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ABSTRACT
The prefix sum operation is a useful primitive with a broad
range of applications. For database systems, it is a building
block of many important operators including join, sort and
filter queries. In this paper, we study different methods of
computing prefix sums with SIMD instructions and multi-
ple threads. For SIMD, we implement and compare hori-
zontal and vertical computations, as well as a theoretically
work-efficient balanced tree version using gather/scatter in-
structions. With multithreading, the memory bandwidth
can become the bottleneck of prefix sum computations. We
propose a new method that partitions data into cache-sized
smaller partitions to achieve better data locality and reduce
bandwidth demands from RAM. We also investigate four dif-
ferent ways of organizing the computation sub-procedures,
which have different performance and usability character-
istics. In the experiments we find that the most efficient
prefix sum computation using our partitioning technique is
up to 3x faster than two standard library implementations
that already use SIMD and multithreading.

1. INTRODUCTION
Prefix sums are widely used in parallel and distributed

database systems as building blocks for important database
operators. For example, a common use case is to deter-
mine the new offsets of data items during a partitioning
step, where prefix sums are computed from a previously con-
structed histogram or bitmap, and then used as the new in-
dex values [6]. Applications of this usage include radix sort
on CPUs [30, 25] and GPUs [29, 20], radix hash joins [16,
3], as well as parallel filtering [32, 4]. In OLAP data cubes,
prefix sums are precomputed so that they can be used to an-
swer range sum queries at runtime [15, 10, 21]. Data mining
algorithms such as K-means can be accelerated using par-
allel prefix sum computations in a preprocessing step [18].
In data compression using differential encoding, prefix sums
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are also used to reconstruct the original data, and prefix-sum
computations can account for the majority of the running
time [22, 23].

The prefix sum operation takes a binary associative oper-
ator ⊕ and an input array of n elements [a0, a1, . . . , an−1],
and outputs the array containing the sums of prefixes of the
input: [a0, (a0 ⊕ a1), . . . , (a0 ⊕ a1 ⊕ an−1)]. This definition
is also known as an inclusive scan operation [5]. The out-
put of an exclusive scan (also called pre-scan) would remove
the last element from the above output array, and insert an
identity value at the beginning of the output. In this pa-
per, we use addition as the binary operator ⊕ and compute
inclusive scans by default.

The basic algorithm to compute prefix sums simply re-
quires one sequential pass of additions while looping over
all elements in the input array and writing out the run-
ning totals to the output array. Although this operation
seems to be inherently sequential, there are actually parallel
algorithms to compute prefix sums. To compute the pre-
fix sums of n elements, Hillis and Steele presented a data
parallel algorithm that takes O(logn) time, assuming there
are n processors available [14]. This algorithm performs
O(n logn) additions, doing more work than the sequential
version, which only needs O(n) additions. Work-efficient al-
gorithms [19, 5] build a conceptual balanced binary tree to
compute the prefix sums in two sweeps over the tree, using
O(n) operations. In Section 3, we implement and compare
SIMD versions of these data-parallel algorithms, as well as
a vertical SIMD algorithm that is also work-efficient.

In a shared-memory environment, we can speed up pre-
fix sum computations using multiple threads on a multicore
platform. Prefix sums can be computed locally within each
thread, but because of the sequential dependencies, thread
tm has to know the previous sums computed by threads
t0 . . . tm−1 in order to compute the global prefix sum results.
Thus, a two-pass algorithm is necessary for multithreaded
execution [34]. There are multiple ways to organize the com-
putation subprocedures, depending on (a) whether prefix
sums are computed in the first or the second pass, and (b)
how the work is partitioned. For example, to balance the
work among threads, it is necessary to tune a dilation factor
to the local configuration for optimal performance [34]. To
understand the best multithreading strategy, we analyze and
compare different multithreaded execution strategies (Sec-
tion 2.1).

More importantly, with many concurrent threads access-
ing memory, the prefix sum can become a memory bandwidth-
bound computation. To fully exploit the potential of the
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hardware, we must take care to minimize memory accesses
and improve cache behavior. To this end, we propose to
partition data into cache-sized partitions so that during a
two-pass execution, the second pass can maximize its usage
of the cache instead of accessing memory again (Section 2.2).
We also develop a low-overhead thread synchronization tech-
nique, since partitioning into smaller data fragments can
potentially increase the synchronization overhead.

