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Abstract

A method is proposed for semiparametric estimation wheramaeatric and non-
parametric criteria are exploited in density estimatiod ansupervised learning.
This is accomplished by making sampling assumptions onasdathat smoothly
interpolate between the extreme of independently digeiborid) sample data
(as in nonparametric kernel density estimators) to theeexgr of independent
identically distributed (oriid) sample data. This article makes indepenchmi-
larly distributed (otisd) sampling assumptions and interpolates between these two
using a scalar parameter. The parameter controls a Bhattgehaffinity penalty
between pairs of distributions on samples. Surprisinbkigd method maintains
certain consistency and unimodality properties akin toiman likelihood esti-
mation. The proposeidd scheme is an alternative for handling nonstationarity in
data without making drastic hidden variable assumptionishvbften make esti-
mation difficult and laden with local optima. Experimentsdi@nsity estimation
on a variety of datasets confirm the valuasafoveriid estimationjd estimation
and mixture modeling.

1 Introduction

Density estimation is a popular unsupervised learningrtiegle for recovering distributions from
data. Most approaches can be split into two categoriesnpetrec methods where the functional
form of the distribution is known a priori (often from the exqential family (Collins et al., 2002;
Efron & Tibshirani, 1996)) and non-parametric approachbglvexplore a wider range of distri-
butions with less constrained forms (Devroye & Gyorfi, 198%rametric approaches can underfit
or may be mismatched to real-world data if they are built cgoinect a priori assumptions. A
popular non-parametric approach is kernel density estimat the Parzen windows method (Sil-
verman, 1986). However, these may over-fit thus requiringathing, bandwidth estimation and
adaptation (Wand & Jones, 1995; Devroye & Gyorfi, 1985; Berggial., 2005). Semiparametric
efforts (Olking & Spiegelman, 1987) combine the compleragnadvantages of both schools. For
instance, mixture models in their infinite-component sgtfiRasmussen, 1999) as well as statistical
processes (Teh et al., 2004) make only partial paramesimagtions. Alternatively, one may seed
non-parametric distributions with parametric assumgi@ijort & Glad, 1995) or augment para-
metric models with nonparametric factors (Naito, 2004)isTdticle instead proposes a continuous
interpolation betweeiid parametric density estimation afdlkernel density estimation. It makes
independensimilarly distributed {sd) sampling assumptions on the dataidd a scalar parameter
A trades off parametric and non-parametric properties tdyre an overall better density estimate.
The method avoids sampling or approximate inference coatipais and only recycles well known
parametric update rules for estimation. It remains contpartally efficient, unimodal and consistent
for a wide range of models.



This paper is organized as follows. Section 2 shows laoandiid sampling setups can be smoothly
interpolated using a novéd posterior which maintains log-concavity for many populardals.
Section 3 gives analytic formulae for the exponential fgneéise as well as slight modifications
to familiar maximum likelihood updates for recovering paeters undeisd assumptions. Some
consistency properties of tligd posterior are provided. Section 4 then extends the methiodten
variable models or mixtures and provides simple updatesrulgection 5 provides experiments
comparingsdwith id andiid as well as mixture modeling. We conclude with a brief dis@rss

2 A Continuum between id and iid

Assume we are given a dataset/df— 1 inputsxy, ..., xy_1 from some sample spaée Given

a new query inpuk, also in the same sample space, density estimation aims @iamreg a
density functiorp(x1,...,xy—_1,Xn5) Of p(xn|X1,...,XN_1) USINg & Bayesian or frequentist ap-
proach. Therefore, a general density estimation taskvengh dataset’ = xg,...,xy, recover
p(x1,...,xn5). A common subsequent assumption is that the data pointsl areindependently
sampled which leads to the following simplification:

N
px) = J[patxn).

