

HARP Instructions

set_splitter <splitter number> <value>
Set the value of a particular splitter (splitter number ranges from
0 to 126).

partition_start

Signal HARP to start partitioning reading bursts of records from
SBin.

partition_stop

Signal HARP to stop partitioning and drain all in-flight data to
SBout-

Stream Buffer Instructions

sbload sbid, [mem addr]
Load burst from memory starting from specified address into des-
ignated SBj,.

sbstore [mem addr], sbid
Store burst from designated S By, to specified address.

sbsave sbid

Save the contents of designated stream buffer to memory. (To be
executed only after accelerators have been drained as described in
Section .

sbrestore sbid

Restore contents of indicated stream buffer from memory.

Table 2: Instructions to control the Hardware Ac-
celerated Range Partitioner (HARP) and the data
streaming framework.

appropriate partition, or to the next pipeline stage.
Partition buffers, one per partition, buffer records until
a burst of them is ready.

3. The merge module monitors the partition buffers as
records accumulate. It is looking for full bursts of
records that it can send to a single partition. When
such a burst is ready, merge drains the partitioning
buffer, one record per cycle, and sends the burst to
SBout-

HARP uses deep pipelining to hide the latency of multiple
splitter comparisons. We experimented with a tree topol-
ogy for the conveyor, analogous to the binary search tree in
the software implementation, but found that the linear con-
veyor architecture was preferable. When the pipeline oper-
ates bubble-free, as it does in both cases, it processes one
record per cycle, regardless of topology. The only difference
in total cycle count between the linear and tree conveyors

@ Serializer - < H ~ © Conveyor
= = u <
From Convert burst H H H
SBin » to stream of .
records (FSM) u u u
WE WE! WE WE WE WE WE
| | | | | | |
Pull burst of records from the most full partition buffer (FSM)
© Merge

T0 SBout

Figure 9: HARP draws records in bursts, serializing them into a single stream which is fed into a pipeline of
comparators. At each stage of the pipeline, the record key is compared with a splitter value, and the record
is either filed in a partition buffer (downwards) or advanced (to the right) according to the outcome of the
comparison. As records destined for the same partition collect in the buffers, the merge stage identifies and
drains the fullest buffer, emitting a burst of records all destined for the same partition.

was the overhead of filling and draining the pipeline at the
start and finish respectively. With large record counts, the
difference in time required to fill and drain a k-stage pipeline
versus a log(k)-stage pipe in the tree version, is negligible.
While cycle counts were more or less the same between the
two, the linear design had a slightly shorter clock period,
due to the more complex layout and routing requirements
in the tree, resulting in slightly better overall throughput.

The integer comparators in HARP can support all SQL
data types as partitioning keys. This is because the repre-
sentations typically lend themselves to integer comparisons.
For example, MySQL represents dates and times as inte-
gers: dates as 3 bytes, timestamps 4 bytes, and datetimes
as 8 bytes [37]. Partitioning ASCII strings alphabetically
on the first N characters can also be accomplished with an
N-byte integer comparator.

3.3 Delivering Data to and from HARP

To ensure that HARP can process data at its full through-
put, the framework surrounding HARP must stream data to
and from memory at or above the rate that HARP can par-
tition. This framework provides software controlled streams
and allows the machine to continue seamless execution after
an interrupt, exception, or context switch. We describe a
hardware/software streaming framework based on the con-
cept outlined in Jouppi’s prefetch stream buffer work [28].

Instruction Set Architecture Software moves data be-
tween memory and the stream buffers via the four instruc-
tions described at the bottom of Table[2l sbload loads data
from memory to SB;,, taking as arguments a source address
in memory and a destination stream buffer ID. sbstore does
the reverse, taking data from the head of the designated out-
going stream buffer and writing it to the specified address.
Each sbload and sbstore moves one vector’s worth of data
(i.e. 128 or 256 bytes) between memory and the stream
buffers. A full/empty bit on the stream buffers will block
the sbloads and sbstores until there is space (in SBiy)
and available data (in SBout). Because the software on the

New attribute bit helps route data fill

Inbound stream buffer
(Demand or Prefetch, Cache or Stream)

. A dedicated data
- LLC SB

5 [Address [D/P[CIS bus to and from

= the memory

2 subsystem

g = -

= A mux that

& : steers the fill

9 : data

=l | [] Datafrom Memory

Figure 10: Implementation of streaming instruc-

tions into existing data path of a generic last level
cache request/fill microarchitecture. Minimal mod-
ifications required are shaded.