In summary, the main contributions of this work are:
• We study multithreaded prefix sum computations, and

propose a novel algorithm that splits data into cache-
sized partitions to achieve better locality and reduce
memory bandwidth usage.
• We discuss data-parallel algorithms for implementing

the prefix sum computation using SIMD instructions,
in 3 different versions (horizontal, vertical, and tree).
• We experimentally compare our implementations with

external libraries. We also provde a set of recommen-
dations for choosing the right algorithm.

1.1 Related Work
Beyond databases, there are also many other uses of pre-

fix sums in parallel computations and applications, including
but not limited to various sorting algorithms (e.g., quicksort,
mergesort, radix-sort), list ranking, stream compaction, poly-
nomial evaluation, sparse matrix-vector multiplication, tridi-
agonal matrix solvers, lexical analysis, fluid simulation, and
building data structures (graphs, trees, etc.) in parallel [6,
5, 31].

Algorithms for parallel prefix sums have been studied early
in the design of binary adders [19], and analyzed extensively
in theoretical studies [8, 7]. More recently, message pass-
ing algorithms were proposed for distributed memory plat-
forms [28]. A sequence of approximate prefix sums can be
computed faster in O(log log n) time [11]. For data struc-
tures, Fenwick trees can be used for efficient prefix sum
computations with element updates [9]. Succinct indexable
dictionaries have also been proposed to represent prefix sums
compactly [26].

As an important primitive, the prefix sum operation has
been implemented in multiple libraries and platforms. The
C++ standard library provides the prefix sum (scan) in its
algorithm library, and parallel implementations are provided
by GNU Parallel library [33] and Intel Parallel STL [2]. Par-
allel prefix sums can be implemented efficiently on GPUs
with CUDA [12], and for the Message Passing Interface
(MPI-Scan) [28]. Although compilers can not typically auto-
vectorize a loop of prefix sum computation because of data
dependency issues [24], it is now possible to use OpenMP
SIMD directives to dictate compilers to vectorize such loops.
Since additions over floating point numbers are not associa-
tive, the result of parallel prefix sums of floating point values
can have a small difference from the sequential computation.

2. THREAD-LEVEL PARALLELISM
We now describe multithreaded algorithms for computing

prefix sums in parallel. Note that a prefix-sum implementa-
tion can be either in-place, where the prefix sums replace the
input data elements, or out-of-place, where the prefix sums
are written to a new output array. The following descrip-
tion assumes an in-place algorithm. Out-of-place versions
can be implemented similarly and will be discussed in the
experimental evaluation.

(a) Prefix Sum + Increment

(b) Accumulate + Prefix Sum

(c) Prefix Sum + Increment (+1 partition)

(d) Accumulate + Prefix Sum (+1 partition)

Figure 1: Multithreaded two-pass algorithms

2.1 Two-Pass Algorithms
To compute prefix sums in parallel, we study four differ-

ent two-pass algorithms. There are two ways of processing
the two passes depending on whether prefix sums are comp-
tuted in the first or second pass. Figure 1(a) presents one
implementation, using 4 threads (t0 . . . t3) as an example. To
enable parallel processing, the data is divided into 4 equal-
sized partitions. In the first pass, each thread computes a
local prefix sum over its partition of data. After the prefix
sum computation, the last element is the total sum of the
partition, which will be used in the second pass to compute
global prefix sums. These sums can be stored in a tempo-
rary buffer array sums = {s0, s1, s2, s3}, so it is easier to
compute the prefix sums of their own. In the second pass,
except for the first thread t0, each thread tm increments ev-
ery element of the local prefix sum by

∑
i<m si, in order

to obtain global prefix sums. The prefix sums of the first
partition are already the final results, since no increment is
needed.

A potential inefficiency of this algorithm is that in the
second pass, the first thread t0 is idle, so effectively the
parallelism is only (m − 1) using m threads, which has an
impact on performance especially when m is small. To fix
this issue, the data can be divided into (m + 1) partitions,
as shown in Figure 1(c) when m = 4. In the first pass, the
threads only work on the first 4 partitions, and the prefix
sums of the last partition is computed in the second pass.
We schedule thread t0 to work on the last partition, instead
of shifting every thread to the next partition, since this is
important for our partitioning technique in Section 2.2.

Figure 1(b) demonstrates a different way of computing
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the prefix sums. In the first pass, only the total sum of each
partition is accumulated in parallel. Then in the second
pass, the global prefix sums can be directly computed in
parallel, using

∑
i<m si as an offset to the input. The benefit

of computing only the total sum in the first pass is that
there is no memory write as in prefix sum computations.
Therefore, this method can potentially require less memory
bandwidth when the data size is large. In addition, we do
not need the total sum of the last partition, so the last thread
t3 can be idle in the first pass.

