
Semantic Ranking and Result Visualization for Life

Sciences Publications

Julia Stoyanovich 1, William Mee 2, Kenneth A. Ross 3

Columbia University

New York, NY USA
1
jds1@cs.columbia.edu,

2
wjm2107@columbia.edu,

3
kar@cs.columbia.edu

Abstract—An ever-increasing amount of data and semantic
knowledge in the domain of life sciences is bringing about
new data management challenges. In this paper we focus on
adding the semantic dimension to literature search, a central
task in scientific research. We focus our attention on PubMed,
the most significant bibliographic source in life sciences, and
explore ways to use high-quality semantic annotations from the
MeSH vocabulary to rank search results. We start by developing
several families of ranking functions that relate a search query to
a document’s annotations. We then propose an efficient adaptive
ranking mechanism for each of the families. We also describe
a two-dimensional Skyline-based visualization that can be used
in conjunction with the ranking to further improve the user’s
interaction with the system, and demonstrate how such Skylines
can be computed adaptively and efficiently. Finally, we evaluate
the effectiveness of our ranking with a user study.

I. INTRODUCTION

Many scientific domains, most notably the domain of life

sciences, are experiencing unprecedented growth. The recent

complete sequencing of the Human Genome, and the tremen-

dous advances in experimental technology are rapidly bringing

about new scientific knowledge. The ever-increasing amount

of data and semantic knowledge in life sciences requires

the development of new semantically rich data management

techniques that facilitate scientific research and collaboration.

Literature search is a central task in scientific research.

PubMed (www.pubmed.gov) is the most significant bibli-

ographic source in the domain of life sciences, with over 18

million articles at the time of this writing. Indexed articles go

back to 1865, and the number of articles grows daily. PubMed

articles are annotated by a staff of indexers with terms from

the Medical Subject Headings (MeSH) controlled vocabulary.

MeSH organizes term descriptors into a hierarchical structure,

allowing searching at various levels of specificity. The 2008

version of MeSH contains 24,767 term descriptors that refer

to general concepts such as Anatomy and Mental Disorders,

as well as to specific concepts such as Antiphospholipid

Syndrome and Cholesterol. Indexers are instructed to assign

the most specific terms possible to a PubMed article.

MeSH terms are classified into an is-a polyhierarchy: the

hierarchy defines is-a relationships among terms, and each

term has one or more parent terms [9]. Figure 1 presents

a portion of MeSH that describes autoimmune diseases and

connective tissue diseases. The hierarchy is represented by

a tree of nodes, with one or several nodes mapping to a

single term label. For example, the term Rheumatic Diseases

is represented by the node C17.300.775.099.
Interestingly, the MeSH hierarchy is scoped: two tree nodes

that map to the same term label may not always induce iso-

morphic subtrees. The term Rheumatoid Arthritis (RA) maps

to two nodes in Figure 1, and induces subtrees of different

sizes. Node C20.111.199 represents the autoimmune aspect of

RA and induces a subtree of size 5, while C17.300.775.099
refers to RA as a rheumatic disease, and induces a subtree of

size 7. (Subtree size is noted next to the name of the node.)

Scoping is an important technique for modeling complex poly-

hierarchies. Placing a concept in several parts of the hierarchy

models different aspects of the concept, while accommodating

different context in different parts of the hierarchy adds to the

expressive power and reduces redundancy.

PubMed can be searched with Entrez, the Life Sciences

Search Engine. Entrez implements sophisticated query pro-

cessing, allowing the user to specify conjunctive or disjunctive

Boolean semantics for the search query, and to relate the

search terms to one or several parts of the document: title,

MeSH annotations, text of the document, etc. In order to

improve recall, Entrez automatically expands query terms that

are related to MeSH annotations with synonymous or near-

synonymous terms. For example, the simple query mosquito

will be transformed by Entrez to “culicidae”[MeSH Terms]

OR “culicidae”[All Fields] OR “mosquito”[All Fields]. En-

trez also expands the query with descendants of any MeSH

terms. For example, the query “blood cells”[MeSH Terms]

will match articles that are annotated with “blood cells” or

with “erythrocytes”, “leukocytes”, “hemocytes” etc.

The need to improve recall differentiates bibliographic

search from general web search. In web search it is often

assumed that many documents equivalently satisfy the user’s

information need, and so high recall is less important than

high precision among the top-ranked documents. Conversely,

in bibliographic search the assumption (or at least the hope) is

that every scientific article contributes something novel to the

state of the art, and so no two documents are interchangeable

when it comes to satisfying the user’s information need. In

this scenario the Boolean retrieval model, such as that used

by Entrez, guarantees perfect recall and is the right choice.

However, there is an important common characteristic of

bibliographic and general web search: many queries return

hundreds, or even thousands, of relevant results. Query expan-

Fig. 1. Portion of the MeSH polyhierarchy.

sion techniques that maximize recall exacerbate this problem

by producing yet more results. For example, the fairly specific

query Antiphospholipid Antibodies AND Thrombosis, which

looks for information about a particular clinical manifestation

of Antiphospholipid syndrome, returned 2455 matches using

the default query translation in January 2009. A more general

query that looks for articles about connective tissue diseases

that are also autoimmune returns close to 120,000 results.

Because so many results are returned per query, the system

needs to help the user explore the result set. Entrez currently

allows the results to be sorted by several metadata fields:

publication date, first author, last author, journal, and title.

This may help the user look up an article with which he is

already familiar (i.e., knows some of the associated metadata),

but does not support true information discovery.

A useful and well-known way to order results in web

information retrieval is by query relevance. Retrieval models

such as the Vector Space Model [1] have the query relevance

metric built in, while the Boolean retrieval model does not. In

this paper we propose to measure the relevance of a document

to the query with respect to the MeSH vocabulary. We illustrate

some semantic considerations and challenges with an example.

Example 1.1: Consider the Entrez query “Connective Tis-

sue Diseases” [MeSH Terms] AND “Autoimmune Diseases”

[MeSH Terms], evaluated against PubMed. Figure 1 represents

these query terms in the context of the MeSH hierarchy. The

query will match all documents that are annotated with at least

one term from each of the induced subtrees of the query terms.

One of the results, a document with pmid = 17825677,
is a review article that discusses the impact of autoimmune

disorders on adverse pregnancy outcome. It is annotated with

the query terms “Autoimmune Diseases” and “Connective

Tissue Diseases”, and also with several terms from the in-

duced subtrees of the query terms: “Arthritis, Rheumatoid”,

“Lupus Erythematosus, Systemic”, “Scleroderma, Systemic”,

and “Sjögren’s Syndrome”. The article is also annotated

with general terms that are not related to the query terms

via the hierarchy: “Pregnancy”, “Pregnancy Complications”,

“Female”, and “Humans”.