The joint likelihood factorizes into a product of indepentsingleton marginalg,,(x,,) each of
which can be different. A stricter assumption is that all ples share theamesingleton marginal:

N
piid(')() = H p(xn).

which is the populaiid sampling situation. In maximum likelihood estimation heit of the above
likelihood scoresi*® or p*?) is maximized by exploring different settings of the maais The

id setup gives rise to what is commonly referred to as kernetitleor Parzen estimation. Mean-
while, theiid setup gives rise to traditionatl parametric maximum likelihood (ML) or maximum
a posteriori (MAP) estimation. Both methods have compleargradvantages and disadvantages.
Theiid assumption may be too aggressive for many real world prohldfor instance, data may
be generated by some slowly time-varying nonstationaryidigion or (more distressingly) from

a distribution that does not match our parametric assumgtiGimilarly, theid setup may be too
flexible and might over-fit when the marginal(x) is myopically recovered from a singig, .

Consider the parametric ML and MAP setting where parame®ets {6,,...,0y} are used to
define the marginals. We will usgx|6,) = p,(x) interchangeably. The MARI parametric
setting involves maximizing the following posterior (likeood times a prior) over the models:

N
pid(Xa(a) = Hp(xn|9n)p(9n)
n=1

To mimic ML, simply setp(8,,) to uniform. For simplicity assume that these singleton ngrire
always kept uniform. Parametegsare then estimated by maximizipé. To obtain theid setup,
we can maximizep*® subject to constraints that force all marginals to be eguatther words
0 = 0, forallm,n € {1,...,N}.

Instead of applyingV(N — 1)/2 hard pairwise constraints in &aid setup, consider imposing
penalty functions across pairs of marginals. These pefuaitstions reduce the posterior score when
marginals disagree and encourage satiekinesdetween models (Teh et al., 2004). We measure
the level of agreement between two marginalgx) andp,, (x) using the following Bhattacharyya
affinity metric (Bhattacharyya, 1943) between two disttibas:

Bompn) = Bp(xlfm), p(x/60,)) = / PP (|0 )0 (|61 ) x.

This is a symmetric non-negative quantity in both distiidns p,,, andp,. The natural choice
for the setting of3 is 1/2 and in this case, it is easy to verify the affinity is maximatla@guals
one if and only ifp,,,(x) = p.(x). A large family of alternative information divergences sxi



to relate pairs of distributions (Topsoe, 1999) and areudised in the Appendix. In this article,
the Bhattacharyya affinity is preferred since it has soméulisemputational, analytic, and log-
concavity properties. In addition, it leads to straightfard variants of the estimation algorithms as
in theid andiid situations for many choices of parametric densities. Furttore, (unlike Kullback
Leibler divergence) it is possible to compute the Bhattagyeaffinity analytically and efficiently
for a wide range of probability models including hidden Markmodels (Jebara et al., 2004).

We next define (up to a constant scaling) the posterior saormnflependensimilarly distributed
(isd) data:

pa(X.0) o J[paltn)p(@n) [T BMY (0(x(0m), p(x[6n))- @
n m#n

Here, a scalar powey/N is applied to each affinity. The paramefeadjusts the importance of the
similarity between pairs of marginals. Clearlyif— 0, then the affinity is always unity and the
marginals are completely unconstrained as initheetup. Meanwhile, a8 — oo, the affinity is
zero unless the marginals are exactly identical. This predtheid setup. We will refer to thésd
posterior as Equation 1 and whe(¥,,) is set to uniform, we will call it theésd likelihood. One can
also view the additional term iisd asid estimation with anodifiedprior 5(©) as follows:

#(O) o []p@n) [T BMN (0(x[6m), p(x[60))-

m#n

This prior is a Markov random field tying all parameters in awise manner in addition to the
standard singleton potentials in tllescenario. However, this perspective is less appealing sinc
disguises the fact that the samples are not qdite iid.

One of the appealing propertiesiaf andid maximum likelihood estimation is its unimodality for
log-concave distributions. Thed posterior also benefits from a unique optimum and log-cabcav
However, the conditional distributiongx|6,,) are required to bmintly log-concave in both param-
etersd,, and datax. This set of distributions includes the Gaussian distriufwith fixed variance)
and many exponential family distributions such as the Baissultinomial and exponential distri-
bution. We next show that thied posterior score for log-concave distributions is log-camecin©.
This produces a unigue estimate for the parameters as waashdorid andiid setups.

Theorem 1 Theisd posterior is log-concave for jointly log-concave densitgtidbutions and for
log-concave prior distributions.