Similarly, Figure 1(d) fixes the idle-thread inefficiency by
using one more partition. In the first pass, the prefix sums of
t0 and the totals sums of t1 . . . t3 are computed in parallel.
In the second pass, all threads compute prefix sums with
an input offset computed from the sums array. Thread t0
again works on the last partition. Both partitioning schemes
in Figures 1(c) and 1(d) ensure there are no idle threads and
all threads work in parallel in either pass.

2.1.1 Load Balancing
For algorithms shown in Figures 1(a) and 1(b), equal par-

titioning of the data should suffice since each thread does the
same work (except for the idle thread). For Figure 1(c), in
the second pass, thread t0 computes prefix sums while other
threads simply do an increment. Although in scalar code,
both subprocedures require read, add and write, the incre-
ment is easily vectorizable by compilers while the prefix sum
cannot be automatically vectorized. (We will also implement
explicit SIMD versions of these algorithms.) Similarly, in
the first pass of Figure 1(d), thread t0 computes a prefix
sum while other threads accumulate total sums. These op-
erations may proceed at different rates, and the difference
is potentially magnified because prefix sums cannot be au-
tovectorized and need to write back results, while accumu-
lation can be autovectorized and does not write to memory.
(The second pass has similar problems when cache-friendly
partitioning is used as we shall explain in Section 2.2.)

To compensate for thread t0 possibly taking longer, a di-
lation factor d can be used to reduce the size of the first (or
last) partition, in order to balance the work done by every
thread [34]. The range of a dilation factor is d ∈ [0, 1], in-
dicating the ratio of sizes between partition of thread t0 to
other threads. When d = 0, the corresponding partition is
nonexistent, so Figure 1(a) is a special case of Figure 1(c)
and Figure 1(b) is a special case of Figure 1(d). When d = 1,
the partitions have equal sizes. In our experiments we find
that the dilation factors have to be carefully tuned to achieve
best performances, but in practice, standard library imple-
mentations typically just use equal-sized partitions by de-
fault, which is suboptimal in most cases. In fact, a poorly
chosen dilation factor can cause an inefficiency worse than
one idle thread, because many threads may become idle as
they wait for thread t0 to complete its work.

2.2 Cache-Friendly Partitioning
For big data, one problem with the two-pass algorithms

is that after the first pass, most data will have been evicted
from the cache, and they have to be accessed again from
memory in the second pass. Since the performance differ-
ence between cache and memory accesses is quite large, this
problem can lead to huge performance impact overall. We
therefore propose to partition the entire data in a cache

Figure 2: Cache-friendly partitioning

friendly way, so that for each thread, the data it processes
reside in cache after the first pass.

Figure 2 demonstrates this idea, showing that the data
are partitioned into cache-sized partitions, and processed
by multiple threads in parallel. Both passes over the cache
resident data are made (in parallel) before proceeding to
the next partition. In this way, the second pass reads data
from cache rather than from RAM. The entire data is pro-
cessed sequentially in multiple iterations, but each iteration
is computed in parallel by multiple threads. To compute
global prefix sums, the first thread t0 needs to use the total
sum from the previous partition (in the previous iteration)
as an offset in the first pass.

If the partitioning uses the methods in Figures 1(a) or
1(b), then the first thread can use the last element of the
previous partition as the offset, but this requires the first
thread to wait for the second pass of the last partition to
complete. A different way is to use the stored sums array
and compute the sum of all of its elements, including the
local sum of last partition, as the offset. This way requires
the local sum of the last partition (in the previous iteration)
to have been computed, even if it is not necessary to do
so using Accumulate in Figure 1(b). However, there are two
benefits of doing so: first, the data will reside in cache in the
second pass, and second, we can save one synchronization
after the second pass as we shall explain shortly. If the
partitioning is done as in Figures 1(c) or 1(d) using one
more partition, then in the first pass, thread t0 can directly
access the last element of its previous partition since the
same thread t0 has processed it.

The effect of partitioning is that during the second pass,
accesses to the same data can be served from the cache in-
stead of memory. As we shall demonstrate in the experi-
ments, the size of a partition is better set to roughly half
of the size of L2 cache (or L1 cache if SIMD gather/scatter
instructions are used in computing local prefix sums). As
mentioned earlier, partitioning also changes the dilation fac-
tors used in the partitioning scheme in Figures 1(c) and 1(d),
because the prefix sum computation in the second pass of
the previous iteration will read from cache instead of mem-
ory, except for the last partition. For Figure 1(d), we need a
second dilation factor for the last partition as well to account
for the difference.