Another result, an article with pmid = 19107995, describes
neuroimaging advances in the measurement of brain injury in

Systemic Lupus. This article matches the query because it is

annotated with “Lupus Erythematosus, Systemic”, which is

both a connective tissue disease and an autoimmune disease.

The article is also annotated with broader terms “Brain”,

“Brain Injuries”, “Diagnostic Imaging”, and “Humans”.

Based on this example, we observe that, while both articles

are valid matches for the query, they certainly do not carry

equal query relevance. The first article covers the fairly general

query terms, as well as several specific disorders classified

below the query terms in MeSH. In contrast, the second article

answers a limited portion of the query, since it focuses on

only one particular disorder. In this work we propose several

ways to measure semantic relevance of a document to a query,

and demonstrate how our semantic relevance can be computed

efficiently on the scale of PubMed and MeSH.

An important dimension in data exploration, particularly in

a high-paced scientific field, is time. An article that contributes

to the state of the art at the time of publication may quickly

become obsolete as new results are published. Semantic rele-

vance measures of this paper can be used to retrieve ranked

lists of results, or they can be combined with data visualization

techniques that give an at-a-glance overview of thousands of

results. We develop a two-dimensional skyline visualization

that plots relevance against publication date, and show how

such skylines can be computed efficiently on the large scale.

Ranking that takes into account hierarchical structure of

the domain has been considered in the literature [6], [12],

[13]. Such ranking typically relates two terms via a common

ancestor; see Section VI for a discussion of these methods.

When terms appear in the hierarchy in multiple places, with

subtly different meanings, it is unclear how such distance-

based measures should be generalized. Instead, in this paper

we develop new families of ranking measures that are aimed

specifically at ranking with scoped polyhierarchies like MeSH,

where terms may occur in multiple (partially replicated) parts

of the hierarchy. We argue that the semantics of a term is best

captured by its set of descendants across the whole hierarchy,

and develop measures of relatedness that depend on the nature

of the overlap between these sets of descendants.

Computing similarity based on sets of descendants is algo-

rithmically more complex than simpler graph distance mea-

sures. We pay particular attention to efficiency, and provide

an extensive experimental evaluation of our methods with the

complete PubMed dataset and the full MeSH polyhierarchy,

demonstrating that interactive response times are achievable.

The rest of this paper is organized as follows. We formalize

semantics of query relevance for scoped polyhierarchies in

Section II. We present the data structures and algorithms that

implement the query relevance measures on the large scale in

Section III. Section IV describes an evaluation of efficiency,

and Section V presents a user study. We present related work

in Section VI, and conclude in Section VII.

II. SEMANTICS OF QUERY RELEVANCE

We now formalize the data model, and define the seman-

tics of several similarity measures, using the polyhierarchy

in Figure 2 for demonstration. Term labels are denoted by

letters A, B, C, . . ., and nodes are denoted by numerical ids

1, 2, 3, Term ⊤ represents the root of the hierarchy.

A. Motivation

We wish to assign a score to documents whose MeSH terms

overlap with the query terms. Our notion of “overlap” includes

cases where a document term represents a sub-concept of a

query term. If a query is {A, B} in Figure 2, and the document

contains MeSH terms C and D, then both C and D contribute

to the overlap because they are sub-concepts of A and B.

Our first similarity measure, which we formalize in Sec-

tion II-C, simply counts the number of terms in common

between the descendants of the MeSH terms in the query and

those in the document. According to this measure, concepts

such as C that appear in multiple parts of the hierarchy count

once. However, we might want to count C more than once

because it contributes to the matching of both query terms.

The alternative of simply counting every occurrence of a

term label can be naive. Suppose that the query is {C} and

that the document mentions term G but not C or H . One

could argue that double-counting G is inappropriate, since the

only reason we have two G instances is because C appears in

multiple parts of the hierarchy.Within the context of C, G only

appears once. This observation motivates us to only double-

count when the ancestor concept in the query is different.

Fig. 2. A sample scoped polyhierarchy.

We develop a similarity measure that models this intuition

in Section II-D.

The measures mentioned so far are sensitive to the size

of the hierarchy. Because A has more descendants than B,

an intermediate-level match in the A subtree may give a

much larger score than a high-level match in the B subtree.

The effect of this bias would be that highly differentiated

concepts would be consistently given more weight than less

differentiated concepts. To overcome this bias, we consider a

scoring measure in Section II-E that weights matches in such

a way that each query term contributes equally to the score.

B. Terminology

Definition 2.1: A scoped polyhierarchy is a tuple H =
{T ,N , ISA, L}, where T is a set of term labels, N is a

set of nodes, ISA : N → N is a many-to-one relation that

encodes the generalization hierarchy of nodes, and L : N → T
associates a term with each node. When ISA(n, n′) holds, we
say n′ is a parent of n, and n is a child of n′. Every node

except the root has exactly one parent node. Node n′ is an

ancestor of n if (n, n′) is in the reflexive transitive closure of

ISA. (Thus a node is its own ancestor and its own descendant.)

For a term t ∈ T , we denote by N(t) the set of nodes n

with label t (i.e., having L(n) = t). For a set of terms T ⊆ T ,

we denote by N(T) the set of nodes in
⋃

t∈T N(t). Likewise,
for a set of nodes M ⊆ N , we denote by L(M) the set of

labels of nodes in M .

Definition 2.2: The node-scope of a term t ∈ T , denoted

by N∗(t), is the set of nodes that have an ancestor with the

label t: N∗(t) = {n|∃n′, t = L(n′) ∧ ancestor(n′, n)}.
The node-scope of a set of terms T ⊆ T , denoted by

N∗(T), is the set of nodes that have an ancestor with the

label in T : N∗(T) =
⋃

t∈T N∗(t).
In Figure 2, the node-scope of the term C is N∗(C) =

{3, 8, 9, 6, 11}, the same as the node scope of a set {C, G, H}.
Definition 2.3: The term-scope of a term t ∈ T , denoted by

L∗(t), is the set of term labels that appear among the nodes

in N∗(t): L∗(t) =
⋃

n∈N∗(t) L(n).
We define the term-scope of a set of terms T ⊆ T

analogously to the node-scope, and denote it by L∗(T) =⋃
t∈T L∗(t).

The term-scope of the term C in Figure 2 is L∗(C) =
{C, G, H}, while L∗({B, C}) = {B, C, G, H, F}.
We use node-scope and term-scope to compare two sets of

terms D and Q, where D is the set of terms that annotate a

PubMed document, and Q is the set of query terms.

C. Set-Based Similarity

Our first measure, term similarity, treats the sets D and

Q symmetrically, and quantifies how closely the two sets are

related by considering the intersection of their term-scopes:

TermSim(D, Q) = |L∗(D) ∩ L∗(Q)| (1)

Term similarity may be used on its own, or it may be

normalized by another quantity, changing the semantics of the

score. For example, normalizing term similarity by the size of

the term-scope of the query expresses the extent to which the

query is answered by the document. We refer to this quantity

as term coverage. Dividing the term similarity by the term-

scope of the document expresses how specific the document

is to the query. We refer to this quantity as term specificity.