Proof 1 Theisdlog-posterior is the sum of thd log-likelihoods, the singleton log-priors and pair-
wise log-Bhattacharyya affinities:

A
logpx(X,0) = const+ Y logp(xn[f,) + Y logp(6,) + N >0 108 B(pm, pn)-

n m#n

Theid log-likelihood is the sum of the log-probabilities of dibtrtions that are log-concave in the
parameters and is therefore concave. Adding the log-prizaitains concavity since these are log-
concave in the parameters. The Bhattacharyya affinitiesagreconcave by the following key result
(Prekopa, 1973). The Bhattacharyya affinity for log-coredistributions is given by the integral
over the sample space of the product of two distributionscesthe term in the integral is a product
of jointly log-concave distributions (by assumption), itegrand is a jointly log-concave function.
Integrating a log-concave function over some of its arguim@noduces a log-concave function in
the remaining arguments (Prekopa, 1973). Therefore, thattBbharyya affinity is log-concave in
the parameters of jointly log-concave distributions. Hipasince thdsd log-posterior is the sum of
concave terms and concave log-Bhattacharyya affinitiesust be concave.

This log-concavity permits iterative and greedy maxinimamethods to reliably converge in prac-
tice. Furthermore, thisd setup will produce convenient update rules that build ugbestimation
algorithms. There are additional propertiessaf which are detailed in the following sections. We
first explore the3 = 1/2 setting and subsequently discuss the 1 setting.



3 Exponential Family Distributionsand 5 = 1/2

We first specialize the above derivations to the case whersitlgleton marginals obey tkepo-
nential familyform as follows:

p(x|6n) = exp(H(x)+ 01T (x) — A(0r)) -
An exponential family distribution is specified by providiff, the Lebesgue-Stieltjes integratéy,
the vector of natural parametefs, the sufficient statistic, and the normalization factor (which
is also known as the cumulant-generating function or theplagition function). Tables of these
values are shown in (Jebara et al., 2004). The functiés obtained by normalization (a Legendre
transform) and is convex by construction. Therefore, erptial family distributions are always

log-concave in the parametets. For the exponential family, the Bhattacharyya affinity @sme
putable in closed form as follows:

B(pm,pn) = exp(A(0m/2+0n/2) — A(0in)/2 — A(0n)/2) .
Assuming uniform priors on the exponential family param&té is now straightforward to write
an iterative algorithm to maximize thed posterior. We find settings @, . . ., # that maximize
the isd posterior orlog p (X, ©) using a simple greedy method. Assume a current set of param-
eters is availabld,, ...,0y. We then update a singlg, to increase the posterior while all other
parameters (denotéﬁ/n) remain fixed at their previous settings. It suffices to cdesbnly terms
in log p» (X, ©) that are variable witl,,:

CNHAN -1

log pA(X,0,,0,) = const+ 05T (xy) N

A(6,) + ?V—A > A0 /24 0,/2).
m#n

If the exponential family igointly log-concave in parameters and data (as is the case for @aggsi
this term is log-concave if,. Therefore, we can take a partial derivative of it with retped,, and
set to zero to maximize:

A6, = $ T(xn)+%7§1A’(9~m/2+9n/2) . @

For the Gaussian mean case (i.e. a white Gaussian with eoeariocked at identity), we have
A(#) = 676. Then a closed-form formula is easy to recover from the abodMewever, a simpler

iterative update rule fo#,, is also possible as follows. Sine#6) is a convex function, we can
compute a linear variational lower bound on eat{#,, /2 + 6,,/2) term for the current setting of
0,:

logpA(X. 00, 05) > const + 01T (x,) — =D g
A - - - . -
+5 > 24(0m/2+ 00/2) + A' (O )2+ 00/2) (0 — 0n).

m#n
This gives an iterative update rule of the form of Equationtzve thef,, on the right hand side is
kept fixed at its previous setting (i.e. replace the rightchsided,, with 6,,) while the equation is
iterated multiple times until the value 6f, converges. Since we have a variational lower bound,
each iterative update éf, monotonically increases thigd posterior. We can also work with a robust
(yet not log-concave) version of ted score which has the form:

A A
log pA(X,0) = const+ Y logp(xnlf) + Y _ logp(6s) + N > log | Y B(pm,pa)

m#n
and leads to the general update rule (whete 0 reproducessd and larger increases robustness):
N A (N = DB (p(x[8m), p(x]6n)

N+XN-1) foam)+ N n%:n > isn Be(p(x|6;), p(x|0,)) A (6m/2+0n/2)

Al(on) =

We next examine marginal consistency, another importayqaty of theisd posterior.