2.2.1 Thread Scheduling and Synchronization
To ensure the private cache of a physical core can be ac-

cessed during the second pass, we control the thread affinity
so that physical threads t1, t2, . . . continue to process the
same data in the second pass. Thread t0 works on a differ-
ent partition, since the first partition does not need a second
pass while the last partition does not need the first pass.

We need a barrier synchronization after the first pass, and
all threads should wait for it before continuing to the second
pass. Without the cache-friendly partitioning, the original
two-pass algorithm only needs to synchronize twice: one be-
tween the first pass and the second pass, and one to join all
the threads after the second pass. With partitioning, more
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Figure 3: Horizontal SIMD

__m512i _mm512_slli_si512(__m512i x, int k) {
const __m512i ZERO = _mm512_setzero_si512 ();
return _mm512_alignr_epi32(x, ZERO , 16 - k);

}
__m512i PrefixSum(__m512i x) {

x = _mm512_add_epi32(_mm512_slli_si512(x, 1)));
x = _mm512_add_epi32(_mm512_slli_si512(x, 2)));
x = _mm512_add_epi32(_mm512_slli_si512(x, 4)));
x = _mm512_add_epi32(_mm512_slli_si512(x, 8)));
return x; // local prefix sums

}

Listing 1: In-register prefix sums with Horizontal SIMD

synchronization points are needed for this multi-iteration
process. However, we only need one synchronization in ev-
ery iteration, instead of two. The synchronization after the
second pass is unnecessary, and the second pass of iteration
k can be overlapped with the first pass of iteration (k + 1).
In order to prevent the local sums in the sums array of it-
eration k from being overwritten by sums computed in the
first pass of iteration (k + 1), we need two sums arrays to
store the local sums. In iteration k, the sums are stored in
sumsk%2. Because of the synchronization between the two
passes, this double buffering of sums is sufficient.

Since we still need one synchronization in every iteration,
the overhead of our synchronization mechanism should be
as low as possible. As reported by previous studies [13, 27],
the latency of different software barrier implementations can
differ by orders of magnitude, thus profoundly affecting the
overall performance. In our implementation we use a hand-
tuned reusable counting barrier, which is implemented as
a spinlock with atomic operations. On our experimental
platforms with 48 cores, we find its performance is much
better than a Pthread barrier and slightly better than the
OpenMP barrier. To scale to even more cores, it is poten-
tially beneficial to use even faster barrier implemenations
(e.g., tournament barrier [13]). Because of the sequential
dependency of prefix sum computations, it is also possible
to restrict synchronization to only adjacent threads, rather
than using a centralized barrier [35].

3. DATA-LEVEL PARALLELISM
SIMD instructions can be used to speed up the single-

thread prefix sum computation. In this paper, we use AVX-
512 extensions that have more parallelism than previous ex-
tensions. We assume 16 32-bit numbers can be processed in
parallel using the 512-bit vectors.

3.1 Horizontal
Figure 3 shows how we can compute prefix sums in a hor-

izontal way using SIMD instructions. The basic primitive
is to compute the prefix sum of a vector of 16 elements in
register, so that we can loop over the data to compute every

Figure 4: Vertical SIMD

16 elements. The last element of the 16 prefix sums results
is then broadcast into another vector, so it can be added to
the next 16 elements to compute the global results.

As mentioned in Section 1, [14] presented a data paral-
lel algorithm to compute prefix sums, which can be used
to compute the prefix sums in a register. For w elements
in a SIMD register, this algorithm uses log(w) steps. So
for 16 four-byte elements, we can compute the prefix sums
in-register using 4 shifts and 4 addition instructions. The
pseudocode in Listing 1 shows this procedure.

Note that unlike previous SIMD extensions (e.g. AVX2),
AVX-512 does not provide the mm512 slli si512 instruc-
tion to shift the 512-bit vector. Here, we implement the
shift using the valign instruction. It is also possible to im-
plement this shifting using permutate instructions [2, 17],
but more registers have to be used to control the permu-
tation destinations for different shifts, and it appears to be
slightly slower (although valign and vperm use the same
number of cycles).