Finally, we may divide term coverage by the size of the union

of the two term scopes, deriving Jaccard similarity.

D. Conditional Similarity

Set-based similarity treats the query and the document

symmetrically, although it may prioritize one set over the

other in the final step, as is done in term coverage and term

specificity. Conditional similarity prioritizes the query over the

document from the start, by placing the term-scope of the

document within the context of the term-scope of the query.

As we argued in Section II-A, simply counting the paths

between two terms can be naive, as we may be double-

counting due to structural redundancy in the hierarchy.We thus

define conditional term-scope by using ancestor-descendant

pairs of terms, not full term paths. In the following definition,

q is a query term and d is a document term.

Definition 2.4: Let d and q be terms, and let Pd,q be the

set of node pairs (nd, nq) satisfying the following conditions:

• nd ∈ N∗(d), i.e., nd has an ancestor with label d;

• nq ∈ N∗(q), i.e., nq has an ancestor with label q;

• nq is an ancestor of nd.

Conditional term-scope of d given q, denoted by L∗(d|q), is
the set of label pairs (L(n1), L(n2)), where (n1, n2) ∈ Pd,q .

Conditional term-scope of a set D given a set Q, denoted

L∗(D|Q), is the union of conditional term-scopes of all d ∈ D

given all q ∈ Q: L∗(D|Q) =
⋃

d∈D,q∈Q L∗(d|q).
For example, L∗(G|C) = {(C, G), (G, G)}, while

L∗(G|{A, B}) = {(A, G), (B, G), (C, G), (G, G)}.
Note that L∗(q|q) enumerates all pairs of terms (s, t), where

s, t ∈ L∗(q) such that there is a term-path from a node

labeled with t to a node labeled with s. So, L(C|C) =
{(C, G), (C, H), (C, C), (G, G), (H, H)}.
We define conditional similarity as:

CondSim(D, Q) = |L∗(D|Q)| (2)

E. Balanced Similarity

Balanced similarity is a refinement of conditional similarity

that balances the contributions of query terms to the score.

BalancedSim(D, Q) =
1

|Q|

∑

q∈Q

CondSim(D, q)

CondSim(q, q)
(3)

The relative contribution of each query term q to the score

is normalized by the number of terms in the query, |Q|. For
each term q, we compute the conditional similarity between the

document D and the term q (as per Equation 2), and normalize

this value by the maximum possible conditional similarity that

any document may achieve for q, which is CondSim(q, q).

III. EFFICIENT COMPUTATION OF QUERY RELEVANCE

In this section we describe the data structures and algorithms

that support computing similarity measures of Section II at the

scale of PubMed and MeSH. We do all processing in main

memory to achieve interactive response time, and must control

the size of our data structures so as to not exceed reasonable

RAM size. Our data structures are at most linear in the size

of PubMed, and at most quadratic in the size of MeSH.

We maintain annotations and publication date of PubMed

articles in a hash table Articles, indexed by pmid, a unique

document identifier in PubMed. The version of PubMed to

which we were given access by NCBI consists of about 17

million articles, published up to September 2007, and we are

able to store publication date and annotations of all these

articles in RAM. There are between 1 and 96 annotations per

article, 9.7 on average.

In this work we focus on queries that are conjunctions or

disjunctions of MeSH terms, and rely on the query processing

provided by Entrez to retrieve query matches. Note that,

while the query semantics is Boolean, it incorporates ontology

expansion, blurring the line between strictly Boolean and set-

oriented processing. So, a document D will match a query

Q = {q1, q2} if D is annotated with at least one term in the

term-scope of each of q1 and q2. Article pmid = 19107995 in

Example 1.1 matches the query “Connective Tissue Diseases”

[MeSH Terms] AND “Autoimmune Diseases” [MeSH Terms]

because it is annotated with “Lupus Erythematosus, Systemic”,

satisfying both query terms. We do not discriminate between

AND and OR queries for the purposes of ranking.

A. Exact Computation

We maintain the following data structures that allow us to

compute values for the relevance metrics in Section II. There

are 24,767 terms and 48,442 nodes in MeSH 2008, the version

of MeSH that we use in this work. For each term t ∈ T , we

precompute and maintain the following information in one or

several hash tables, indexed on the term label.

• N(t), the set of nodes that have t as its label.

• L∗(t), the set of term labels in the term-scope of t.

• N∗(t), the set of nodes in the node-scope of t.

• |L∗(t|t)|, the size of conditional term scope of t.

For each node n ∈ N , we maintain its term label L(n), and
the path from the top of the hierarchy to n.

Algorithm 1 Procedure TermSim

Require: Q = {q1 . . . qn}, R = {pmid1 . . . pmidm}
1: Compute L∗(Q) =

S

i
L∗(qi)

2: for pmid ∈ R do
3: Retrieve D = {d1 . . . dm} from Articles
4: Compute L∗(D) =

S

i
L∗(di)

5: termSim(D, Q) = |L∗(D) ∩ L∗(Q)|

6: end for

Algorithm 1 describes how term similarity (Eq. 1) is com-

puted for a query Q and a set of documents R. To compute

the term-scope of a term t (lines 1 and 4), we retrieve L∗(t)
with a hash table lookup. Each lookup returns a set of terms,

and the size of each such set is linear in the size of the

hierarchy. In practice, for terms that denote general concepts,

L∗(t) may contain hundreds, or even thousands of term labels,

while for terms that denote very specific concepts, L∗(t) will

contain only a handful of labels. Next, we take a union of the

term-scopes of individual terms, which requires time linear in

the size of the input data structures in our implementation.

This computation happens once per query, and once for every

document. Finally, having computed the term-scope of the

document, we determine the intersection L∗(D)∩L∗(Q) (line
5). This operation takes time linear in the size of the data

structures, and is executed once per document.

Algorithm 2 computes conditional similarity (Eq. 2) for a

query Q and a document D. Term-scope and node-scope of Q

are computed on lines 1 and 2. Then, for each document, we

compute DQ, the set of its terms that are in the term-scope of

the query, and retrieve the node-scope of DQ (lines 5 and 6).

We then find all pairs of nodes n′ ∈ N∗(Q) and n ∈ N∗(DQ)
such that there is a path from n′ to n. Each document is

processed in time proportional to |N∗(Q)| ∗ |N∗(DQ)|, which
can be high for queries and documents with large node-scopes.