'The update for the Gaussian mean with covariafide=9.,, = m(an + A2 s O:m).



3.1 Marginal Consistency in the Gaussian Mean Case

For marginal consistency, if a datum and model parametdridden and integrated over, this should
not change our estimate. It is possible to show thatdtiposterior is marginally consistent at least
in the Gaussian mean case (one element of the exponentia)¥am other words, marginalizing
over an observation and its associated marginal’s pararfveltéch can be taken to bey andfy
without loss of generality) still produces a similad posterior on the remaining observatiokigy
and parameter® . Thus, we need:

//pk(X,G)dXNdHN 0.8 p)\(X/N,@/N).

We then would recover the posterior formed using the formmul&quation 1 with onlyN — 1
observations an&/ — 1 models.

Theorem 2 Theisd posterior withg = 1/2 is marginally consistent for Gaussian distributions.

Proof 2 Start by integrating ovek y:

N-1

N N
[osx.eaxy o [T ot [[o0) ] 52 wnora)

=1 m=n-+1

Assume the singleton prigf6y ) is uniform and integrate ovety to obtain:

N—-1 N-1 N-1 N—1
//P/\(X,@)dxzvdezv x HP(Xi|9i) H H BQA/N(PmPn)/ H BN (pp, p)dfy
1=1 n=1 m=n+1 m=1
Consider only the right hand integral and impute the fornfalathe Bhattacharyya affinity:
N-1 N-1
2\ Om 0 A(0n) AON)
2)\/N _ i Im  IN ) _ _ VN
/nHlB (Pm, PN )dON /exp <N mz_lA( 5 + 5 ) 5 5 dfn

In the (white) Gaussian casé(f) = 679 which simplifies the above into:

N-1 gy V-1 9 0
2\/N - _z24 2: Jm _IN
/ II B (Pm,pN)dON = /exp( N 2 A( 5 5 )) dfn

m=1

N—-1 N-1 .
< II II B™ 7 @mpn)
n=1 m=n+1

Reinserting the integral changes the exponent of the pdiBhattacharyya affinities between the
(N — 1) models raising it to the appropriate powgy (N — 1):

N—-1 N—-1 N-1
//pA(X,@)dXNdHN < J[eeilo) [T TI BN V®m.pn) = pa(X)n,0)n).
=1 n=1 m=n+1

Therefore, we get the sanel score that we would have obtained had we started with @Nly- 1)

data points. We conjecture that it is possible to generdlizemarginal consistency argument to
other distributions beyond the Gaussian. @ukestimator thus has useful properties and still agrees
with id when\ = 0 andiid when\ = co. Next, the estimator is generalized to handle distribwion
beyond the exponential family where latent variables angigated (as is the case for mixtures of
Gaussians, hidden Markov models, latent graphical modelsa on).



4 Hidden VariableModelsand 5 =1

One important limitation of most divergences between itlistions is that they become awkward
when dealing with hidden variables or mixture models. Thisdcause they may involve intractable
integrals. The Bhattacharyya affinity with the settjfig= 1, also known as the probability product
kernel, is an exception to this since it only involves intggrg the product of two distributions.
In fact, it is known that this affinity is efficient to computerfmixtures of Gaussians, multino-
mials and even hidden Markov models (Jebara et al., 2004)s @drmits the affinity metric to
efficiently pull together parametefis, andd,,. However, for mixture models, there is the presence
of hidden variables in addition to observed variables. Therefore, we replatéhal marginals
p(x]0,) = >, p(x,h|6,). The affinity is still straightforward to compute for any pai latent
variable models (mixture models, hidden Markov models andrg. Thus, evaluating thied pos-
terior is straightforward for such models whgn= 1. We next provide a variational method that
makes it possible to maximize a lower bound onitgposterior in these cases.