3.2 Vertical
We can also compute the prefix sums vertically by divid-

ing the data into 16 chunks of length k = n/16 and then
using a vector to accumulate the running sums, as shown in
Figure 4. While scanning over the data, we gather the data
at indices (0 + j, k+ j, 2k+ j, . . . , 15k+ j) (where j ∈ [0, k)),
add to the vector of running sums, and scatter the result
back to the original indices position (assuming the indices
fit into four bytes). After one pass of scanning over the data,
SIMD lane i contains the total sum of elements from i ∗ k
to (i + 1) ∗ k − 1. In a similar way to the multithreaded
executions (Section 2), we need to update the results in the
second pass.

In addition, we can also switch the two passes by first
computing just the total sum of each chunk (without the
scatter step) in the first pass, and then compute the global
prefix sums vertically in the second pass.

No matter which pass prefix sums are computed in, we
need two passes for vertical SIMD computation because of
data-parallel processing even if it is executed in a single
thread. For multithreaded execution, each of the two passes
can run in parallel among the threads. Similar to the cache-
friendly partitioning for multithreaded execution, we can
also partition the data into cache sizes so that the second
pass of vertical SIMD implementation can reuse the data
from cache (even for single thread).

Different from the horizontal SIMD version, this vertical
algorithm is work-efficient, performing O(n) additions (in-
cluding updating the indices for gather/scatter) without the
O(logw) overhead. Using data-parallel execution, we essen-
tially execute a two-pass sequential algorithm for each of
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Figure 5: Tree SIMD

the 16 chunks of data. In practice, the logw extra additions
in the horizontal version are computed in register, which
is much faster than waiting for memory accesses. Even so,
if the gather/scatter instructions are fast, then the verti-
cal algorithm can potentially be faster than the horizontal
version.

3.3 Tree
As introduced in Section 1, a work-efficient algorithm us-

ing two sweeps over a balanced tree is presented in [6]. As
a two-pass algorithm, the first pass performs an up-sweep
(reduction) to build the tree, and the second pass performs
a down-sweep to construct the prefix sum results. At each
level of the tree, the computation can be done in a data
parallel way for the two children of every internal tree node.
Figure 5 shows the conceptual tree built from the data; for
details of the algorithm, refer to the original paper.

To implement this algorithm, we can reuse the PrefixSum()
procedure in Section 3.1 and mask off the unnecessary lanes
in the first pass; the second pass can be done similarly with
reversed order of instructions. However, it does not make
sense to artificially make the SIMD lanes idle. Instead, we
can use a loop of gather/scatter instructions to process the
elements in a strided access pattern at every level of the tree.
Because the tree is of height logn, the implementation needs
multiple passes of gathers and scatters, so although the al-
gorithm is work-efficient in term of addition, it is quite inef-
ficient in memory access. Cache-friendly partitioning helps
alleviate this issue for the second pass, but overall this al-
gorithm is not suitable for SIMD implementations.

4. EXPERIMENTS

4.1 Setup
We conducted experiments using the Amazon EC2 service

on a dedicated m5.metal instance1, runing in non-virtualized
environments without hypervisors. The instance has two
Intel Xeon Platinum 8175M CPUs, based on the Skylake
microarchitecture that supports AVX-512. Table 1 describes
the platform specifications. The instance provides 300 GB
memory, and the measured memory bandwidth is 180 GB/s
on two NUMA nodes in total.

We implemented the methods in Sections 3 and 2 using
Intel AVX-512 intrinsics and POSIX Threads with atomic
operations for synchronization. Our code2 was written in
C++, compiled using Intel compiler 19.1 with -O3 optimiza-
tion (scalar code, such as subprocedures Increment and Ac-
cumulate, can be autovectorized), and ran on 64-bit Linux

1https://aws.amazon.com/intel
2http://www.cs.columbia.edu/~zwd/prefix-sum

Table 1: Hardware Specification
Microarchitecture Skylake
Model 8175M
Sockets 2
NUMA nodes 2
Cores per socket 24
Threads per core 2
Clock frequency 2.5 GHz
L1D cache 32 KB
L2 cache 1 MB
L3 cache (shared) 33 MB

Figure 6: Single-thread throughput

operating systems. For our experiemnts, we use 32-bit float-
ing point numbers as the data type, and generate random
data so that every thread has 128 MB of data (i.e. 32 mil-
lion floats) to work with. Algorithms are in-place prefix sum
computations, except in Section 4.2.3 where we consider out-
of-place algorithms.