CPU knows how large a table is, it can know how many
sbloads/sbstores must be executed to partition the entire
table.

To ensure seamless execution after an interrupt, excep-
tion, or context switch, we make a clean separation of archi-
tectural and microarchitectural states. Specifically, only the
stream buffers themselves are architecturally visible, with no
accelerator state exposed architecturally. This separates the
microarchitecture of HARP from the context and will help
facilitate future extension to other streaming accelerators.
Before the machine suspends accelerator execution to service
an interrupt or a context switch, the OS will execute an sb-
save instruction to save the contents of the stream buffers.
Prior to an sbsave, HARP must be stopped and allowed
to drain its in-flight data to an outgoing stream buffer by
executing a partition_stop instruction. As a consequence,
the stream buffers should be sized to accommodate the max-
imum amount of in-flight data supported by HARP. After
the interrupt has been serviced, before resuming HARP ex-
ecution, the OS will execute an sbrestore to ensure the
streaming states are identical before and after the interrupt
or context switch.

These stream buffer instructions, together with the HARP
instructions described in the previous section allow full soft-
ware control of all aspects of the partitioning operation, ex-
cept for the work of partitioning itself which is handled by
HARP.

Microarchitecture To implement the streaming instruc-
tions, we propose minimal modifications to conventional pro-
cessor microarchitecture. Figure [I0] summarizes the new
additions. sbload’s borrow the existing microarchitectural
vector load (e.g., Intel’s SSE, or PowerPC’s AltiVec) request
path, diverging from vector load behavior when data fills
return to the stream buffer instead of the data cache hierar-
chy. To support this, we add a one-bit attribute to the ex-
isting last level cache request buffer to differentiate sbload
requests from conventional vector load requests. This at-
tribute acts as the mux select for the return data path, as
illustrated in Figure[I0] Finally, a dedicated bi-directional
data bus is added to connect that mux to the stream buffer.

Stream buffers can be made fully coherent to the core
caches. sbloads already reuse the load request path, so po-
sitioning SB;, on the fill path, such that hits in the cache
can be returned to the SB;,, will ensure that sbloads al-
ways produce the most up-to-date values. Figure [10] depicts
the scenario when a request misses all levels of the cache
hierarchy, and the fill is not cached, as sbloads are non-
cacheable. On the store side, sbstores can copy data from
S Boyt into the existing store buffer sharing the store data
path and structures, such as the write combining and snoop
buffers.

Stream loads are most effective when data is prefetched
ahead of use, and our experiments indicate that the existing
hardware prefetchers are quite effective in bringing stream-
ing data into the processor. Prefetches triggered by stream
loads can be handled in one of the following two ways: (1)
fill the prefetched data into the cache hierarchy as current
processors do, or (2) fill the prefetched data into the stream
buffer. We choose the former because it reduces the addi-
tional hardware support needed and incurs minimal cache
pollution by marking prefetched data non-temporal. Be-
cause sbloads check the cache and request buffer for out-
standing requests before sending the request out to the mem-
ory controller, this design allows for coalescing loads and
stores and shorter data return latency when the requests hit
in the prefetched data in the cache.

4. EVALUATION METHODOLOGY

To evaluate the throughput, power, and area efficiency
of our design, we implemented HARP in Bluespec System
Verilog .

Baseline HARP Parameters Each of the design points
extends a single baseline HARP configuration with 127 split-
ters for 255-way partitioning. The baseline supports 16 byte
records, with 4 byte keys. Assuming 64 byte DRAM bursts,
this works out to 4 records per burst.

HARP Simulation Using Bluesim, Bluespec’s cycle-accurate

simulator, we simulate HARP partitioning 1 million random
records. We then convert cycle counts and cycle time into
absolute bandwidth (in GB/sec).

Copy Throughput (GB/sec)

6.8
memcpy |ASM (scalar)| ASM (SSE) | memcpy | ASM (SSE)
Our Experiments Prior Results

Figure 11: The streaming framework shares much
of its implementation with the existing memory sys-
tem, and as such its throughput will be comparable
to the copy throughput of existing systems.

HARP Unit Stream Buffers
Num. Area Power Area Power
Parts. [mm? % Xeon W % Xeon|mm? % Xeon W % Xeon

15 0.16 0.4% 0.01 0.3% |0.07 0.2% 0.063 1.3%
31 0.31 0.7% 0.02 0.4% |0.07 0.2% 0.079 1.6%
63 0.63 1.5% 0.04 07% | 1.3 0.2% 0.078 1.6%
127 1.34 31% 0.06 1.3% |0.11 0.3% 0.085 1.7%
255 |[2.83 6.6% 0.11 2.3% |0.13 0.3% 0.100 2.0%
511 |5.82% 13.6% 0.21* 4.2% |0.18 0.4% 0.233 4.7%

Table 3: Area and power overheads of HARP units
and stream buffers for various partitioning factors.

