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ABSTRACT
Text analytics systems often rely heavily on detecting and
linking entity mentions in documents to knowledge bases for
downstream applications such as sentiment analysis, ques-
tion answering and recommender systems. A major chal-
lenge for this task is to be able to accurately detect en-
tities in new languages with limited labeled resources. In
this paper we present an accurate and lightweight1 multi-
lingual named entity recognition (NER) and linking (NEL)
system. The contributions of this paper are three-fold: 1)
Lightweight named entity recognition with competitive ac-
curacy; 2) Candidate entity retrieval that uses search click-
log data and entity embeddings to achieve high precision
with a low memory footprint; and 3) efficient entity dis-
ambiguation. Our system achieves state-of-the-art perfor-
mance on tac kbp 2013 multilingual data and on English
aida-conll data.

1. INTRODUCTION
Key tasks for text analytics systems include named entity

recognition (NER) – the identification of mentions, or text
spans that identify the who, what and where of document
content; and named entity linking (NEL) – the identification
of the entity in a knowledge base (KB) to which a partic-
ular mention may refer. Some systems perform NER and
NEL jointly e.g., [13, 32, 46]. However, most approaches
are sequential and involve (some of) the following steps [26,
34, 43]: (1) mention detection; (2) mention normalization
(e.g., through acronym expansion [41]); (3) candidate en-
tity retrieval for each mention; (4) entity disambiguation for
mentions with multiple candidate entities; and (5) mention
clustering for mentions that do not link to any entity. As
this step involves inter-document entity clustering, for scal-

1By lightweight, we mean easily extensible to additional lan-
guages, with a low memory footprint, and fast.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM 2017, February 06-10, 2017, Cambridge, United Kingdom
c© 2017 ACM. ISBN 978-1-4503-4675-7/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3018661.3018724

ability, we do not perform any inter-document operations.
However, we plan to address this task in future work.

In this paper we describe an accurate and lightweight
NER/NEL system that performs mention detection (Sec-
tion 2), candidate entity retrieval (Section 3) and entity dis-
ambiguation (Section 4). We demonstrate the accuracy of
our system on the multilingual (English/Spanish/Chinese)
tac kbp 2013 data and on a standard monolingual data
set, aida. We demonstrate that our system is lightweight in
terms of speed and memory footprint. Specific contributions
of this work include:

• with very few features that are easy to extend to multi-
ple languages, we can achieve competitive performance
on mention detection,

• with meta-linguistic context, specifically click data from
search logs, we can provide competitive performance
for multilingual candidate entity retrieval from docu-
ments, and

• through efficient methods for entity disambiguation,
we can get further improvements in NEL accuracy

We make available the source code and entity embeddings
that we use for candidate entity retrieval and disambigua-
tion. https://github.com/yahoo/FEL.

2. MENTION DETECTION
Mention detection typically consists of running a NER

system over input text. NER is often performed using a se-
quence tagging method such as conditional random fields [28],
trained on human-labeled data and using lexical, syntactic
and semantic features which may become quite complex and
language specific [50]. With their joint NER/NEL semi-
Conditional Random Field (CRF) system including Brown
clusters, WordNet clusters and dictionaries, Luo et al. [32]
report state-of-the-art F1 of 91.20 for NER for English on
the standard CoNLL-2003 data set [50]. Similar perfor-
mance has recently been achieved using only word embed-
dings and character features, but with less-efficient neural
methods [39, 29, 33]. By contrast, we use simple CRFs and
only a few features that we can readily extend to additional
languages. The performance of our system is close to that
of state-of-the-art single-language NER systems while being
easily extensible to other languages and more computation-
ally efficient.



Feature Description
Tokens wi for i in {−2, ...,+2}, wi&wi+1 for

i in {−1, 0}
Embeddings emb[100] for i in {−2, ...,+2}

Morphological morphoi for i in {−2, ...,+2}
POS posi for i in {−2, ...,+2},

posi&posi+1 for i in {−2, .., 1}

Table 1: NER features.

2.1 System Description
As in previous work, we treat NER as a sequence labeling

problem. To train, we use CRFsuite [37] with L-BFGS [38].
Following Ratinov and Roth [42] and based on our own ex-
periments, we use a BILOU label encoding scheme.

• B - ‘beginning’

• I - ‘inside’

• L - ‘last’

• O - ‘outside’

• U - ‘unique’

The features we use are listed in Table 1. To ensure that
NER is lightweight, we focus on efficient-to-compute fea-
tures that will scale easily to multiple languages. Our main
features are tokens and token embeddings, within a small
window of the target token. We learn token embeddings for
each language from Wikipedia; we use word2vec [36] with
the Continuous-Bag-of-Words (CBOW) algorithm, 5 itera-
tions, and a window size of 5. We do not tune on any de-
velopment set. We also use morphological features, which
consist of word shape and capitalization features, token pre-
fixes and suffixes (up to length 4), numbers and punctuation.
Finally, we experiment with language-specific part-of-speech
(POS) tags; POS tagging adds minimal preprocessing and
is available for over 40 languages.