Our handwritten implementations used in the experiments
are summarized in Table 2. We compare with the following
two external baselines:
• GNU Library [1]. The libstdc++ parallel mode pro-

vides a multithreaded prefix sum implementation us-
ing OpenMP. The implementation executes a two-pass
scalar computation (Accumulate + Prefix Sum) as dis-
cussed in Section 2.
• Intel Library [2]. Intel provides a Parallel STL li-

brary, which is an implementation of the C++ stan-
dard library algorithms with multithreading and vec-
torized execution (under the par unseq execution pol-
icy). The multithreaded execution is enabled by Intel
Threading Building Blocks (TBB), and we can force
the Intel compiler to use 512-bit SIMD registers by
using the -qopt-zmm-usage=high flag (which is set to
low on Skylake by default).

4.2 Results

4.2.1 Single-Thread Performance
Figure 6 presents the single-thread throughput results.

The (horizontal) SIMD implementation (Section 3.1) us-
ing AVX-512 performs the best, processing nearly three bil-
lion floats per second. The single-thread Intel library im-
plementation with vectorized execution is slightly slower.
Our scalar implementation has the same performance as the
scalar GNU library implementation, which is 3.5x slower
than SIMD.
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Table 2: Algorithm Descriptions
Scalar Single-thread one-pass scalar implementation
SIMD Single-thread one-pass horizontal SIMD (Section 3.1). Also used for multithread implementations
SIMD-V1/V2 Single-thread two-pass vertical SIMD (Section 3.2), computing prefix sums in Pass 1 / Pass 2
SIMD-T Single-thread two-pass tree SIMD (Section 3.3)
Scalar1, SIMD1 Multithread two-pass algorithm, computing prefix sums in Pass 1 (Figure 1(c))
Scalar2, SIMD2 Multithread two-pass algorithm, computing prefix sums in Pass 2 (Figure 1(d))
Scalar*-P, SIMD*-P Multithread two-pass algorithm with cache-friendly partitioning (Section 2.2)

Using cache-friendly partitioning (with the best partition
sizes), the vertical SIMD implementations (Section 3.2) are
still about 2x slower than horizontal SIMD. Computing pre-
fix sums in the second pass is slightly better. The Tree im-
plementation (Section 3.3) is slowest even with partitioning
because of its non-sequential memory accesses.

4.2.2 Multithread Performance
We then increase the number of threads used to the maxi-

mum number of (hyper-)threads supported on the platform.
In addition to external baselines, we compare our imple-
mentations with and without partititioning. The partition
sizes and dilation factors used are the best ones as we shall
discuss in Section 4.2.4. Since the vertical SIMD and tree
implementations are slow, we omit them in multithreaded
experiments.

Figure 7(b) presents the multithreaded throughput results
using SIMD. The partitioned SIMD implementations are
consistently the best methods across all numbers of threads.
SIMD1-P has a throughput of 20.3 billion per second at
48 threads. At this point, it already saturates the memory
bandwidth, so its performance does not improve with more
than 48 threads used. The highest throughput of SIMD2-P
is 20.5 billion per second with 80 threads. Without parti-
tioning, the SIMD1 stablizes at a throughput of 12.3 billion
per second. Because the second pass has to access the data
from memory (instead of cache) again without partitioning,
it is 1.7x slower. SIMD2 has a throughput of 16.7 billion
per second, 1.3x faster than SIMD1 because of less memory
access in the first pass (no writes).

Figure 7(a) presents the scalar results. Interestingly, al-
though the partitioned scalar implementation Scalar1-P is
slow with less than 32 threads, it eventually becomes faster
than the non-partitioning SIMD method and also reaches
the limit of memory bandwidth at 48 threads. This result
shows that the prefix sum converts from a CPU-bound com-
putation to a memory-bound computation as more and more
threads are used. In a compute-bound situation (e.g., less
than 32 threads), SIMD can improve performance, while in
a memory-bandwidth-bound situation, it is more important
to optimize for cache locality and reduce memory access. For
Scalar2-P, partitioning does not appear beneficial. We think
one possible explanation would be that the compiler (or
hardware prefetcher) generates nontemporal prefetches (or
loads) in the first accumulation pass, meaning that the data
is not resident in the cache for the second pass. The non-
partitioning scalar implementations are slower than SIMD,
but with more threads used, they also become bandwidth-
bound and reach the same performance as non-partitioning
SIMD.