HARP Synthesis and Physical Design We synthesized
HARP using the Synopsys Design Compiler followed by
the Synopsys IC Compiler for physical design. We used Syn-
opsys 32 nm Generic Libraries; we chose HVT cells to mini-
mize leakage power and normal operating conditions of 0.85
V supply voltage at 25°C. The post-place-and-route critical
path of each design is reported as logic delay plus clock net-
work delay, adhering to the industry standard of reporting
critical paths with a margin®. We gave the synthesis tools a
target clock cycle of 5 or 2 ns depending on design size and
requested medium effort for area optimization.

Xeon Area and Power Estimates The per-processor
core area and power figures in the analyses that follow are
based on Intel’s published information and reflect our esti-
mates for the system we used in our software partitioning
measurements as described in Table [I1

Streaming Instruction Throughput To estimate the
rate at which the streaming instructions can move data into
and out of HARP, we measure the rate at which memory
can be copied from one location to another (i.e., streamed
in and back out again). We benchmark three implementa-
tions of memcpy: (1) built-in C library, (2) hand-optimized
X86 scalar assembly, and (3) hand-optimized X86 vector as-
sembly. In each experiment we copy a 1 GB table natively

3Critical path of the 511-partition design, post-place-and-
route, is obtained by scaling the synthesis output, using the
Design Compiler to IC Compiler scaling across designs up
to 255 partitions.

4Scaled conservatively from the baseline design using area
and power trends seen in Figures [16| and (1 .

8 - 20 A

" o1 thread ®-1 thread
= rea
g \\ ~ -®-16 threads
ke . -®-16 threads 2 45 4 1 thread + HARP .

4 +
E‘é 6 \ 1 thread + HARP S rea .
‘g- \. @ . ./
S 4 T g1 - _—
3 \ - ~
8 on o m
= s E= 7/
= = on
ERY gy’
c 5
2 o &
s oo . . a
§ T T T T T T T T T T

0 100 200 300 400 500 0 100 200 300 400 500

Number of Partitions Number of Partitions
Figure 12: A single HARP unit Figure 13: HARP-augmented

w
L
a

-
1

Partitioning Throughput (GB/sec)
N

T T T

0% 25% 50% 75%
Records in Hot Partition

100%

Figure 14: As input imbalance in-

outperforms single threaded soft-
ware from 7.8X with 63 or 255 par-
titions to 8.8X with 31 partitions,
approaching the throughput of 16
threads.

software.

on the Xeon server described in Table[ll All code was com-
piled using gcc 4.6.3 with -O3 optimization.

Streaming Buffer Area and Power We use CACTT [22]
to estimate the area and power of stream buffers. The num-
ber of entries in the stream buffers are conservatively esti-
mated assuming that all ways of the partitioner can output
in the same cycle. For example, for a 255-way partitioner,
we sized SBoy: to have 255 entries of 64 bytes each.

S. EVALUATION RESULTS

5.1 Area, Power and Performance

We evaluate the proposed HARP system in the following
categories:

1. Throughput comparison with the optimistic software
range partitioning from Section |2.2

2. Area and power comparison with the processor core on
which the software experiments were performed.

3. Non-performance partitioner desiderata.

For all evaluations in this section, we use the baseline con-
figuration of HARP outlined in Section [4 unless otherwise
noted.

HARP Throughput Figure [[2] plots the throughput of
three range partitioner implementations: single-threaded soft-
ware, multi-threaded software, and single-threaded software
plus HARP. We see that HARP’s throughput exceeds a sin-
gle software thread by 6.5X-8.8X, with the difference pri-
marily attributable to the elimination of instruction fetch
and control overhead of the splitter comparison and the
deep pipeline. In particular, the structure of the partition-
ing operation does not introduce hazards or bubbles into the
pipeline, allowing it to operate in near-perfect fashion: al-
ways full, accepting and emitting one record per clock cycle.
We confirm this empirically as our measurements indicate
average cycles per record ranging from 1.008 (for 15-way par-
titioning) to 1.041 (for 511-way partitioning). As Figure

cores partition data using 6.3-8.7X
less energy than parallel or serial

creases, throughput drops by at
most 19% due to increased occur-
rence of back-to-back bursts to the
same partition.

indicates, it requires 16 threads for the software implemen-
tation to match the throughput of the hardware implemen-
tation. At 3.13 GB/sec per core with HARP, augmenting
all or even half of the 8 cores with HARP would provide suf-
ficient compute bandwidth to fully utilize all DRAM pins.