Features
EN ES ZH

P R F1 P R F1 P R F1
Token + Embeddings 91 82 86 86 79 82 76 54 64
+ POS 90 87 88 86 80 83 77 54 65
+ Morphological 90 88 89 85 84 85 74 60 67
+ POS + Morphological 89 88 89 85 84 84 75 61 67

Table 2: Precision, recall and F1 of NER for CoNLL-
2003 English, CoNLL-2002 Spanish and Ontonotes
Chinese test sets.

We use standard evaluation data: CoNLL 2003 for English
(EN) [50], CoNLL 2002 for Spanish (ES) [51] and OntoNotes
4.0 (LDC2011T03) for Chinese (ZH). In each case we use
the training data for training CRFs and test data (testb for
CoNLL datasets) for evaluation.

Evaluation results for our system are shown in Table 2.
For all three languages, the best performing models include
token, embedding and morphological features. As shown in
Table 3 our best model beats the state-of-the-art multilin-
gual systems from the literature [1, 17]. The performance of
our best model is close to that for state-of-the-art heavily-
tuned single-language systems for English, Spanish and Chi-
nese without using gazetteers or chunkers/parsers. Sur-
prisingly, for English and Spanish POS features add noth-
ing to overall performance when morphological features are

Systems EN ES ZH
This Work 88.6 84.6 67.2
Al-Rfou et al. [1]† 71.3 63.0 -
Stanford [17]* 86.3 81.1 64.1/69.5
Suzuki and Isozaki [48] 89.9 - -
Che et al. [7]* - - 64.1/69.5
Lample et al. [29]+ 90.9 85.8 -
Ma and Hovy [33]+ 91.2 - -
Luo et al. [32]* 91.2 - -

Table 3: F1 for NER for CoNLL-2003 English,
CoNLL-2002 Spanish and Ontonotes Chinese test
sets. † indicates multilingual systems. * indicates
systems using features hard to scale to multiple lan-
guages such as gazetteers, syntactic and semantic
features. + indicates systems using neural methods.

included. In future work, we will investigate the use of
character-based features and word cluster features.

3. CANDIDATE ENTITY RETRIEVAL
Candidate entry retrieval consists of identifying zero or

more entities in an input knowledge base to which a men-
tion may refer. We assume a KB has a canonical form (CF)
for each entity. In our experiments we use the wikipedia
page title corresponding to each KB entity as the canon-
ical form. In typical NEL systems, candidate entities are
retrieved if their canonical form or an alias is similar to the
(expanded) mention text. For example, if a KB has wiki IDs
then aliases may include substrings of the wiki ID, Wikipedia
redirects and inlinks, especially from Wikipedia disambigua-
tion pages [10, 15, 25, 31, 32]. Aliases may also include ref-
erences to the wiki ID from non-Wikipedia pages [31], from
search click logs [4, 41, 53], or from the output of corefer-
ence [10, 31].

3.1 Entity Embeddings
We developed an entity embedding approach akin to [30,

12] and used these embeddings for candidate entity retrieval
and for entity disambiguation. Our training documents are
preprocessed Wikipedia articles, where hyperlinks in the ar-
ticles have been transformed to the CFs for their associated
entities, and the article title is the CF for the target entity.
We represent each article a as: (1) a sequence of the entities
mentioned in it, (ent1, ent2, . . . , entn), where enti ∈ Ent,
the set of all entities; and (2) sequence of the tokens it con-
tains, (w1, w2 . . . , wm), where wj ∈W , the set of all tokens.
We aim to simultaneously learn D-dimensional representa-
tions of Ent and W in a common vector space. The context
of an entity and the context of a token are modeled using the
architecture in Figure 1, where entity vectors act not only
as units to predict their surrounding entities, but also as the
global context of word sequences contained within them. In
this way, one layer models entity context, and the other
layer models token context. We connect these two layers
using the same technique that Quoc and Mikolov [30] used
to train paragraph vectors. We use continuous skip-grams
with 300 dimensions and a window size of 10 and we set neg-
ative sampling to 5 to train our entity embedding model. In
order to improve our vectors while limiting the number of
iterations to 5, we also use hierarchical sampling. For quali-
tative study of entity embeddings, we provided examples of
nearest-neighbors in the vector space in Figure 2.
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Figure 1: Architecture for training word and entity
embeddings simultaneously. Ent represents entities,
W represents their context words.