Algorithm 2 Procedure CondSim

Require: Q = {q1 . . . qn}, R = {pmid1 . . . pmidm}
1: Compute L∗(Q) =

S

i
L∗(qi)

2: Compute N∗(Q) =
S

i
N∗(qi)

3: for pmid ∈ R do
4: Retrieve D = {d1 . . . dm} from Articles
5: Compute DQ = D ∩ L∗(Q)
6: Compute N∗(DQ)
7: S = ∅
8: for n′ ∈ N∗(Q) do
9: for n ∈ N∗(DQ) do
10: if ancestor(n′, n) then
11: S = S ∪ (L(n′), L(n))
12: end if
13: end for
14: end for
15: condSim(D, Q) = |S|

16: end for

Algorithm 3 computes balanced similarity (Eq. 3) by con-

sidering each query term q separately, and invoking CondSim

for each document. Computing conditional similarity one

query term at a time has lower processing cost than the

corresponding computation for the query as a whole, as is done

in CondSim, as we will see during our experimental evaluation.

Algorithm 3 Procedure BalancedSim

Require: Q = {q1 . . . qn}, R = {pmid1 . . . pmidm}
1: Compute weighti = |Q| ∗ L∗(qi|qi) for each qi ∈ Q
2: for pmid ∈ R do
3: score = 0
4: for qi ∈ Q do
5: score = score + weighti ∗ CondSim(qi, pmid)
6: end for
7: balancedSim(D, Q) = score

8: end for

B. Computation with Score Upper-Bounds

In the previous section we saw that evaluating similarity of

a set of documents with respect to a query can be expensive,

particularly for queries and documents that are annotated with

general MeSH terms. We now show how score upper-bounds

can be computed more efficiently than exact scores.

Score upper-bounds can be used to limit the number of

exact score computations in ranked retrieval, where only k

best entries are to be retrieved from among N documents, and

k ≪ N . If score upper-bounds are cheaper to compute than

actual scores, then we can compute score upper-bounds for

all documents, order documents in decreasing order of score

upper-bounds, and compute exact score values as needed, until

the k best documents have been retrieved. Processing, and

thus exact score computation, can stop when the score upper-

bound of the document being considered is lower than the

actual score of the current kth best document. In addition

to computing score upper-bounds for all documents, and

evaluating exact scores for M documents, where k ≤ M ≤ N ,

the algorithm must perform a certain number of sorts, to

determine the current kth score at every round.

Consider again the computation of term similarity in Al-

gorithm 1, which computes the value of the expression in

Equation 1. We can transform this equation using distributivity

of set intersection over set union, and observe that a natural

upper-bound holds over the value of term similarity:

TermSim(D, Q) = |(
⋃

d

L∗(d)) ∩ (
⋃

q

L∗(q))| =

|
⋃

d,q

L∗(d) ∩ L∗(q)| ≤
∑

d,q

|L∗(d) ∩ L∗(q)|

The value of TermSim(D, Q) cannot be higher than the

sum of the sizes of pair-wise intersections of term-scopes of

terms from D with terms from Q. To enable fast computation

of this upper bound, we precompute |L∗(s) ∩ L∗(t)| for all
pairs of terms s and t. The number of entries in this data

structure, which we call PairwiseTermSim, is quadratic in the

size of MeSH. In practice, we only need to record an entry

for the terms s and t if L∗(s)∩L∗(t) 6= ∅. There are over 613

million possible pairs of MeSH terms, but only 158,583 pairs

have a non-empty intersection of their term-scopes.

For a query of size |Q| and a document of size |D|, we need
to look up |Q|∗|D| entries in PairwiseTermSim, and compute a

sum of the retrieved values. The difference between the size of

a set of terms, and the size of the term-scope of that set can be

quite dramatic, and so computing upper-bounds is often much

cheaper than computing actual scores. We will demonstrate

this experimentally in Section IV.

Let us now consider how score upper-bounds can be com-

puted for conditional similarity (Eq. 2), which counts the

number of pairs of terms q ∈ L∗(Q) and d ∈ L∗(D) such that

there is a node-path from q → d. This quantity is bounded by

the sum of sizes of L∗(d|q) for all pairs of terms d and q.

CondSim(D, Q) = |
⋃

d,q

L∗(d|q)| ≤
∑

d,q

|L∗(d|q)|

To facilitate the computation of this upper-bound, we

store the value of L∗(s|t) for all pairs of terms s and t

with intersecting term-scopes. We call this data structure

PairwiseCondSim. This data structure has the same number

of entries as PairwiseTermSim.

Finally, for balanced similarity, we observe that:

BalSim(D, Q) =
1

|Q|

∑

q

L∗(D|q)|

L∗(q|q)
=

1

|Q|

∑

q,d

L∗(d|q)

L∗(q|q)

We re-use the PairwiseCondSim data structure for the com-

putation of score-upper bounds for balanced similarity. We

evaluate the performance improvements achieved by using

score upper-bounds for ranked retrieval in Section IV.

C. Adaptive Skyline Computation with Upper-Bounds

As we argued in the Introduction, it is sometimes important

to present more than a handful of query results. We propose to

use a two-dimensional skyline visualization [3] that is based

on the concept of dominance. A point in multi-dimensional

space is said to belong to the skyline if it is not dominated by

any other point, i.e., if no other point is as good or better in

all dimensions, and strictly better in at least one dimension.

A skyline contour is defined inductively as follows:

• A point belongs to the first skyline contour if and only

if it belongs to the skyline of the whole data set.

• A point belongs to the kth contour if and only if it belongs

to the skyline of the data set obtained by removing points

from the first through k − 1st contours.

Skyline contours are useful for highlighting points that are

close to the skyline, and that might be of interest to the user.

Publication date is a natural attribute in which to consider

bibliography matches, and we use it as the x-axis of our

visualization. The y-axis corresponds to one of the similarity

measures described in Section II. Figure 3 shows a skyline

of results for the query G-Protein-Coupled receptors, for term

specificity with 5 skyline contours. Points of highest quality

are close to the origin on the x-axis and away from the origin

Fig. 3. Two-dimensional skyline representation of results for the query G-
Protein-Coupled receptors. Please view on a color display or on a color printer.

on the y-axis. Points on the first contour are marked in white,

points on the second contour are beige, and points on the last

contour are red. When points are selected using the mouse, a

window showing the full citation is displayed.

Our prototype implementation is running outside of the

NCBI infrastructure, and we are using the Entrez query API,

eUtils, to evaluate queries, and receive back ids of PubMed

articles that match the query. The eUtils API can be asked

to return query results in order of publication date. NCBI

requests that large result sets be retrieved in batches, so as

not to overload their system. In the remainder of this section

we describe a progressive algorithm that computes a two-

dimensional skyline of results using score upper-bounds.

We implemented a divide-and-conquer algorithm based on

techniques described by Bentley [2]. Our algorithm processes

results one batch at a time, with batches arriving in order

of article publication date, from more to less recent. Articles

within each batch are also sorted on publication date, and we

use this sort order as basis for the divide-and-conquer.