In terms of absolute numbers, the baseline HARP config-
uration achieved a 5.06 ns critical path, yielding a design
that runs at 198 M Hz, delivering partitioning throughput
of 3.13 GB/sec. This is 7.8 times faster than the optimistic
single-threaded software range-partitioner described in Sec-
tion

Streaming Throughput Our results in Figure show
that C’s standard library memcpy provides similar through-

put to hand-optimized vector code, while scalar code’s through-

put is slightly lower. For comparison, we have also included
the results of a similar experiment published by IBM Re-
search [48]. Based on these measurements, we will conser-
vatively estimate that the streaming framework can bring
in data at 4.6 GB/sec and write results to memory at 4.6
GB/sec with a single thread. This data shows that the
streaming framework provides more throughput than HARP
can take in, but not too much more, resulting in a balanced
system.

Area and Power Efficiency The addition of the stream
buffer and accelerator hardware do increase the area and
power of the core. Table [3] quantifies the area and power
overheads of the accelerator and stream buffers relative to a
single Xeon core. Comparatively, the additional structures
are very small, with the baseline design point adding just
6.9% area and 4.3% power for both the HARP and the SBs.
HARP itself consumes just 2.83 mm? and 0.11 W.

Because the stream buffers are sized according to the ac-
celerators they serve, we quantify their area and power over-
heads for each HARP partitioning factor we consider in Ta-
ble The proposed streaming framework adds 0.3 mm?
area, consumes 10 mW power for a baseline HARP config-
uration.

8

o o N ©

Throughput (GB/s)
S

o =~ N W

0 50 100 150 200 250 300
Number of Splitters (k)

Figure 15: HARP throughput is
most sensitive to the number of
partitions, dropping about 38% go-
ing from a 15-way to a 63-way par-
titioner.

® Key Width
= Record Width

S}
L

o o
o
L

10 15 20
Bytes

o
&

Figure 18: HARP throughput in-
creases linearly with record width
because HARP partitions in record
granularity. HARP throughput
degrades mildly when key width in-

7 T T
| APartition Buffers

6 @ Comparators and Other o
_5 | ©Wiring Overhead -
% 4 Total
E
g 3 I e
o A
<2

1

,,,,,,,,,, ®

100 150 200 250 300
Number of Splitters (k)

Figure 16: HARP area scales lin-
early to the number of partitions
because partition buffers dominate
area growth and are scaled linearly
with the number of partitions.

B Other Registers Partition Buffers

® Comparators and Other ™ Wiring Overhead
3.50
3.00 r—
2.50
2.00
1.50
1.00
0.50
0.00

Area (mm"2)

Key Width (Byte)

Record Width (Byte)

Figure 19: HARP area is not par-
ticularly sensitive to key or record
widths. Wiring overhead and par-
tition buffers dominate area at over
80% of the total partitioner area.

250 ‘ ‘
@ Leakage (mW)
200 | ®Dynamic (mW)
g Total (mW)
%150
5}
£ 100
o
50
[A

o

0 50 100 150 200 250 300
Number of Splitters (k)

Figure 17: HARP power consump-
tion also scales linearly with the
number of partitions, on roughly
the same linear scaling as area.

160 = Dynamic
—~ 140 = | eakage
B3
E 120
g1
% 00
£ 80

60

40

20

‘ 4 8 16 4 8 16

‘ Key Width (Byte) ‘ Record Width (Byte) ‘

Figure 20: HARP power consump-
tion is slightly sensitive to key
widths because the comparators
are doubled in width when the key
width doubles.

creases.

Energy Efficiency From an energy perspective, this slight
increase in power is overwhelmed by the improvement in
throughput. Figure [I3] compares the partitioning energy
per GB of data of software (both serial and parallel) against
HARP-based alternatives. The data show a 6.2-8.7X im-
provement in single threaded partitioning energy with HARP.

Order Preservation HARP is record order preserving by
design. All records in a partition appear in the same order
they were found in the input record stream. This is a useful
property for other parts of the database system and is a
natural consequence of the structure of HARP, where there
is only one route from input port to each partition, and it is
impossible for records to pass one another in-flight.