We use these entity embeddings for our candidate entity
retrieval system, which is based on the Fast Entity Linker
(FEL) from [4], and which we briefly present below. Al-
though FEL is an efficient and precise candidate entity re-
triever [4], the entity embeddings alone contain considerable
information. So we add as a baseline a k-nearest neighbors
(KNN) method which takes a mention as input, retrieves the
entity embedding for the mention, then performs a nearest
neighbor search amongst the entity embeddings for the CFs
of all KB entities using Euclidean distance. With both meth-
ods, we aim for precision, so that we can pass a concise set
of candidate entities to disambiguation for greater efficiency.

3.2 Fast Entity Linking
Fast Entity Linker (FEL) is an unsupervised approach

which selects the segmentation of an input sequence of words
that maximizes the likelihood of all substrings linking to an
entity in the Knowledge Base. The model requires to cal-
culate the conditional probabilities of an entity given every
substring of the input sequence, but avoids computing entity
to entity joint dependencies, which makes the process very
efficient. As a byproduct of this segmentation, the model
selects the most likely entities that would be linked to each
substring in a sequence of words.

To approximate entity likelihoods FEL makes use of an-
chor text in, and user queries leading to a click on, a Web
page representing the entity, such as the entity’s Wikipedia
page. FEL imposes contextual dependencies by calculating
the cosine distance between a candidate entity’s embedding
and the entity embeddings from the substrings of the input
string, and including those as part of the final probability
estimations. With this paper, we will release our implemen-
tation of FEL and the data packs (models) that it uses.

We built per-language data packs for FEL using query
logs that spanned 12 months and Wikipedia anchor text ex-
tracted from Wikipedia dumps dated November 2015. We
obtained access to anonymized search engine data consisting
of queries for which a searcher clicks on a Wikipedia page,
e.g., Barack and President Obama map to wiki/Barack Obama.
Candidate entity retrieval precision for FEL is 73.6 for EN,
54.7 for ES and 81.7 for ZH.

To ensure that candidate entity retrieval is lightweight, all
the strings embedded into the data packs are hashed using a
minimal perfect hash function, which returns the identifier
of a string in constant time and guarantees a zero collision
rate between strings of the key set. However, to make the
collision probability negligible a constant-sized signature is
associated to each string, which is used to check whether
the string being looked up was present in the key set. In

order to hold counts for aliases and entities we use Elias-
Fano integer coding techniques. We compress embedding
vectors in a similar fashion: after quantizing their values the
integers obtained are then encoded with Golomb codes. The
encodings of each vector are concatenated into a single bit
stream, and their starting positions are stored in an Elias-
Fano monotone sequence [14].

4. ENTITY DISAMBIGUATION
Entity disambiguation is the task of figuring out to which

candidate entity a mention refers. The task is complex
because mentions may refer to different entities, depend-
ing on local context (e.g. Jason Williamsa the basketball
player plays or wins, while Jason Williamsb the actor di-
rects or writes), document context (Jason Williamsa co-
occurs with entities like NBA and Memphis Grizzlies, while
Jason Williamsb co-occurs with entities like The Westside
Theatre), and world knowledge (Jason Williamsa gets more
sports media coverage).

An intuitive representation for entity disambiguation is a
graph with (weighted) edges linking mentions to mentions,
mentions to entities, and entities to entities; the goal is to
find dense subgraphs [25]. However, this is NP-hard. Re-
searchers have attempted various approximate methods, in-
cluding supervised ranking [5, 9, 41, 54], neural networks [24],
and global ranking methods such as approximate dense sub-
graph computation [25], variations on PageRank [23, 21],
clique partitioning [2], random walks [20], and loopy belief
propagation [19]. In this work, we compare three general-
purpose and efficient methods: the forward-backward algo-
rithm, exemplar clustering, and label propagation. We de-
scribe these approaches below.

Features used for disambiguation include co-occurrence of
tokens or entities between the Wikipedia entry for an entity
and the input document, as well as Wikipedia link struc-
ture, entity category and mention type [4, 5, 10, 9, 16, 25,
31, 32, 41, 53]. They may also include “entity popularity”: a
prior on the likelihood of observing an entity, estimated e.g.
by frequency of occurrence in Wikipedia, in the input doc-
uments, etc. [9, 16, 25, 31, 32, 41, 53]. Ceccarelli et al. and
Fahrni et al. [6] have especially good descriptions of entity-
entity and entity-mention relatedness features. Zhou et al.
[53], Blanco et al. [4] and Dilek et al. [22] all use search
click logs to approximate entity popularity; Shen et al. [44]
uses user mentions of an entity on Twitter; and Chisholm
and Hachey [9] use in-links to Wikipedia pages from the
open web. In this work, of course, some of the features are
captured by entity embeddings, while others are used in the
fel candidate entity retriever. In fact, a strength of our
approach is that disambiguation features are used in candi-
date entity retrieval, increasing the precision at that stage
and allowing for a shorter n-best list to passed through to
disambiguation than in prior work(e.g., [31, 41, 54]).