The algorithm receives as input a sorted list of documents,

a query Q, an integer k that denotes the number of skyline

contours to be computed, a similarity measure Sim, and

SkylineSoFar: a list of documents, sorted on publication

date, that were identified as belonging to the skyline when

processing previous batches, along with the contour number.

Note that a result that was assigned to the skyline during a pre-

vious batch will remain on the skyline, with the same contour

number, for the remainder of the processing. This is because

documents are processed in sorted order on publication date.

The divide-and-conquer algorithm processes the batch by

recursively dividing the points along the median on the x-

axis. When all points within an x-interval share the same

x value, the algorithm sorts the points on the y coordinate,

Fig. 4. System architecture.

identifies contour points as the k best points in the interval, and

assigns to each of the top-k points a contour number. Let us

refer to this sub-routine as AssignLinearDominance. Contour

number assignments are then merged across intervals, from

left to right, and contour numbers of points on the right are

adjusted. The SkylineSoFar data structure is supplied to the

left-most interval when a batch is processed.

The algorithm assumes that the values of the x and the y

coordinates are readily available for each document. However,

as we discussed in Section III, the similarity score of the

document may be expensive to compute, while the score

upper-bound may be computed more efficiently. We therefore

modify the AssignLinearDominance subroutine to use score

upper-bounds as in Section III-B. Exact scores are still com-

puted, but the number of these computations is reduced. Using

score upper-bounds allows us to compute the two-dimensional

skyline more efficiently, as we demonstrate next.

IV. EXPERIMENTAL EVALUATION

A. Experimental Platform

We evaluated the performance of our methods on a Java

prototype. Figure 4 describes the system architecture and the

data flow. Processing is coordinated by the Query Manager

that receives a query from the user and communicates with

PubMed via the eUtils API (arrow 1). The Entrez search

engine evaluates the query against the live PubMed database,

and returns pmids of results in batches, sorted in decreasing

order of publication date (arrow 2). Query Manager communi-

cates with the In-Memory DB, which stores MeSH annotations

of all articles up to September 2007, and implements the data

structures and algorithms of Section III. In-Memory DB and

Query Manager communicate via Java RMI (arrows 3, 4). In-

Memory DB runs on a 32-bit machine with a dualcore 2.4GHz

Intel CPU and 4GB of RAM, with RedHat EL 5.1. Given

a query and a list of pmids, In-Memory DB can compute

score upper-bounds or actual scores for each document, or it

can compute the set of skyline contours. Results are read by

Query Manager (arrow 4), which can optionally pass them to

the visualization component.

The total execution time of most queries is interactive in

our implementation, and depends in part on the response time

of Entrez. For the purposes of our evaluation, we measure the

processing time inside In-Memory DB, ignoring communica-

Fig. 5. Total runtime of ranked retrieval.

tion costs. We report performance in terms of wall-clock time.

All results are averages of three executions.

B. Workload

Our performance experiments are based on a workload of

150 queries. We were unable to get a real PubMed query

workload from NCBI due to privacy regulations, and so we

generated the workload based on pairwise co-occurrence of

terms in annotations of PubMed articles. The rationale is

that, if two or more terms are commonly used to annotate

the same document, then these terms are semantically related

and may be used together in a query. See [15] for a detailed

description of the workload selection procedure. Queries in

our workload mapped to MeSH subtrees of different sizes:

L∗(Q) was between 2 and 454, median 22. Queries returned

between 1,024 and 179,450 results, median 9,562.

C. Ranked Retrieval with Score Upper-Bounds

Table I summarizes the performance of 150 queries with

term similarity, conditional similarity, and balanced similarity.

We compare the execution time of computing exact scores

for all results (Score) against the time of computing score

upper-bounds for all results (UB). We then report the run-

time of computing the top-1, top-10, and top-100 results, in

which upper bounds are computed for all items, and exact

scores are computed only for the promising items. We observe

that execution time of Score can be high, particularly for

conditional and balanced similarity. In contrast, upper bounds

can be computed about an order of magnitude faster, in

interactive time even in the worst case. This is expected, since,

as we discussed in Section III-B, the time to compute upper

bounds is proportional to |D| ∗ |Q|, while the time to compute

scores is a function of the size of the term-scope of the query

and of the document, which is typically much higher.

Figure 5 compares the total run-time of Score, UB, and

ranked retrieval with k = 1, 10, 100, for all queries. Observe
that term similarity computes fastest, while conditional simi-

larity is slowest. It takes approximately the same amount of

time to compute the top-k for different values of k.

Term Similarity(sec) Conditional Similarity(sec) Balanced Similarity(sec)
med avg min max med avg min max med avg min max

Score 0.412 1.342 0.013 13.238 0.387 4.408 0.004 274.230 0.372 3.760 0.006 195.420
UB 0.062 0.177 0.005 1.242 0.060 0.195 0.005 2.210 0.059 0.177 0.005 1.236

top-1 0.228 0.557 0.009 5.127 0.273 2.016 0.010 83.063 0.246 1.558 0.009 55.365
top-10 0.228 0.566 0.009 5.128 0.273 2.010 0.010 84.063 0.245 1.550 0.010 55.441
top-100 0.228 0.568 0.010 5.092 0.273 2.001 0.014 83.132 0.246 1.566 0.012 55.444

TABLE I

RANKED RETRIEVAL: MEDIAN, AVERAGE, MINIMUM AND MAXIMUM PROCESSING TIMES FOR 150 QUERIES.

Fig. 6. Term similarity: percent improvement in runtime of top-K when
score upper-bounds are used.

Fig. 7. Conditional similarity: percent improvement in runtime of top-K
when score upper-bounds are used.

Figures 6, 7 and 8 present run-time improvement of using

score upper-bounds for top-k computation vs. computing exact

scores, for three similarity measures. Performance of the vast

majority of queries is improved due to using upper-bounds, for

all similarity measures. The actual run-time improvement was

up to 9.1 sec for term similarity, and between 0.7 and 0.8 sec

on average for different values of k. For conditional similarity,

the improvement was up to a dramatic 191 sec, and the average

improvement was about 2.4 sec. For balanced similarity, using

score upper-bounds improved run-time by up to 140 sec, and

between 2.0 and 2.2 sec on average, for different values of k.

While performance improved for most queries, it degraded

Fig. 8. Balanced similarity: percent improvement in runtime of top-K when
score upper-bounds are used.

for some queries due to the overhead of sorting. This overhead

was noticeable only in short-running queries, and absolute

degradation was insignificant: at most 0.081 sec for TermSim,

0.254 sec for CondSim and 0.213 sec for BalancedSim.

D. Skyline Computation with Upper-Bounds

In this section we consider the performance impact of

using score upper-bounds for skyline computation, described

in Section III-C. We computed the skyline with 1, 2, 5, and

10 contours for 150 queries in our workload. Table II presents

the median, average, minimum, and maximum execution time

for three similarity measures. For each number of contours,

and for each similarity measure, we list two sets of numbers.