Skew Tolerance We evaluate HARP’s skew tolerance by
measuring the throughput (i.e., cycles/record) on synthet-
ically unbalanced record sets. In this experiment, we var-
ied the record distribution from optimal, where records were
uniformly distributed across all partitions, to pessimal, where
all records are sent to a single partition. Figure[I[4]shows the
gentle degradation in throughput as one partition receives
an increasingly large share of records.

This mild degradation is due to the design of the merge
module. Recall that this stage identifies which partition has
the most records ready and drains them from that partition’s

HARP Design Space Configurations

Splitters 7 15 31 63 [127] 255
Partitions 15 31 63 127255 511
Key Width (Bytes) 4 8 16
Record Width (Bytes) 4 8 |16

Table 4: Parameters for HARP design space explo-
ration with baseline configuration highlighted.

buffer to send as a single burst back to memory. Back-to-
back drains of the same partition require an additional cy-
cle in the merge, which rarely happens, when records are
distributed across partitions. If there are B records per
DRAM burst, draining two different partition buffers back-
to-back takes 2B cycles. However, when skew increases, the
frequency of back-to-back drains of the same partition in-
creases, resulting in an average of B + 1 cycles per burst
rather than B. Thus, the throughput of the merge module
varies between & cycles/record in the best case to %H in
the worst case. Note that this tolerance is independent of
many factors including the number of splitters, the size of
the keys, or the size of the table being partitioned.

The baseline HARP design supports four records per burst
resulting in a 25% degradation in throughput between best-
and worst-case skew. This is very close to the degradation

seen experimentally in Figure where throughput sinks
from 3.13 GB/sec with no skew to 2.53 GB/sec in the worst-
case.

5.2 Design Space Exploration

The number of partitions, key width, and record width
present different implementation choices for HARP each suit-
able for different workloads. We perform a design space
exploration and make the following key observations: (1)
HARP’s throughput is highly sensitive to the number of
splitters when the partitioning factor is smaller than 63, (2)
HARP’s throughput scales linearly with record width, (3)
the overall area and power of HARP grow linearly with the
number of splitters, and (4) the smallest and the highest
throughput design is not necessarily the best as the stream-
ing framework becomes the system bottleneck, unable to
keep HARP fed.

Below, we examine eleven different design points by hold-
ing two of the design parameters in Table @ constant while
varying the third. All reported throughputs are measured
using a uniform random distribution of records to partitions.
Figures[T5] - [I7] compare the throughput, area, and power as
the number of partitions varies. Figures [1§] - 20] show the
same comparisons as number of key width and record width
vary.

Throughput Analysis HARP’s throughput degrades when
the number of splitters or the key width increases. It is sen-

sitive to the number of splitters as evidenced by the 38%

drop in throughput from a 63-way to a 15-way partitioner.

This is due to an increase in critical path as HARP performs

more and wider key comparisons. As the record width in-

creases, the throughput grows linearly, because the time and

cycles per record are essentially constant regardless of record

width.

Area and Power Analysis The area and power of HARP
scales linearly in the number of splitters but is otherwise
mostly unaffected by key and record size. This is because the
partition buffers account for roughly half of the total design
area, and they grow linearly with the number of partitions.

Design Tradeoffs In these studies we see that a HARP
design supporting a small number of partitions provides the
fastest throughput, smallest area, and lowest power con-
sumption. However, it results in larger partitions, making
it less likely the partitioned tables will display the desired
improvement in locality. In contrast, a 511-way partitioner
will produce smaller partitions, but is slightly slower and
consumes more area and power. Depending on the work-
load and the data size to be partitioned, one can make de-
sign tradeoffs among the parameters we have explored and
choose a design that provides high throughput, low area,
and high energy efficiency while maintaining overall system
balance.

6. RELATED WORK

Streaming Computation The last decade has seen sub-
stantial interest in software-based streaming computation
with the development of new parallel languages |7} |17] and
middleware support focused on portability and interoper-
ability 11} 127} {39} |13].

The hardware support for streaming has been substan-
tially more limited. The vast majority of streaming architec-
tures, such as Cell’s SPE [15], RSVP [10], or Piperench [16]
are decoupled from the processing core and are highly tai-
lored to media processing. The designs that most closely
resemble HARP microarchitecturally are DySER [19] and
ReMAP [52|. DySER incorporates a dynamically special-
ized data path into the core. Both DySER and HARP can
be viewed as specialized functional units, and are sized ac-
cordingly (a couple percent of a core area). While one might
be able to program DySER to partition data, its full inter-
connect between functional units is overkill for partition-
ing’s predictable data flow. ReMAP [52] has a very differ-
ent goal, integrating reconfigurable fabric, called Specialized
Programmable Logic (or SPL), to support fine-grained inter-
core communication and computation.

