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1 Introduction

This article describes a technique for semiparametric density estimation which uses both paramet-
ric and non-parametric criteria. Parametric methods assume the functional form of the underlying
distribution; these methods can underfit the data and may run into problems if the data is generated
by a varying distribution or one that does not match the assumptions. In contrast, non-parametric
approaches such as kernel density and Parzen estimation do not rely on parametric assumptions but
may be too flexible and are prone to overfitting the data.

The proposed approach utilizes a continuous interpolation between the two extremes of indepen-
dently distributed (i.d.) sampling assumptions and independently identically distributed (i.i.d.) sam-
pling assumptions. This approach makes independent similarly distributed (i.s.d.) sampling assump-
tions on the data, using a scalar parameter A to trade off parametric and non-parametric properties in
order to obtain a better density estimate. This technique is computationally efficient, unimodal and
consistent over a wide range of models.

2 Approach
Given a dataset X = x1,...,XN, density estimation seeks to recover p(xy,...,xn). Consider
maximum a posteriori (MAP) estimation where parameters © = {61, ...,0y} define the marginals.

Assuming that the points are i.d. gives the joint likelihood as a product of independent single-
ton marginals p(Xy|fn). Therefore, obtaining the parameters © for the MAP i.d. setup involves
maximizing the posterior p® (X, 0) = ngl P(Xn|0n)p(fn). The singleton priors p(f,) can be
assumed to be uniform in the case of maximum likelihood (ML) estimation. To obtain the parame-
ters for the i.i.d. setup where the assumption is that the samples share the same singleton marginal,
p*9- can be maximized subject to constraints that the marginals must be equal.

Instead of N (N — 1)/2 pairwise equality constraints for the 7.i.d. setup, penalty functions can be
applied across pairs of marginals that reduce the posterior score when they disagree, thereby encour-
aging cohesion between the models. The level of agreement between two marginals p(x|6,,) and
p(x]60;,) can be measured using the Bhattacharya affinity metric between two distributions (Bhat-
tacharyya, 1943) where B(p(x|0,,), p(x|6,.)) = [ p? (x|6,n)p” (x|0,,)dx. Using 3 = 1/2, the affin-
ity is maximal and equal to 1 if and only if p(x|6,,) = p(x|6,). Bhattacharya affinity is preferred
over alternative information divergences such as KL divergence because it has some useful compu-
tational and log-concavity properties and can be computed analytically for a wide range of models
including hidden Markov models (Jebara et al., 2004). This leads to the following formulation for
the posterior score for independent similarly distributed (i.s.d.) data:
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The parameter ) adjusts the importance given to the similarity between pairs of marginals. If A — 0,
the marginals are unconstrained as in the i.d. setup. If A — oo, the marginals are constrained to be
equal as in the i.i.d. setup.



Since the log of the i.s.d. posterior described in Equation 1 is the sum of the prior distributions, the
i.d. log-probabilities which are log-concave in the parameters and data, and the Bhattacharyya affini-
ties which are log-concave in the parameters of jointly log-concave distributions (Prekopa, 1973),
the i.s.d. log-posterior is also log-concave for jointly log-concave distributions and log-concave
prior distributions. Most members of the exponential family of distributions, such as fixed-variance
Gaussians, satisfy the above criteria and yield log-concave i.s.d. log-posteriors. Since this implies
unimodality, the parameter estimation can be optimized using a variety of different iterative algo-
rithms!. It can also be shown that the i.s.d. posterior with 3 = 1/2 is consistent in the case of
Gaussian distributions although the proof is omitted here due to space constraints.

3 Experiments

(a) A=0.05 (b) A=0.95 (c) A=2.90 (d) A=7.40
Figure 1: Interpolating between i.d. and i.i.d. density estimation using the A parameter.

Figure 1 shows the interpolation that the i.s.d.-based method introduces between the Parzen density
estimation technique and ML over a 2-dimensional noisy ring dataset by slowly varying A.
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Figure 2: (a) Trace of the Gaussian mean positions as they interpolate between the i.d. and i.i.d. solutions on
another instance of the noisy ring dataset (b) Log-posteriors observed for estimation under i.s.d. assumptions
for HMMs over varying .

Local minima are possible when i.s.d. assumptions are used with models that aren’t jointly log-
concave, such as hidden Markov models (HMMs). Figure 2(b) shows log-posteriors when HMMs
are used to model handwriting strokes under leave-one-out cross-validation with 10 folds. Although
non-zero A values result in improved log-likelihoods, procedures for recovering the optimal A remain
the subject of ongoing work.
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