4.1 Forward Backward Algorithm
The forward-backward algorithm [3] (FwBw), listed in

Algorithm 1, is quadratic in O(|M | × n) where |M | is the
number of mentions and n the number of candidate entities
per mention. The input is M = (m1,m2, ...,mT ), a list of
mentions in the document, and NB = (e1

n, e2
n, ..., ek

n), a
list of sets of candidate entities retrieved for each mention.
The algorithm runs subroutine Forward twice – first on
the list of mentions, then on the reversed list of mentions



(the “Backward” step). These steps return fwd|M|×n and
bkwd|M|×n matrices respectively. The output contains cu-
mulative likelihood values for each candidate entity for each
mention. We then compute posterior marginals for each
candidate entity and return the best candidate entity for
each mention. Procedure Forward is similar to the popu-
lar Viterbi sequence decoding algorithm, except that it does
not keep track of the best path. Another difference from the
standard forward-backward algorithm is in line 18 of Algo-
rithm 1; procedure joint sim computes lexical and vector
(cosine) similarities between the mention text and the can-
didate entity’s CF.

Algorithm 1 ForwardBackward

1: Input: M ← mentions, NB ← N-BestLinks,
2: P ← Posterior probability from NB
3: Output: L̂← 1-best Entities
4: procedure FwBw
5: fwd← Forward(NB,M)
6: bkwd← Forward(NBrev,Mrev)
7: for i← 1, 3, ..., |M | do

L̂i ← arg maxk(fwdi,k · bkwd|M|−i,k)
8: end for

return L̂1,2..,i,..|M|
9: end procedure

10: procedure joint sim(u,v)
11: sem←semSim(u, v), lex←textSim(u, v)

return (λ · sem+ (1− λ) · lex)
12: end procedure
13: procedure Forward
14: for li in NB1 do

Si,1 ← joint sim(li, M1)
θ0,i = P (li,M1) · Sli,M1

15: end for
16: for i← 2, 3, ..., |M | do
17: for each link lj do
18: SMi,lj ← joint sim(Mi, lj)

θj,i ← maxk(θk,i−1 · SMi,lj · Slk,lj · P (Mi, lk))
19: end for
20: end for

return θ
21: end procedure

4.2 Exemplar Clustering
When an entity is mentioned several times in a docu-

ment, later mentions are often abbreviated or shortened,
e.g., Bill Clinton may become Clinton. Although later men-
tions contain less lexical information for disambiguation, the
document context may be used to disambiguate entity men-
tions. Specifically, we cluster the entity embeddings (see
Section 3.2) of mentions and candidate entities’ CFs. We
use exemplar clustering [18], which lets us choose certain
candidate entities as potential cluster centroids and assign
mentions to these clusters. This choice can be initialized
using a preference vector with higher (and positive) values
set for candidate entities’ entity embeddings and zeros for
mentions’ entity embeddings.

In this work we specifically use the affinity propagation fla-
vor of exemplar clustering as implemented in scikitlearn [40].
The clustering algorithm is listed in Algorithm 2. As before,
the inputs are M and NB. We construct a preference vector
pref of size n = |M | + |NB|. We initialize this preference

vector with the posterior probability of each candidate en-
tity for a given mention and 0 for all mention vectors. When
candidate entities are in the n-best list for multiple men-
tions, we pick the highest posterior value associated with
that entity. Xn×d is a matrix of d dimensional entity em-
beddings for each mention and for each candidate entity’s
CF (lines 2–3). Exemplar clustering is primarily a message-
passing algorithm that allows datapoints to communicate
their candidature for becoming an exemplar. To facilitate
this communication, we use two matrices, an availability ma-
trix (A) and a response matrix (R). A carries messages sent
from exemplars to potential cluster members to show the
appropriateness of all potential exemplar points. R carries
messages from cluster members to a candidate exemplar to
show their cluster membership potential given the candidate
being an exemplar. These matrices are initialized with ze-
ros. The message passing process also involves measuring
similarity between any two datapoints. To this end, we con-
struct a similarity matrix Sn×n with pairwise similarities for
all the rows in X as shown in line 5 of Algorithm 2. On line
6, we incorporate our exemplar preferences by adding the
preference vector to the diagonal of S. The iterative part of
the algorithm begins at line 8 and runs until we reach con-
vergence i.e., matrices R and A do not change, OR we hit
T ≥ max iterations. Convergence also depends on damping
factor2 which is often used to discourage severe oscillations
while updating R and A. In lines 9–11, the algorithm up-
dates the response and availability matrices R and A. Once
the message matrices have converged, we select exemplars as
shown in line 13. At this point all the datapoints in X have
been assigned to clusters and the exemplars CI represent
cluster centroids. We iterate over mentions and assign their
cluster centroid (exemplar) as their entity link, as shown in
line 14. Drawbacks of exemplar clustering are its runtime
complexity O(|M |2T ) and that it may not converge if the
preference values or the damping factor are too low.