The Exact line lists the performance of computing the skyline

without the upper-bounds optimization, and the UB line lists

the performance with the optimization. Recall that, whether

we first compute exact scores for all documents (as in Exact),

or first compute score upper-bounds for all documents, and

then compute exact scores only for promising documents (as

in UB), the result will be the same correct set of skyline points.

Based on Table II we observe that the Exact skyline

performs in interactive time for the majority of queries, for

all similarity measures. Median results are sub-second in all

cases. We also observe that UB skyline outperforms Exact

skyline. Note that these results are for the total execution of

each query. Long-running queries typically execute in multiple

batches, and the user is presented with the initial set of results

as soon as the skyline of the first batch is computed.

(a) Total run-time. (b) % improvement with UB for large queries.

Fig. 9. Run-time performance of skyline computation for term similarity.

K
Term Similarity(sec) Conditional Similarity(sec) Balanced Similarity(sec)

med avg min max med avg min max med avg min max

Exact 1 .4295 1.356 .016 13.225 .4305 4.471 .009 274.301 .4275 3.861 .01 199.521
UB 1 .299 .684 .014 5.687 .343 2.377 .017 107.673 .3345 1.925 .018 72.955

Exact 2 .43 1.355 .016 13.202 .424 4.471 .008 274.296 .433 3.833 .01 195.194
UB 2 .3705 .825 .018 6.771 .4055 2.796 .019 136.881 .389 2.345 .019 95.654

Exact 5 .4285 1.356 .016 13.209 .4285 4.473 .009 274.311 .4365 3.803 .01 195.13
UB 5 .448 1.036 .022 8.263 .4855 3.351 .019 167.917 .4785 2.841 .02 116.974

Exact 10 .4295 1.358 .016 13.222 .4275 4.472 .008 274.305 .4365 3.806 .01 195.163
UB 10 .4835 1.265 .022 9.647 .546 3.859 .019 197.304 .506 3.17 .019 132.334

TABLE II

SKYLINE COMPUTATION: MEDIAN, AVERAGE, MINIMUM AND MAXIMUM PROCESSING TIMES FOR 150 QUERIES.

In our experiments, we are able to predict whether a query

will be long-running based on the number of results that the

query returns. In fact, exact skyline computation for all queries

that return fewer than 20,000 results completes in under 2

seconds. The information about the size of the result set is

provided to us at the start of the execution by the eUtils API,

and we can use this information to decide whether to apply

the upper-bounds optimization. 45 out of 150 queries in our

workload return over 20,000 results, and we refer to these as

the large queries in the remainder of this section.

Figure 9(a) summarizes the total cumulative run-time of

Exact and UB skylines for term similarity for all queries

(exact all and UB all entries), and for the large queries

(exact large and UB large). We note that over 75% of the

time is spent processing 30% of the workload. The time to

compute the exact skyline stays approximately the same as the

number of contours changes, while the time to compute the UB

skyline increases with increasing number of contours. Finally,

observe that UB skylines compute faster in total than do exact

skylines. The same trends hold for conditional similarity and

balanced similarity (see [15]). Figure 9(b) plots the percent-

improvement of UB skyline over Exact against the percentage

of the large queries for which this improvement was realized.

Query execution time was improved for the vast majority of

large queries. Similar trends hold for conditional similarity

and balanced similarity (see [15]).

V. EVALUATION OF EFFECTIVENESS

We now present a qualitative comparison between our

similarity measures, and evaluate them against two baselines.

A. Baselines

Our first baseline is a distance-based measure, designed

explicitly for MeSH, that compares two sets of terms based on

the mean path-length between the individual terms [13]. For

terms d and q, dist(d, q) is the minimal number of edges in a

path from any node in N∗(d) to and node in N∗(q). Consider
nodes C and F in Figure 2. There are two paths between these

nodes: C → A → E → F of length 3, and C → B → F

of length 2, and so dist(C, F) = 2. We define path-length as:

MeanPathLen(D, Q) = 1
|D||Q|

∑
d∈D

∑
q∈Q dist(d, q).

This measure captures the distance between document D

and query Q, and we transform it into a similarity:

MeanPathSim(D, Q) =
1

1 + MeanPathLen(D, Q)
(4)

A known limitation of distance-based measures is an im-

plicit assumption that edges in the taxonomy represent uniform

conceptual distances, which does not always hold in practice.

In Figure 2, the path distance between G and A is 2, the

same as between G and B. However, one can argue that G is

more closely related to B than to A because B has a smaller

subtree, and so G represents a larger portion of the meaning

of B than of A. Several information-theoretic measures have

been proposed to overcome this limitation, and we use the one

proposed by Lin [12] to derive our second baseline.

For two taxonomy nodes s and t, we denote the lowest

common ancestor by LCA(s, t). The information content of

a node s, denoted by P (s), is the size of the subtree induced

by s. Lin [12] defines similarity between nodes s and t as:

sim(s, t) = 2×logP (LCA(s,t))
logP (s)+logP (t) .

To use this similarity for MeSH, we need to apply it to a

polyhierarchy, with multiple nodes per term. We take a similar

approach as in MeanPathSim, and say that the similarity

between terms d and q is the highest similarity between any

two nodes s and t, where s ∈ N∗(d) and t ∈ N∗(q). To
handle multiple terms per query and per document, we define:

MeanInfoSim(D, Q) =
1

|D||Q|

∑

d∈D

∑

q∈Q

sim(d, q) (5)

B. User Study

1) Methodology: We recruited 8 researchers, all holding

advanced degrees in medicine, biology, or bioinformatics. All

are experienced PubMed users, with usage between several

times a week and several times a day. Users were asked to

come up with one query in their field of expertise, and to

subsequently rate results returned by our system.

Rather than rating articles in the result, we asked our

users to rate annotation sets: sets of MeSH terms that occur

together as annotations of these articles, for two reasons. First,

MeSH annotations of some articles are imprecise, that is,

more general or more specific than the content of the article

warrants. Second, abstracts of articles are often unavailable,

making it difficult to judge the quality of content.

For a fixed query, and for a fixed similarity, all articles

that are annotated with the same set of terms receive the

same score. Additionally, several different annotation sets may

map to the same score, and so ties are common. Scores

are incomparable across measures, and we use ranks for our

comparison. See [15] for a description of our rank assignment

procedure that meaningfully accommodates ties.