Vector ISAs Nearly all modern processors include vec-
tor ISAs, exemplified by x86’s MMX and SSE, Visual In-
struction Set (VIS) for UltraSPARC, or AltiVec on Pow-
erPC. These ISAs include vector loads and stores, instruc-
tions which load 128- or 256-bit datawords into registers for
SIMD vector operation. Different opcodes allow the pro-
grammer to specify whether the data should or should not
be cached (e.g., non-temporal loads).

The SIMD vector extensions outlined above were univer-
sally introduced to target media applications on streaming
video and image data. The available operations treat the
data as vectors and focus largely on arithmetic and shuffling
operations on the vector values. Many programmers have
retrofitted and vectorized other types of programs, notably
text parsing [5,|32] and regular expression matching [45]| and
database kernels [55, 18| [31]. Our experiments in Section[2.2]
using a state of the art SIMD range partitioning [46] indicate
that vector-based traversal improves throughput somewhat
but fails to fully saturate DRAM bandwidth.

These efforts demonstrate moderate speedups, at the cost
of substantial programmer effort. One recent study of reg-
ular expression matching compared different strategies for
acceleration [45]. The study concluded that SIMD software
was the best option, due to the fast data and control trans-
fers between the scalar CPU and the vector unit. The other
approaches (including memory bus and network attached
accelerators) suffered due to communication overheads. In
short, SIMD won not because it was particularly fast com-
putationally, but because it was fast to invoke. This study
in part influenced our choice to tightly couple the HARP
accelerator with a processing core.

Database Machines Database machines were developed
by the database community in the early 1980s as special-
ized hardware for database workloads. These efforts largely
failed, primarily because commodity CPUs were improving
so rapidly at the time, and hardware design was slow and
expensive [4]. While hardware design remains quite costly,
high computing requirements of data-intensive workloads,
limited single-threaded performance gains, increases in spe-
cialized hardware, aggressive efficiency targets, and the data
deluge have spurred us and others to revisit this approach.
While FPGAs have been successfully used to accelerate a
number of data intensive algorithms [35, 53| 36|, they are
power-hungry compared to custom logic and it remains un-
clear how to approach programming and integrating them.

Memory Scheduling Despite the relative scarcity of mem-
ory bandwidth, there is ample evidence both in this pa-
per and elsewhere that workloads do not fully utilize the
available resource. One recent study suggests that, if mem-
ory controllers were to operate at their peak throughput,
data bus utilization would double, LLC miss penalties would
halve, and overall performance would increase by 75% [26].
This observation and others about the performance criti-
cality of memory controller throughput [38] have inspired
substantial research in memory scheduling (e.g., [42, 41,
47, 126}, [14]). Improvements in memory controllers have the
advantage of being applicable across all workloads, yet im-
portant throughput bound workloads, such as partitioning,
are not limited by the memory controller and thus will not
see significant benefit from those efforts.

7. CONCLUSIONS

We have described a specialized database processing ele-
ment and a streaming framework that provide seamless exe-
cution in modern computer systems and exceptional through-
put and power efficiency advantages over software. These
benefits are necessary to address the ever increasing de-
mands of big data processing. This proposed framework
can be utilized for other database processing accelerators
such as specialized aggregators, joiners, sorters, and so on,
setting forth a flexible yet modular data-centric acceleration
framework.

We presented the design and implementation of HARP,
a hardware accelerated range partitioner. HARP is able to
provide a compute bandwidth of at least 7.8 times a very
efficient software algorithm running on an aggressive Xeon
core, with just 6.9% of the area and 4.3% of the power. Pro-
cessing data with accelerators such as HARP can alleviate
serial performance bottlenecks in the application and can
free up resources on the server to do other useful work.

8. ACKNOWLEDGMENTS

The CAD infrastructure was partly supported by resources
of Sethumadhavan’s Comp Arch and Security Technology

Lab (CASTL) which is funded through grants CNS/TC 1054844,

FA 99500910389, FA 865011C7190, FA 87501020253 and
gifts from Microsoft Research, WindRiver Corp, Xilinx Inc.
and Synopsys Inc.. The authors also wish to thank Todd
Austin, Doug Carmean, Stephen Edwards, Tim Paine, and
the anonymous reviewers for their time and feedback.

9. REFERENCES

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.
Wood. DBMSs on a modern processor: Where does
time go? In VLDB, 1999.