Algorithm 2 Exemplar Clustering

Input: M , NB, pref1×n ← Posterior probability from
N-BestLinks

2: Output: L̂← 1-best Entities
Xn×d ← embeddings(M)⊕ embeddings(NB)

4: Sn×n ← pairwiseSim(X)
Rn×n, An×n ← zeros, zeros

6: diag(S)← diag(S) + pref
λ is damping factor to discourage oscillations

8: while convergence OR T ≤ max iterations do
Ri,k ← Si,k −maxk

′ 6=k{Ai,k
′ + Si,k

′ )}

10: Ai,k ← min
(

0, Ak,k +
∑

i
′
/∈{i,k}max(0, Ri

′
,k)
)

Ak,k ←
∑

i
′ 6=kmax(0, Ri

′
,k)

12: end while
I ← Ri,i +Ai,i > 0

14: CI = arg maxk∈I Sk,k

return L̂←
(
∀k∈|CI|CIk

)

4.3 Label Propagation
Label propagation is an umbrella term for a family of

graph-based semi-supervised algorithms. A label propaga-

2The details on damping factor can be found in [18]. It is
applied to lines 9–11 in Algorithm 2.



tion algorithm propagates labels to unlabeled nodes in a
graph, starting with a few labeled nodes. These algorithms
have been successful in several text processing tasks such
as sentiment analysis [47], gloss-finding [11], and word sense
disambiguation [52]. In this work, we apply a variant of
label propagation proposed by [49] called modified adsorp-
tion (mad). This is a transductive learning algorithm that
operates under noisy-label assumption and aims to relabel
labeled examples for coherency across the graph. First we
construct an undirected graph G whose nodes V correspond
to all mentions M in a document. The nodes are connected
by weighted edges Ew where the weight is the value re-
turned by the joint sim procedure from Algorithm 1 for
the mention texts. After we construct the adjacency matrix
for this graph G ← (V,Ew), we inject seed labels L on a
few nodes. In our case, for nodes (mentions) V ′ with en-
tity candidates of high posterior values based on a threshold
tuned on a development set, we assign a label distribution
{l1 : p1, l2 : p2, . . . , ln : pn}. Along with {L, G}, mad takes
three hyperparameters {µ1, µ2, µ3} as input, which control
the behavior of a random walk on the graph. These hyper-
parameters correspond to inject, continue, and abandon

actions in the random walk. Once the random walk begins,
with probability pinj it may stop and return the seed la-
bel distribution L. Alternatively, abandon the labeling and
return all-zeros vector with probability pabnd. Or it would
continue the random walk from the current node to one of its
neighbors with probability pcont. For every node these prob-
abilities sum to unity. The transition probability between
a pair of nodes is directly proportional to normalized edge
weight between the nodes. On convergence, mad generates
a ranked list of labels for each node in V without modifying
the labels of nodes in V ′. We pick the highest ranked label
for each node in V as the final candidate. The algorithm
complexity is O(|V |T ) where T is number of iterations and
|V | number of nodes in the graph. This makes the algorithm
highly scalable for our task.

5. EVALUATION
There are only a few publicly available data sets for NER/NEL,

and they cover only a few languages. We evaluated on
data from the cross-lingual tac kbp 2013 shared task. Be-
cause of issues with this data set, including a small KB with
many missing entities and considerable variation in settings
in prior work [31, 15], we also evaluated using the mono-
lingual aida-conll 2003 dataset. For the tac kbp data,
the reference kb contains a subset of English Wikipedia en-
tities mapped to unique kbp identifiers. The reference kb
contains mappings from Wikipedia English entities to the
tac kbp reference id. We further bootstrapped this kb to
include Spanish (4467) and Chinese (3060) Wikipedia enti-
ties to improve coverage for entities used in the evaluation
corpus for each language. Since the aida annotations use
wiki IDs, no kb-mapping was required. Statistics about the
datasets used in this work are given in Table 4.