Assume a current set of parameters is availéble 91, ... ,9~N; We will find a new setting fo#,,
that increases the posterior while all other parametersofgel© ,,,) remain fixed at their previous
settings. It suffices to consider only termdag p, (X', ©) that depend o#,,. This yields:

1ogpA(X,9n,é/n) = const + log p(xn|0n)p +— Zlog/ (|0, )p(x6,, ) dx
m;ﬁn
> const + log p(x,|0n)p Z/ (x]0,m ) log p(x|6,, ) dx
m;én

The application of Jensen’s inequality above produces ailiaty function Q(9n|é/n) which is a
lower-bound on the log-posterior. Note that each densitgtion has hidden variables(x,, |6,,) =

> nP(xn,h|0,). Applying Jensen’s inequality again (as in the ExpectaMaximization or EM
algorithm) replaces the log-incomplete likelihoods okiexith expectations over the complete pos-
teriors given the previous parametés This gives'sd the following auxiliary functiorQ(enK:) =

5 e, ) og s D) + 05 23 [ pid ) plbix ) ol i ix

m;ﬁn

This is a variational lower bound which can be iterativelyxm@ized instead of the originasd
posterior. While it is possible to directly solve for the nraxm of Q(6,,|©) in some mixture
models, in practice, a further simplification is to replaoeintegral ovek with synthesized samples
drawn fromp(x|§m). This leads to the following approximate auxiliary functibased on the law
of large numbers) which is merely the update rule for EMdpmwith s = 1, ..., .S virtual samples
X5 Obtained from then'th modelp(x|d,, ) for each of the otheN — 1 models,0(6,,|0) =

Zp h|x,,,0,) log p(x,,, h|0,,) + log p(6, Z ZZ]) h|xp, s, 0n) log p(Xm.s, h|0p).

m;ﬁn s

We now have an efficient update rule for latent variable mo¢wixtures, hidden Markov models,
etc.) which maximizes a lower bound pr(X, ©). Unfortunately, as with most EM implementa-
tions, the arguments for log-concavity no longer hold.

5 Experiments

A preliminary way to evaluate the usefulness of tbeframework is to explore density estimation
over real-world datasets under varying If we set) large, we have the standaiid setup and
only fit a single parametric model to the dataset. For smallve obtain the kernel density or
Parzen estimator. In between, an iterative algorithm islae to maximize thesd posterior to
obtain potentially superior model, ..., 0% . Figure 1 shows thésd estimator with Gaussian
models on a ring-shaped 2D dataset. The new estimator necitneshape of the distribution more
accurately. To evaluate performance on real data, we agréigeisd learned models into a single
density estimate as is done with Parzen estimators and dertimeiid likelihood of held out test
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Figure 1: Estimation witlisd for Gaussian models (mean and covariance) on synthetic data

Dataset id iid-1 iid-2 iid-3 iid-4 iid-5 | iid-co |isda =0]isda = %
SPIRAL [-5.61e3-1.36e3-1.36e3-1.19e3-7.98e2 -6.48e2 -4.86e2 -2.26e2| -1.19e2
MIT-CBCL [-9.82e2-1.39e3-1.19e3-1.00e3-1.01e3-1.10e3-3.14e3 -9.79e2 | -9.79e2
HEART |[-1.94e3-2.02e4-3.23e4-2.50e4-1.68e4-3.15e4-4.02e2| -4.51e2| -4.47e2
DIABETES |-6.25e3-2.12eH -2.85eH -4.48eH -2.03e5 -3.40e5 -8.22e2 -8.28e2| -8.09e2
CANCER [-5.80e3-7.22e6-2.94e6 -3.92eq -4.08eq -3.96eq -1.22e2| -5.54e2| -5.54e2
LIVER -3.41e3-2.53e4-1.88e4 -2.79e4 -2.62e4 -3.23e4 -456e2| -4.74e2| -4.69e2

Table 1: Gaussian test log-likelihoods usidgiid, EM, co GMM andisd estimation.