Many queries return thousands of results, and we cannot

expect that the users will evaluate the quality of results exhaus-

tively. We focus on a sub-set of results that is most informative

about either the performance of a particular similarity measure,

or about the relative performance of a pair of measures. For

a pair of measures M1 and M2, we choose 10 results from

each of the following categories:

• topM1: in top 10% of ranks for M1 but not for M2

• topM2: in top 10% of ranks for M2 but not for M1

• botM1: in bottom 10% of ranks for M1 but not for M2

• botM2: in bottom 10% of ranks for M2 but not for M1

TermSim CondSim BalSim MeanPath MeanInfo

Q1 0.56 0.51 0.51 0.71 0.65
Q2 0.49 0.50 0.50 0.52 0.49
Q3 0.67 0.63 0.63 0.39 0.48
Q4 0.66 0.66 0.66 0.40 0.48
Q5 0.42 0.43 0.43 0.33 0.67
Q6 0.48 0.51 0.60 0.48 0.50
Q7 0.43 0.45 0.45 0.63 0.44
Q8 0.47 0.47 0.47 0.31 0.57

Avg 0.52 0.52 0.53 0.47 0.54

TABLE III

AGREEMENT BETWEEN SIMILARITY MEASURES AND USER JUDGMENTS.

Results are chosen to maximize rank distances. Finally, we

generate pairs of results to be compared to each other by the

user. We never compare topM1 to topM2, and bottomM1

to bottomM2. Comparing top against bottom for the same

method helps us validate that method on its own. Comparing

top of one method against bottom of another allows us to

compare a pair of methods against each other.

The user is presented with two annotation sets, Match 1

and Match 2, and rates each set on a three-point scale. The

user also compares the matches with respect to how well they

answer the query, on a three-point scale. Both scales include a

“not sure” option. See [15] for a screenshot of our evaluation

interface.

2) Results: Results in this section are based on 8 queries,

each evaluated by a single user. We collected 670 individual

judgments, and 335 pairwise judgments. In this section, we

analyze the performance of each of our similarity measures

individually, and then describe the relative performance of our

measures, and compare them to the baselines. For results r1

and r2, user U issues a pair-wise relevance judgment U : r1 =
r2 if he considers results to be of equal quality, U : r1 > r2

if r1 is better, or U : r1 < r2 if r2 is better. (We exclude

the cases where the user was unable to compare the results.)

Likewise, a similarity measure M issues a judgment w.r.t. the

relative quality of r1 and r2 by assigning ranks. Because users

only judge a pair of results that are far apart in the ranking,

the case M : r1 = r2 never occurs.

A similarity measure may agree with the user’s assessment,

or it may disagree, in one of two ways: by reversing the

rank order of r1 and r2, or by ranking r1 and r2 differently

while the user considers them a tie. For ease of exposition,

we incorporate all three outcomes: agreement (A), tie (T)

and rank reversal error(E), into a single agreement score,

defined as: agreement(U ,M, Q) = A+0.5∗T
A+T+E

. The worst

possible score is 0, the best possible is 1. Table III presents

the agreement between the user and each similarity measure,

for each query. See [15] for a break-down of results in each

category.

Due to the scale of our study we are unable to draw statis-

tically significant conclusions about the relative performance

of the measures. However, we point out some trends that

emerge based on the data in Table III, and which we plan

to investigate further in the future; see Section V-C for a

MeanPath MeanInfo

TermSim 46% / 28% 31% / 36%
CondSim 41% / 31% 36% / 36%
BalSim 42% / 29% 36% / 35%

TABLE IV

TermSim, CondSim AND BalancedSim COMPARED TO BASELINES.

discussion. None of the measures seem to agree with user’s

judgment for queries Q2 and Q8. These queries do not exhibit

polyhierarchy features: each term maps to a single node in

MeSH. Our measures appear to outperform the baselines for

queries Q3, Q4, and Q6. All these queries include at least

one term that exhibits polyhierarchy features: either the term

itself maps to two or more nodes and induces subtrees of

different shape, or its descendant terms do. Baselines appear to

outperform our measures for queries Q1, Q5, and Q7. Query

Q1 exhibits no polyhierarchy features. For a two-term query

Q8, each term maps to two nodes in MeSH, but the subtrees

are isomorphic, i.e., there is structural redundancy in this

part of the hierarchy. Query Q5 exhibits true polyhierarchy

features, yet the information theoretic baseline seems to be

more in line with the user’s judgment for this query.

Table IV presents the relative performance of our measures

against the baselines. We present averages across queries, but

note that performance for individual queries is in line with

the trends in Table III. Here, we are using judgments about

pairs of results such that one of the results has a high rank

w.r.t. one method and a low rank w.r.t. another. We present the

average percentage of user judgments that were in line with

the judgment made by the similarity measure. For example,

in the entry for TermSim and MeanPath the user agreed with

TermSim 46% of the time, and with MeanPath 28% of the

time, and considered the remaining 26% of the cases as ties.

We also compared the relative performance of our measures

for queries, for which there was a difference in performance.

For Q6, BalancedSim outperforms CondSim, which in turn

outperforms TermSim. For Q3, TermSim outperforms other

measures. These findings are in line with results in Table III.

C. Assessment of Results

Several issues make ranking difficult in our context. First,

all results are already matches, i.e., all are in some sense

“good”. So, ranking by ontology is a second-order ranking

among documents that may not be all that different from each

other in terms of real relevance. However, as we demonstrate

in Section V-B.2, ontology-related score is correlated with

quality as judged by the users in some cases. This occurs when

terms appear in multiple tree locations and induce subtrees of

different shape, a distinguishing feature in MeSH. Second, our

user study is small, and so we cannot expect to demonstrate

statistical significance. We plan to deploy the system and

obtain more information by studying user feedback.

A user’s perception of quality is informed by many as-

pects. Our work is motivated by the hypothesis that one of

these aspects is captured by ontological relationships. This

was supported by observations made by several users that

they appreciated the presence of both general concepts, e.g.,

Neurodegenerative Disease, and related concepts that are more

specific, e.g., Alzheimer and Parkinson.

Nonetheless, other aspects of user’s quality perception may

require a more sophisticated ontology than MeSH. Even when

the ontology is helpful in principle, users may disagree with

the classification, as observed by one user in our study.

Semantic relationships, e.g., a connection between a protein

and a disease, may be known to experts but are not present in

MeSH, and are therefore unavailable for scoring. In future

work, we plan to combine MeSH with other information

sources that provide additional information about relationships

between concepts. We also plan to incorporate weighting of

terms, perhaps on a user by user basis, based on external

information.

Due to the scale of our study, we do not establish which

ranking is best for which kind of query, and when a query

is amenable to ontology-aware ranking. We will investigate

this in the future. For some queries our methods appear to

do better, while for others the competing methods appear to

do better. While no method dominates another for all queries,

our methods seem to outperform the path-based method, while

performing comparably with the information theoretic method.

VI. RELATED WORK

Ranking that takes into account hierarchical structure of

the domain has been considered in the literature. Ganesan

et al. [6] develop several families of similarity measures that

relate sets or multisets of hierarchically classified items, such

as two customers who buy one or several instances of the same

product, or who buy several products in the same hierarchy.