For the tac kbp data, we ran mention detection (Sec-
tion 2); the aida data comes with gold mentions, on which
results are reported in previous work. Before running men-
tion detection on the tac kbp data, we removed html tags
from the source documents and sentence split and tokenized
using an in-house preprocessor.

Data Docs Entities
Unique
entities Mentions

kbp-en 1820 1183 349 150144
kbp-es 1175 1305 583 6321
kbp-zh 1224 1229 159 15092
aida-all 1392 37922 5598 50758

Table 4: Statistics for our evaluation datasets.

5.1 Evaluation Setup
We ran all our experiments on a Redhat 6.4 machine with

24GB memory and a 4-core Xeon CPU. In our experiments,
we tuned all model hyper-parameters on the 2012 tac kbp
English dataset. Both of our candidate generation meth-
ods generate n-best (N = 10) candidates for every entity
mention. We specify the following hyper-parameters for the
disambiguation algorithms:

• In FwBw, λ is set to 0.5.

• In Exemplar, max_iterations = 300, damping fac-
tor (λ) = 0.5 and the algorithm stops if the message
passing matrices do not change for 50 iterations.

• For LabelProp, µ1 = 1, µ2 = 1e − 2, µ3 = 1e −
2, β = 2 and the maximum number of iterations is
100. These are default experimental values provided
in the implementation of [49]3 that we validated on our
development set.

5.2 Evaluation Results and Analysis

5.2.1 TAC KBP Evaluation Results
We applied our three disambiguation algorithms (Section 4)

on the output of FEL, comparing with our knn baseline
(Section 3). For the tac kbp data we use the official scorer4

and report the strong_link_match measure to compare our
system with previous work, disregarding nil links to enti-
ties which are not in the official KB. In 2013 only two sys-
tems were officially evaluated on all three languages (EN,
ES, ZH): hits [15] and BasisTech [35]. However, hits uses
separate Wikipedia dumps as a KB, and does not separate
out nil clustering from non-nil entity linking, so we compare
our system against BasisTech. We note that BasisTech per-
formed inter-document entity clustering, whereas for scala-
bility, we do not perform any inter-document operations.

In Table 5, we show F1 scores for the combinations of can-
didate entity retrieval and entity disambiguation methods.
In addition to showing results with a 10-best list of candidate
entities, we show results for 1-best candidate entity retrieval.
FEL candidate entity retrieval outperforms KNN across all
languages and disambiguation settings. On the English por-
tion of the tac kbp data, FEL combined with FwBw dis-
ambiguation achieves the best result (61.0) among all our
disambiguation methods and outperforms BasisTech (56.5).
On the Chinese cross-lingual NER/NEL task, FEL 1-best
outperforms BasisTech, while BasisTech maintains an ad-
vantage over our systems on the Spanish cross-lingual task.

3https://github.com/parthatalukdar/junto
4https://github.com/wikilinks/neleval



Dataset
1-best FwBw Exemplar LabelProp

BasisTech
KNN FEL KNN FEL KNN FEL KNN FEL

KBP-EN 32.0 50.6 29.1 61.0 52.6 52.8 29.8 53.6 56.5
KBP-ES 31.3 50.8 27.7 46.7 24.0 50.5 28.5 48.3 61.2
KBP-ZH 17.0 67.3 7.5 54.7 9.8 57.5 12.3 49.8 62.1

Table 5: strong_link_match F1% of our methods and basistech on monolingual entity linking (English) and
cross-lingual linking (Spanish and Chinese) on the TAC KBP 2013 test partition.

5.2.2 Analysis
Table 6 shows the precision, recall and F1 scores for the

three TAC KBP 2013 datasets and their constituent sub-
groups. For the Spanish and Chinese tasks, disambiguation
via exemplar clustering typically yields the highest strong_
link_match precision among our proposed systems. How-
ever, the 1-best FEL result achieves higher recall, and thereby
F1, for non-nil entity links. This trend of high precision for
disambiguation approaches being offset by higher recall for
the 1-best system remains consistent across all entity types
and document genres in the Spanish and Chinese data. We
hypothesize that the performance of our systems on these
cross-lingual tasks is limited by a smaller number of in-
language entities in our training data when compared to
English (e.g., 1.1M Spanish entities vs. 4.9M English enti-
ties). The state-of-the-art system on this dataset may use a
larger in-house database of entities. Our NEL performance
could thus likely be improved by increasing the coverage of
entities in our non-English data packs.