data via)__ log (3 >, p(x-]6})) . A larger score implies a bettefx) density estimate. Table 1
summarizes experiments with the Gaussian (mean and coeajinodels. On 6 standard datasets,
we show the average test log-likelihood of Gaussian esiimathile varying the settings of
compared to a singliéd Gaussian, aid Parzen RBF estimator and a mixture of 2 to 5 Gaussians
using EM. Comparisons with (Rasmussen, 1999) are also sh@vass-validation was used to
choose ther, A or EM local minimum (from ten initializations), for thie, isd and EM algorithms
respectively. Train, cross-validation and test split sizaere 80%, 10% and 10% respectively. The
test log-likelihoods show thasd outperformedid, id and EM estimation and was comparable to
infinite Gaussian mixture{d — oo) models (Rasmussen, 1999) (which is a far more computdiyona
demanding method). In another synthetic experiment withiéi Markov models, 40 sequences
of 8 binary symbols were generated using 2 state HMMs withs2rdte emissions. However, the
parameters generating the HMMs were allowed to slowly dititing sampling (i.e. natd). The
data was split into 20 training and 20 testing examples. el@bthows that thesd estimator for
certain values of produced higher test log-likelihoods thahandiid.

6 Discussion

This article has provided ard scheme to smoothly interpolate betwadrandiid assumptions in
density estimation. This is done by penalizing divergeresvben pairs of models using a Bhat-
tacharyya affinity. The method maintains simple updatesriderecovering parameters for exponen-
tial families as well as mixture models. In addition, tkd posterior maintains useful log-concavity
and marginal consistency properties. Experiments shoaditantages in real-world datasets where
id or iid assumptions may be too extreme. Future work involves ekigrile approach into other
aspects of unsupervised learning such as clustering. Wassreonsidering computing tlisd pos-

A=0{A=1 [ A=2 [ A=3 ]| A=4 ]| A=5|2=10|2=20A=30| A=
-5.7153 -5.5875 -5.5692 -5.5648 | -5.5757 -5.5825 -5.5849 -5.5856-5.6152 -5.5721

Table 2: HMM test log-likelihoods usinigl, iid andisd estimation.



terior with a normalizing constant which depends’oand thus permits a direct estimate oby
maximization instead of cross-validatfon

7 Appendix: Alternative Information Divergences

There is a large family of information divergences (Topsti@99) between pairs of distributions
(Renyi measure, variational distangé,divergence, etc.) that can be used to pull mogglandyp,,
towards each other. The Bhattacharya, though, is compu#tdly easier to evaluate and minimize
over a wide range of probability models (exponential fagsilimixtures and hidden Markov models).
An alternative is the Kullback-Leibler divergent¥p,y, ||p,) = [ pm(x)(log pm (x) —log p, (x))dx
and its symmetrized varia?(p,,.||p»)/2 + D(px|lpm)/2. The Bhattacharyya affinity is related to
the symmetrized variant of KL. Consider a variational digttion ¢ that lies between the input,,
andp,,. The log Bhattacharyya affinity with = 1/2 can be written as follows:

P (X)Pn X
log B(pm,pn) = 10g/q(><)$dx = —D(qllpm)/2 = D(qllpn)/2-
Thus,B(pm, pn) > exp(—D(q|lpm)/2 — D(q|lp»)/2). The choice of; that maximizes the lower
bound on the Bhattacharyyaj$x) = - \/pm (x)pn(x). Here,Z = B(py, p,) normalizes(x)
and is therefore equal to the Bhattacharyya affinity. Thusawee the following property:
-2 logB(pm,pn) = HgnD(q||pm) + D(QHPn)

It is interesting to note that the Jensen-Shannon divemémmother symmetrized variant of KL)
emerges by placing the variationatlistribution as the second argument in the divergences:

2JS(pmspn) = D@mllpm/2 +n/2) + D(pullpm/2 + pn/2) = mgnD(meIQ)+D(pnIIQ)-

Simple manipulations then sho®/.S(p,,, pn) < min(D(pm||pn), D(prllpm))- Thus, there are

close ties between Bhattacharyya, Jensen-Shannon andedsined KL divergences.
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