We also find that library implementations are slower than
our handwritten implementations. The Intel library imple-
mentation is faster than the GNU library with less than 16

threads, since it uses SIMD implementations, but it appears
to not scale well. Even comparing with our non-partitioning
implementations, both GNU and Intel implementations have
a lower throughput at the maximum system capacity.

4.2.3 Out-of-Place Performance
We now investigate out-of-place computations, where the

output goes to a separate array from the input. Figure 8
shows that Scalar2 and SIMD2 perform well; partitioned
versions of those algorithms giving about the same through-
put, except for scalar code with few threads where the par-
titioned algorithm performs better. The performance of
the GNU library improves for out-of-place computations,
but it still performs worse than the Scalar2/Scalar2-P al-
gorithms. While there is little change in the performance
of the Scalar1/Scalar1-P and SIMD1/SIMD1-P algorithms
when shifting from in-place to out-of-place computations,
it appears that the performance of Scalar2/Scalar2-P and
SIMD2/SIMD2-P improves.

One source of potential improvement is that the out-of-
place method is reading from/writing to different memory
regions, which may be on different memory banks that can
operate in parallel. The in-place method will always be
reading/writing to a single memory bank at a time. There
are therefore more opportunities for the system to balance
the throughput from different memory banks, and achieve
higher bandwidth utilization. Support for this hypothesis
comes from Figure 9 where we run the algorithms on a sin-
gle node with a single memory bank. The SIMD versions of
SIMD1-P, SIMD2 and SIMD2-P now all perform similarly.

Nevertheless, the scalar performance in Figure 9 shows
that there is still a small performance edge for Scalar2/Scalar2-
P in the out-of-place algorithms on a single node. We are not
certain of the explanation for this effect, but suspect that
write-combining buffers may be helping the performance,
since the second phase in Scalar2/Scalar2-P does sequential
blind writes to the output array.

4.2.4 Effect of Partition Sizes
In Figure 10(a), we tune the partition sizes for our par-

titioned scalar and SIMD implementations with 48 threads.
The x-axis is in log scale. By trying out possible partition
sizes covering the cache sizes at different levels, we find that
with 48 (and fewer) threads, the best partition size is 128K
floats per thread, which takes 512 KB, i.e. half the size of
L2 caches. With 96 threads, the best choice of partition
size is 64K floats per thread, as a result of two hyperthreads
sharing the L2 cache. Large partition sizes make caching
ineffective, while small partition sizes can increase the syn-
chronization overhead.

Partitioning also helps with the vertical and tree imple-
mentations, which need two passes even with a single thread.
In Figure 10(b), we find that by partitioning the input data
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(a) Scalar (b) SIMD

Figure 7: Multithread throughput

(a) Scalar (b) SIMD

Figure 8: Multithread throughput (out-of-place)

(a) Scalar (in-place) (b) SIMD (in-place)

(c) Scalar (out-of-place) (d) SIMD (out-of-place)

Figure 9: Throughput on a single node
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(a) Multithreaded implementations with partitioning (b) Single-thread implementations with partitioning

Figure 10: Effect of partition sizes

into partitions of 8K floats (L1 cache size), we can increase
the throughput of SIMD-V1 and SIMD-V2 from 0.3 to about
1.6 billion per second, and the throughput of SIMD-T from
0.2 to 0.7 billion per second. This result shows that par-
titions fitting into L1 cache is best for the performance of
gather and scatter instructions. Even with this enhance-
ment, the throughput is still much lower than other algo-
rithms.

4.2.5 Effect of Dilation Factors
Figure 11 demonstrates the effect of dilation factors. We

compare equal partitioning (no dilation) with best dilation
factors found in our tuning process. In most situtations
shown, it is clear that tuning the dilation factor is required
to achieve good performance.

The improvement of using one more partition (in every
iteration) is largest when the cache-friendly partitioning is
not used. Improving thread utilization can indeed improve
the performance, especially with a smaller number of threads
when the performance is not memory-bound. With cache-
friendly partitioning, the difference is fairly small, especially
when SIMD is used.

As we have demonstrated that the default dilation d = 1
as used in standard library implementations is suboptimal,
users should tune this parameter for better performance.
However, it is not very convenient to tune this parameter
because although it is the ratio of two different subproce-
dures, the real performance depends on multiple factors in
reality. For example, Figure 12 shows the throughput results
with varying dilation factors for the Scalar1 implementation.
Using different number of threads, the best dilation factor
changes from 0.2 to 0.8, reflecting a changing balance of
CPU and memory latencies as memory bandwidth becomes
saturated.