On monolingual linking in English, where entity coverage
is more comprehensive, FwBw disambiguation achieves a
balance of strong precision and recall to yield state-of-the-
art performance. We attribute this result in part to the
Markov independence assumptions implicit in the forward-
backward algorithm. Although conditioning on global con-
text is generally accepted to be valuable in entity linking,
techniques like Exemplar or LabelProp can also be sensi-
tive to large numbers of noisy mentions in the document,
which are likely to occur in the extremely large discussion
forum and newsgroup documents present in KBP-EN. Inter-
estingly, linking precision is observed to be weakest overall
on the newsgroups subset rather than the longer discussion
forums, likely owing to its emphasis on sports conversations
in which mentions of athletes are often mistakenly linked
to other personalities (e.g., “Becks” [David Beckham] linked
to the musician Beck) and team names to locations (e.g.,
“Madrid” [Real Madrid C.F.] linked to the city of Madrid).

We show in Table 7 the variation in document statistics
for documents with correctly-linked entities with respect to
those over the full dataset.5 This illustrates that linking
in English is more accurate on documents with fewer words
and fewer entity mentions, likely reflecting the poor precision
over the newsgroups portion. Although the number of words
or mentions in the document do not appear to influence link-
ing consistently, we do observe a clear association between
mention density (measured as #mentions per word) and ac-
curate linking for all languages and systems. Furthermore,
we also note that LabelProp consistently produces more ac-
curate links on shorter documents across all languages, lead-
ing us to conjecture that similar graph-based disambiguation

5Note that these measures are not dominated by entity-
dense documents as most entities (94% for EN and ES, 100%
for ZH) come from documents with only 1-2 labeled entities.
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#words
EN -5.2 -4.9 -5.9 -41.3
ES 6.0 -4.8 2.5 -3.9
ZH 3.8 -2.9 6.5 -19.8

#mentions
EN -1.2 -2.7 -1.6 -44.8
ES 16.0 12.3 12.7 1.1
ZH -1.3 -4.3 8.9 -22.2

#mentions
per word

EN 16.5 15.9 15.1 37.8
ES 13.1 22.6 18.5 15.7
ZH 6.0 12.1 16.2 4.8

Table 7: Percentage variation in document statis-
tics for correctly-linked entities with respect to all
entities over TAC KBP 2013 data. Negative values
imply that linking accuracy is negatively correlated
with the measure and vice versa.

Dataset
Precision Recall F1

KNN FEL KNN FEL KNN FEL
KBP-EN 55.4 45.3 50.1 63.1 52.6 52.8

News 53.6 44.9 49.2 66.8 51.3 53.7
Forums 65.5 54.9 53.5 60.4 58.7 57.5
Newsgroups 34.3 26.7 41.5 55.9 37.5 36.2

Table 8: Precision, recall and F1 percentages for sys-
tems using Exemplar clustering disambiguation over
the English TAC KBP 2013 data and its subgroups.

approaches may be preferable when little document context
is available (e.g., for tweets).

Finally, turning to candidate entity retrieval, FEL yields
dramatically stronger candidates than KNN across all lan-
guages and disambiguation strategies. The one exception
to this is KNN + Exemplar on the English task, which re-
mains competitive with FEL + Exemplar. Table 8 compares
precision, recall and F1 for the two candidate generation sys-
tems in this scenario. Intriguingly, this result appears to be
driven in part by the presence of longer documents (i.e., the
newsgroups and discussion forums mentioned previously)
on which the precision advantage of KNN outweighs the
stronger recall of FEL. We conjecture that a large amount
of training data for these mention vectors leads to a reliable
clustering of mentions around their entity vectors. In such
a scenario, Exemplar disambiguation can effectively exploit
document context to accurately link entities even without
search logs and click data for the target language.
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KBP-EN 1820 3118.1 42.5 62.1 45.3 59.9 62.6 59.9 63.1 48.5 50.6 61.0 52.8 53.6
News 924 300.6 42.8 64.4 44.9 62.6 66.3 61.7 66.8 61.7 52.0 63.0 53.7 62.1
Forums 607 7555.9 50.1 64.3 54.9 61.3 60.4 58.5 60.4 31.9 54.8 61.3 57.5 41.9
Newsgroups 288 2813.8 24.6 46.5 26.7 45.4 53.4 56.8 55.9 50.0 33.7 51.2 36.2 47.6

KBP-ES 1175 168.7 60.5 67.4 71.0 62.5 43.8 35.7 39.2 39.4 50.8 46.7 50.5 48.3
Spanish news 775 160.5 58.1 65.3 64.5 60.3 37.9 30.6 26.9 32.4 45.9 41.7 37.9 42.2
English news 397 180.7 64.3 70.8 74.8 65.5 56.3 46.3 42.8 53.9 60.0 56.0 54.4 59.1