This work assumes that items in the sets are confined to being

leaves of the hierarchy, and that the hierarchy is a strict tree.

In our work we are comparing sets of terms in a scoped

polyhierarchy, and we do not restrict the terms to being leaves.

Rada and Bicknell [13] consider the problem of ranking

MEDLINE documents using the MeSH polyhierarchy, the

same problem as we consider in our work. The authors propose

to model the distance between the query and the document as

the mean path-length between all pairs of document and query

terms. This measure is one of several distance-based measures

that have been proposed in the literature; see also [11].

In an alternative approach, several information-theoretic

measures have been proposed that quantify the semantic relat-

edness between concepts in hierarchical domains [12], [14].

These measures are similar to the distance-based methods in

that they typically relate two concepts via a common ancestor.

However, rather than simply counting the length of the path to

the ancestor, the information content of the ancestor (the size

of its subtree) is factored into the measure. The intuition is that

a common ancestor that is very general is not as informative

as one that is more specific.

In our work we propose several alternative ways to relate

a document to a query, by measuring the overlap among

common descendants (rather than ancestors) of all nodes

labeled with two concepts. To the best of our knowledge, our

work is the first to explicitly model semantic relatedness in

a scoped polyhierarchy in which a term may appear in many

parts of the hierarchy with subtly different meanings in each

context. The question of how contributions of different terms,

or different meanings of the same term, are reconciled in the

final score is central to our approach. We explicitly model and

explore alternative semantics of combining the contributions

of individual pairs of terms to the over-all similarity score.

Despite the extra computation needed for measures based

on sets of descendants rather than ancestors, we demonstrate

experimentally that interactive response times are still possible

even when processing tens of thousands of documents.

Hadjieleftheriou et al [7] develop indexing structures and

processing algorithms for computing the similarity of weighted

sets. A query Q and a document D are compared based

on corpus-derived weights of substrings of length q, termed

q-grams, of which Q and D are comprised. The similarity

between a query and a document is computed based on the

combined weight of the q-grams that are common to D and

Q, normalized by the weights of D and Q. This approach is

similar to ours in that we also consider the set of elements, in

our case MeSH terms, that are common to D and Q for the

computation of similarity. However, unlike in [7], the elements

we consider come from a hierarchy, and incorporating the

structure of the hierarchy into the similarity score is central

to our approach. We do not currently associate weights with

query terms; incorporating term weights is an interesting

direction for future research.

Ontology matching uses a wide range of similarity measures

to compare two or more ontologies. Ontology matching tech-

niques in which comparison is based on taxonomic structure,

bear some similarity to our approach. A particular class of sim-

ilarity measures represents ontologies as labeled graphs and

compares nodes in these graphs using lexical and structural

features [4]. Pairwise node similarities are then aggregated into

collection-wide measures. In our work we focus on structural

similarity between sets of ontology terms, and consider them

in the context of scoped polyhierarchies that do not naturally

lend themselves to a graph-based representation.

A variety of web-based systems for bibliographic search in

life sciences have been developed, see [10] for a review. The

system that is closest to our approach, GoPubMed [5], uses

three ontologies - the Gene Ontology, MeSH and Uniprot,

to organize PubMed query results. Results are presented in

a faceted hierarchy that includes ontology terms, authors,

journals, and publication dates. When multiple MeSH terms

appear in the query or annotate query results, the system allows

the user to navigate by each of these terms. Unlike in our work,

no attempt is made to reconcile the contributions of multiple

MeSH terms into a single score.

Efficient computation of skyline results has been receiving

significant attention in the database community. We build on

the classic divide-and-conquer algorithm by Bentley [2], and

adapt it to our application scenario and performance needs

by incorporating score upper-bounds. Tan et al. [16] develop

progressive skyline computation methods, while Jin et al. [8]

propose an efficient algorithm for the mining of thick skylines

in large databases. Our scenario differs from prior work in

that coordinates of skyline points may be costly to compute,

motivating us to use score upper-bounds.

VII. CONCLUSIONS

MeSH is a sophisticated, curated real-world ontology with

about 25,000 terms. It has the interesting property that terms

can appear in multiple parts of the hierarchy. Each time a

term appears, its meaning is scoped, i.e., the meaning of the

term depends on its position in the hierarchy. This observation

challenges most past work which has been developed assuming

that a term has a unique node in the generalization hierarchy.

We have attempted to capture the semantics of a term by

looking at all of the term’s descendants, across the whole

hierarchy. We developed three similarity measures that relate

sets of terms based on the degree of overlap between the

sets of their descendants. We have demonstrated that each

of these measures can be computed in interactive time for

the complete MeSH ontology, at the scale of the complete

PubMed corpus. We have also shown how computing score

upper-bounds can be used to reduce the cost of identifying

the best-matching documents, or of computing the skyline of

the dataset with respect to score and publication date. We

evaluated our similarity measures with a user study.

ACKNOWLEDGMENTS

This research was supported by National Institute of Health

grant 5 U54 CA121852-05.

REFERENCES

[1] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information

Retrieval. 1999.
[2] J. L. Bentley. Multidimensional divide-and-conquer. Commun. ACM,

23, 1980.
[3] S. Börzsönyi, D. Kossman, and K. Stocker. The skyline operator. In

ICDE, 2001.
[4] J. David and J. Euzenat. Comparison between ontology distances

(preliminary results). In International Semantic Web Conference, 2008.
[5] A. Doms and M. Schroeder. GoPubMed: Exploring PubMed with the

GeneOntology. 33, 2005.
[6] P. Ganesan, H. Garcia-Molina, and J. Widom. Exploring hierarchical

domain structure to compute similarity. ACM TOIS, 21(1), 2003.
[7] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava. Fast

indexes and algorithms for set similarity selection queries. In ICDE,
2008.

[8] W. Jin, J. Han, and M. Ester. Mining thick skylines over large databases.
In PKDD, 2004.

[9] J. Kaiser. Systematic indexing. London, Pitman, 1911.
[10] J.-J. Kim and D. Rebholz-Schuhmann. Categorization of services for

seeking information in biomedical literature: a typology for improvement
of practice. 9(6), 2008.

[11] J. Lee and M. Kim. Information retrieval based on a conceptual distance
in is-a hierarchy. J Doc, 49, 1993.

[12] D. Lin. An information-theoretic definition of similarity. In ICML, 1998.
[13] R. Rada and E. Bicknell. Ranking documents with a thesaurus. JASIS,

40(5), 1989.
[14] P. Resnik. Using information content to evaluate semantic similarity in

a taxonomy. In IJCAI, 1995.
[15] J. Stoyanovich, W. Mee, and K. A. Ross. Semantic ranking and

result visualization for life sciences publications. Columbia University

Technical Report cucs-028-09, 2009.
[16] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline

computation. In VLDB, 2001.