[2] S. Blanas, Y. Li, and J. M. Patel. Design and
evaluation of main memory hash join algorithms for
multi-core CPUs. In SIGMOD, 2011.

[3] Bluespec, Inc. Bluespec Core Technology.
http://www.bluespec.com.

[4] H. Boral and D. J. DeWitt. Database machines: an
idea whose time has passed? In IWDM, 1983.

[5] R. D. Cameron and D. Lin. Architectural support for
SWAR text processing with parallel bit streams: the
inductive doubling principle. In ASPLOS, 2009.

[6] Centrum Wiskunde and Informatica.
http://wuw.monetdb.org.

[7]

8]

[9]

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]
23]

24]

[25]

[26]

27]

S. Chakraborty and L. Thiele. A new task model for
streaming applications and its schedulability analysis.
In DATE, 2005.

D. Chatziantoniou and K. A. Ross. Partitioned
optimization of complex queries. Information Systems
(1S), 32(2):248-282, 2007.

J. Cieslewicz and K. A. Ross. Data partitioning on
chip multiprocessors. In DaMoN, 2008.

S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat,
J. Norris, M. Schuette, and A. Saidi. The
reconfigurable streaming vector processor (RSVPTM).
In MICRO, 2003.

B. F. Cooper and K. Schwan. Distributed stream
management using utility-driven self-adaptive
middleware. In CAC, 2005.

Q. Deng, D. Meisner, L.. Ramos, T. F. Wenisch, and
R. Bianchini. Memscale: active low-power modes for
main memory. In ASPLOS, 2011.

M. Duller, J. S. Rellermeyer, G. Alonso, and

N. Tatbul. Virtualizing stream processing. In
Middleware, 2011.

E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee,
J. A. Joao, O. Mutlu, and Y. N. Patt. Parallel
application memory scheduling. In MICRO, 2011.

B. Flachs et al. A streaming processing unit for a
CELL processor. In ISSCC, 2005.

S. C. Goldstein, H. Schmit, M. Moe, M. Budiu,

S. Cadambi, R. R. Taylor, and R. Laufer. PipeRench:
a co/processor for streaming multimedia acceleration.
In ISCA, 1999.

M. I. Gordon, W. Thies, and S. Amarasinghe.
Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs. In ASPLOS, 2006.
N. K. Govindaraju and D. Manocha. Efficient
relational database management using graphics
processors. In DaMoN, 2005.

V. Govindaraju, C.-H. Ho, and K. Sankaralingam.
Dynamically specialized datapaths for energy efficient
computing. In HPCA, 2011.

G. Graefe and P.-A. Larson. B-tree indexes and CPU
caches. In ICDFE, 2001.

N. Hardavellas, M. Ferdman, B. Falsafi, and

A. Ailamaki. Toward dark silicon in servers. I[EEE
Micro, 31(4), 2011.

HP Labs. http://www.hpl.hp.com/research/cacti/.
IBM. DB2 Partitioning Features.
http://wuw.ibm.com/developerworks/data/
library/techarticle/dm-0608mcinerney.

IBM. IBM What is big data? Bringing big data to
enterprise.
http://www-01.ibm.com/software/data/bigdata/.
Intel Corporation. Intel® Xeon® Processor E5620.
http://ark.intel.com/products/47925.

E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana.
Self-optimizing memory controllers: A reinforcement
learning approach. In ISCA, 2008.

N. Jain, L. Amini, H. Andrade, R. King, Y. Park,

P. Selo, and C. Venkatramani. Design,
implementation, and evaluation of the linear road
bnchmark on the stream processing core. In SIGMOD,
2006.

http://www.bluespec.com
http://www.monetdb.org
http://www.hpl.hp.com/research/cacti/
http://www.ibm.com/developerworks/data/library/techarticle/dm-0608mcinerney
http://www.ibm.com/developerworks/data/library/techarticle/dm-0608mcinerney
http://www-01.ibm.com/software/data/bigdata/
http://ark.intel.com/products/47925

[28]

[29]

[30]

[31]

[36]

[37]

[38]

N. P. Jouppi. Improvind direct-mapped cache
performance by the addition of a small
fully-associative cache and prefetch buffers. In ISCA,
1990.

C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. D.
Nguyen, A. D. Blas, V. W. Lee, N. Satish, and

P. Dubey. Sort vs. hash revisited: Fast join
implementation on modern multi-core CPUs. PVLDB,
2(2):1378-1389, 2009.

C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid.
Server engineering insights for large-scale online
services. IEEE Micro, 30(4), July/August 2010.