From the above results, we observe that if we want to
use one more partition (Figures 1(c) and 1(d)), then the
dilation factors must be tuned and sometimes it is hard to
find a fixed best factor across all configurations. On the
other hand, since we have almost the same high performance
using the cache-friendly partitioning strategy, without using
the extra partition in every iteration, it is more robust to
use the partitioning schemes in Figures 1(a) and 1(b).

4.2.6 Effect of High-Bandwidth Memory
To study the effect of memory bandwidth, we also con-

ducted experiments on a Xeon Phi machine based on the
Knights Landing (KNL) architecture. Although it is not a

mainstream machine for database query processing, it has
a multi-channel RAM (MCDRAM) providing much higher
bandwidth than regular RAM (the load bandwidth is 295
GB per second and the store bandwidth is 220 GB per sec-
ond). Our experimental machine has 64 physical cores and
16 GB MCDRAM. Figure 13 shows the results using 64
threads. It is clear that the cache-friendly partitioning (into
L2-cache sized units) helps with every algorithm in regular
memory (LBM). In the high bandwidth memory (HBM), we
observe a higher throughput for all the methods. However,
the partitioning does not improve performance at all, and it
is better not to partition with a finer granularity (i.e., the
optimal partition size per thread is simply 1/64 of the data
size).

To explain these results, observe that there is an overhead
to partitioning, including extra synchronization. When data
is in RAM, the payoff (reduced memory traffic) is important
because the system is memory bound, and so the overhead
is worth paying. When the data is in high-bandwidth mem-
ory, the system never becomes memory-bound. With band-
width as an abundant resource, it does not pay to reduce
bandwidth needs by doing extra work.

5. CHOOSING THE RIGHT ALGORITHM
We now summarize our results, and make recommenda-

tions for the efficient implementation of prefix sum algo-
rithms/libraries.

Observation 1. It is hard to get configuration parame-
ters like the dilation factor right. Dilation factors depend on
a ratio of subalgorithm speeds that depends on many fac-
tors and is hard to calibrate in advance. The performance
gains from not wasting one thread are small, particularly if
many threads are available, and the risks of suboptimal per-
formance when the wrong dilation factor is used are high.
We should also remark that the partitioning approach also
needs a configuration parameter to determine the partition
sizes. However, the best partition size appears to be easily
determined from the L2 cache size, which can be obtained
from the system at runtime.

Observation 2. It is worthwhile to pursue bandwidth
optimizations like partitioning if bandwidth a bottleneck.
Experiments on a machine with high-bandwidth memory
show that partitioning helps when the data is in slow RAM,
but hurts performance when data is in fast RAM.

Observation 3. Over all experiments, the partitioning
variant SIMD2-P has the most robust performance in all
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(a) Prefix sum + Increment, no partitioning (b) Prefix sum + Increment

(c) Accumulate + Prefix Sum, no partitioning (d) Accumulate + Prefix Sum

Figure 11: Effect of dilation factors

Figure 12: Varying dilation factors with different number of
threads

Figure 13: Throughput on Knights Landing

conditions, while SIMD1-P performed slightly better for in-
place computations. Scalar code often reached the same
plateau as SIMD code with many threads, but the SIMD
code was significantly faster at lower thread counts where
bandwidth was not saturated.

Observation 4. There are some subtle interactions be-
tween in-place/out-of-place choices and algorithm structure,
particularly for scalar code. There are also compiler-driven
effects, where simpler loop structures in scalar code can be
automatically vectorized.

Observation 5. Tree-based algorithms are not competi-
tive because of poor memory locality. An alternative verti-
cal SIMD method seems reasonable in theory, but does not
perform well because on current machines, gather/scatter
instructions are relatively slow.

6. CONCLUSIONS
In this paper we have implemented and compared differ-

ent ways of computing prefix sums using SIMD and multi-
threading. We find that efficient SIMD implementations are
better able to exploit the sequential access pattern, even if
it is not work-efficient in theory. Using AVX-512, we ob-
serve more than 3x speedup over scalar code in a single-
threaded execution. In a parallel environment, the memory
bandwidth quickly becomes the bottleneck and SIMD adds
even more pressure on memory access. An efficient multi-
threaded implementation needs to be cache-friendly, with
minimal overhead of thread synchronization. In the exper-
iments we find that the most efficient prefix sum computa-
tion using our partitioning technique with better caching is
up to 3x faster than standard library implementations that
already use SIMD and multithreading.
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