KBP-ZH 1224 752.5 74.3 75.5 77.1 61.8 61.5 42.9 45.8 41.7 67.3 54.7 57.5 49.8
Newsgroups 415 1215.9 78.6 74.4 81.0 59.1 66.6 43.7 48.9 38.9 72.1 55.0 61.0 46.9
Chinese news 406 323.0 70.5 76.9 82.6 55.2 51.7 40.2 48.0 33.7 59.7 52.8 60.8 41.9
English news 230 217.9 71.4 71.4 52.7 71.7 69.6 43.5 30.0 60.4 70.5 54.1 38.2 65.6
Blogs 173 1360.0 75.9 81.0 85.5 65.8 61.5 46.6 54.0 42.0 67.9 59.1 66.2 51.2

Table 6: Precision, recall and F1 percentages for FEL systems over the three TAC KBP 2013 datasets and
distinct subsets grouped by document genre. Small subgroups with fewer than 4 documents are omitted.

System Amacro Amicro

1-best 83.48 81.07
FwBw 83.63 80.98
Exemplar 83.50 81.08
Alhelbawy and Gaizauskas [2] 82.80 86.10
Cucerzan [10] 43.74 51.03
Kulkarni et al. [27] 76.74 72.87
Hoffart et al.[25] 81.91 81.82
Shirakawa et al. [45] 83.02 82.29
He et al. [24] 83.37 84.82

Table 9: Performance on the AIDA data.

5.2.3 AIDA Evaluation
On the aida data [25], we compare our methods against

previous work using micro-accuracy (Amicro) and macro-
accuracy (Amacro) as defined in [2]. We do not tune the
system on any part of the aida data and we ran our entity
linking methods on the entire dataset (train, testA, testB)
(cf. [2]).

Our results are reported in Table 9. Our fwbw disam-
biguation method beats the state-of-the-art system [2] on
Amacro and comes close to [25] on Amicro. This is an encour-
aging result given that we did not tune our system to the
aida data. Luo et al. [32] used train and testA for train-
ing and validation respectively. Our performance on testB
(Pr@1 = 79.7) is close to their JERLel (Pr@1 = 81.4)
without tuning on the data.

5.3 Runtime performance
Our methods are lightweight because:

• they are fast (Table 11),

• they have a small memory footprint (Table 10),

• and they use features (primarily word and entity em-
beddings) that are easy to extend to more languages

Our best candidate entity retrieval (fel) and disambigua-
tion (fwbw) methods are implemented in Java 8 and have
been profiled for document throughput (Table 11). Our

# Entities Data pack # Vectors Wiki
EN 4.9M 1.6GB 1.5GB 45GB
ES 1.10M 114M 877MB 9.8GB
ZH 870K 272MB 864MB 5.3GB

Table 10: Size of the data pack for each language
and size of the original Wikipedia dumps.

Datasets Docs
Average
mentions Sec/doc

aida-all 1392 36.43 0.178
kbp-EN 1820 82.4 0.473
kbp-ES 1175 5.37 0.004
kbp-ZH 1224 14.54 0.013

Table 11: runtime of FEL + FwBw on different datasets.

best method (FEL+FwBw) is 2.5 times faster than a re-
cent Belief-Propagation based Entity Linking System [19]
on the AIDA dataset (178 vs 445.56 milli-secs/doc).6

Our models are also memory-efficient as shown in Ta-
ble 10, e.g., 4.9M English entities are compressed in a 1.6GB
datapack. In contrast, Wikifier, a popular English entity
linker [8] relies on Lucene indexes and gazetteers that have
a memory footprint of 6.8GB. The code and the entity em-
beddings are available at https://github.com/yahoo/FEL.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have described an efficient and accu-

rate multilingual NER/NEL system. Our NER implemen-
tation is outperformed only by NER systems that use much
more complex feature engineering and/or modeling meth-
ods. Our compact and efficient candidate entity retrieval
method, fel, has high precision; with the efficient fwbw
disambiguation method, we obtain state-of-the-art perfor-
mance on English NEL on the tac kbp 2013 and aida data

6This comparison is indirect; we could not run their system
and they did not report hardware specifications for their
experiments.



sets. Aspects of our approach that contribute to this strong
performance are compact entity embeddings that capture
some of the features commonly used for entity disambigua-
tion, and the use of information from search click logs.

In future work, we plan to improve the performance of our
system for other languages, by expanding the pool of entities
for which we have information since we noticed that candi-
date entity retrieval in Spanish is relatively poor compared
to English and Chinese. We also plan to expand our use of
entity embeddings to cover entity aliases as well as CFs and
perform mention clustering for mentions do not link to any
entity. Finally, we plan to experiment with increasing the
size of the n-best list input to entity disambiguation, with
the goal of increasing recall while holding precision high.
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