J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb,
J. Chhugani, H. Plattner, P. Dubey, and A. Zeier. Fast
updates on read-optimized databases using multi-core
CPUs. PVLDB, 5(1):61-72, Sept. 2011.

D. Lin, N. Medforth, K. S. Herdy, A. Shriraman, and
R. Cameron. Parabix: Boosting the efficiency of text
processing on commodity processors. In HPCA, 2012.
K. T. Malladi, F. Nothaft, K. Periyathambi, B. C.
Lee, C. Kozyrakis, and M. Horowitz. Towards
energy-proportional datacenter memory with mobile
dram. In ISCA, 2012.

Microsoft. Microsoft SQL Server 2012.
http://technet.microsoft.com/en-
us/sqlserver/££898410.

C. Mohan. Impact of recent hardware and software
trends on high performance transaction processing
and analytics. In TPCTC, 2011.

R. Miiller and J. Teubner. FPGAs: a new point in the
database design space. In EDBT, 2010.

MySQL. Date and time datatype representation.
http://dev.mysql.com/doc/internals/en/date-
and-time-data-type-representation.html.

C. Natarajan, B. Christenson, and F. Briggs. A study
of performance impact of memory controller features
in multi-processor server environment. In WMPI,
2004.

L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In ICDM W,
2010.

Oracle. Oracle Database 11g: Partitioning.
http://wuw.oracle.com/technetwork/database/

[41]

42]

(43]

4]

(45]

(46]

(47]

(48]

(49]

[50]

[51]

[52]

[53]

[54]

[55]

options/partitioning/index.htmll

N. Rafique, W.-T. Lim, and M. Thottethodi. Effective
Management of DRAM Bandwidth in Multicore
Processors. In PACT, 2007.

S. Rixner. Memory controller optimizations for web
servers. In MICRO, 2004.

K. A. Ross and J. Cieslewicz. Optimal splitters for
database partitioning with size bounds. In ICDT,
pages 98-110, 2009.

P. Saab. Scaling memcached at Facebook, Dec 2008.
https://www.facebook.com/note.php?note_id=
39391378919.

V. Salapura, T. Karkhanis, P. Nagpurkar, and

J. Moreira. Accelerating business analytics
applications. In HPCA, 2012.

B. Schlegel, R. Gemulla, and W. Lehner. k-ary search
on modern processors. In DaMoN, 2009.

J. Shao and B. Davis. A burst scheduling access
reordering mechanism. In HPCA, 2007.

H. Subramoni, F. Petrini, V. Agarwal, and D. Pasetto.
Intra-socket and inter-socket communication in
multi-core systems. IEEE Computer Architecture
Letters, 9:13—16, January 2010.

Synopsys, Inc. 32/28nm Generic Library for IC
Design, Design Compiler, IC Compiler.
http://www.synopsys.com.

L. Tang, J. Mars, N. Vachharajani, R. Hundt, and
M. L. Soffa. The impact of memory subsystem
resource sharing on datacenter applications. In ISCA,
2011.

Transaction Processing Performance Council.
http://wuw.tpc.org/tpch/default.asp.

M. A. Watkins and D. H. Albonesi. ReMAP: A
reconfigurable heterogeneous multicore architecture.
In MICRO, 2010.

L. Woods, J. Teubner, and G. Alonso. Complex event
detection at wire speed with FPGAs. PVLDB,
3(1):660-669, 2010.

Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable
aggregation on multicore processors. In DaMoN, 2011.
J. Zhou and K. A. Ross. Implementing database
operations using SIMD instructions. In SIGMOD,
2002.

http://technet.microsoft.com/en-us/sqlserver/ff898410
http://technet.microsoft.com/en-us/sqlserver/ff898410
http://dev.mysql.com/doc/internals/en/date-and-time-data-type-representation.html
http://dev.mysql.com/doc/internals/en/date-and-time-data-type-representation.html
http://www.oracle.com/technetwork/database/options/partitioning/index.html
http://www.oracle.com/technetwork/database/options/partitioning/index.html
https://www.facebook.com/note.php?note_id=39391378919
https://www.facebook.com/note.php?note_id=39391378919
http://www.synopsys.com
http://www.tpc.org/tpch/default.asp

	Introduction
	Background and Motivation
	Partitioning Background
	Software Partitioning Evaluation

	Hardware Accelerated Range Partitioning System
	Overview
	HARP Accelerator
	Delivering Data to and from HARP

	Evaluation Methodology
	Evaluation Results
	Area, Power and Performance
	Design Space Exploration

	Related Work
	Conclusions
	Acknowledgments
	References

