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Abstract
As wemove toward a cookie-less world, the ability to track users’

online activities for behavior targeting will be drastically reduced,

making contextual targeting an appealing alternative for advertis-

ing platforms. Category-based contextual targeting displays ads

on web pages that are relevant to advertiser-targeted categories,

according to a pre-defined taxonomy. Accurate web page classifi-

cation is key to the success of this approach. In this paper, we use

multilingual Transformer-based transfer learning models to classify

web pages in five high-impact languages. We adopt multiple data

sampling techniques to increase coverage for rare categories, and

modify the loss using class-based re-weighting to smooth the influ-

ence of frequent versus rare categories. Offline evaluation shows

that these are crucial for improving our classifiers. We leverage

knowledge distillation to train accurate models that are lightweight

in terms of (i) model size, and (ii) the input text used. Classify-

ing web pages using only text from the URL addresses a unique

challenge for contextual targeting in that bid requests come to ad

systems as URLs without content, while crawling is time consum-

ing and costly. We launched the proposed models for contextual

targeting in the Yahoo DSP, significantly increasing its revenue.

CCS Concepts
• Information systems → Content match advertising; • Com-
puting methodologies→ Neural networks.
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1 Introduction
Due to regulations such as GDPR and CCPA along with general

privacy concerns, the ability to track historical user behavior for

advertising purposes is shrinking. It is no longer possible to serve

targeted ads through Audience Targeting (e.g., demographic target-

ing, behavioral targeting) to users who have opted out. Contextual

targeting thus emerges as an important advertising strategy for

serving ads that are relevant to the web pages on which they are

displayed, providing a unique opportunity for delivering a person-

alized ad experience to users without tracking their identities (e.g.,

browser cookies, mobile device ids). The main types of contextual

targeting are: category-based targeting, where ads targeted to web

pages that are relevant to some pre-defined topics, and keyword-
based targeting, where ads are targeted to web pages containing

specific keywords. We focus on category-based contextual targeting

and describe taxonomic web page classification models to support

Yahoo’s contextual targeting business for its global market.

The categories used in this work are drawn from the Yahoo Inter-

est Category (YIC) taxonomy, which consists of 442 categories over

5 tiers. Figure 1 shows a few examples of YIC categories. Since a web

page may be characterized by multiple categories across multiple

tiers, the categorization task is inherently a multi-label classifica-

tion problem with a skewed label distribution. There are two main

approaches to address such problems [31]. The first approach trans-

forms the problem into a collection of independent binary classifiers

trained in a one-vs-rest formulation: this approach was used by our

previous production system. The second approach trains a single

multi-label model that can predict all categories simultaneously,

and well-known models such as SVMs have been extended to sup-

port this approach [14]. Recently, transfer learning models [13, 19],

especially pre-trained Transformers such as BERT [12] have had

great success in improving many natural language processing tasks

including text classification, but existing implementations of such

models do not support multi-label classification.

In this work, we adapt a popular open-source transfer learning

framework to the multi-label classification problem by modifying

https://doi.org/10.1145/3534678.3539189
https://doi.org/10.1145/3534678.3539189
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Figure 1: Example categories from the YIC taxonomy

the output layer. We rely on professional editors to annotate web

pages with the taxonomic categories that are relevant to their con-

tent. We found that a naive attempt at using editorial data to train

such models is sub-optimal, and that there are a number of chal-

lenges that need to be addressed in order to train accurate models.

First, web pages are highly skewed in terms of categories, with a

small number of frequent categories and a long tail. The hierarchical

nature of the taxonomy further increases the skew as categories at

higher tiers are more frequent than their descendants. This makes

it difficult to create a training dataset that represents the entire

taxonomy and also leads to large class imbalance. To address this, we

adopt sampling strategies that increase coverage for rare categories.

We also propose a category-based re-weighting strategy that takes

into account two aspects: the weight for positive labels, which

are sparse relative to negative labels, as well as the weight for

infrequent categories, which are disadvantaged during training.

The second challenge, given the importance of the international

market, is the need to classify a large number of non-English pages.

We target four high potential non-English languages, and use hu-

man annotation and machine translation to collect non-English

training data in a scalable way. We train a single multilingual model

with data from each language, and use knowledge distillation (KD)

techniques to reduce the computational cost of these models while

achieving excellent classification accuracy in all languages.

The third challenge, unique to the contextual targeting business,

is that bid requests come to ad systems as URLs of the pages on

which an ad may be displayed. Although using the full page content

leads to higher classification accuracy, accessing page content to

enable prediction at ad request time does not meet the SLA of ad

systems. Therefore, we selectively crawl web pages and predict their

categories off-line using a near real-time stream processing system.

However, crawling incurs a considerable cost, and discovering new

URLs can be time consuming. To include un-crawled pages in our

contextual targeting system, we need a model that can accurately

classify web pages based only on text extracted from the URL.

To address these challenges, we proposemultilingual Transformer-

based models that can classify crawled and uncrawled web pages

with respect to the YIC taxonomy. Our main contributions are:

• We adapt Transformer models to multi-label classification by

modifying the output classification layer and propose novel

class-based loss re-weighting and data sampling techniques

to deal with label skew, in the process achieving 37% higher

mean average precision than legacy classifiers.

• We extend these models to address multilingual classifica-

tion for content in 5 target languages, and use knowledge

distillation to reduce their computational cost, allowing us

to deploy a single small model while improving accuracy

over larger language-specific models by at least 4%.

• We propose an accurate classification model solely based

on the text in the URL itself, allowing us to significantly

increase market share and do real-time topic classification

without being restricted by crawling capacity. We distill a

large content model to a small URL-only model, achieving a

26% improvement over our legacy XGBoost content model.

To the best of our knowledge, this is the first use of real-time

category-based contextual targeting using only URL text.

• We deploy the proposed models to support category-based

contextual targeting at Yahoo, and show through online met-

rics how these models positively influence ad delivery. We

also explore a novel application of the category-based URL

profiles, which improves the revenue of behavior targeting

by 0.57% through real-time user interest expansion.

2 Related Work
In this section, we summarize relevant prior literature in a num-

ber of areas that are relevant to this work.

Taxonomic Text Classification. Hierarchical Multi-label Classi-

fication (HMC) combines hierarchical classification—where cate-

gories/labels are organized into a class hierarchy [30]—and multi-

label classification (MLC) [4, 31], where every document can be

assigned one or more labels. There are two main approaches to

HMC [31]; (i) train independent binary classifiers for each cate-

gory, and (ii) train a single multi-label model that can predict all

categories simultaneously, which is the approach we pursue here.

Weight Redistribution.Weight redistribution has been explored

in machine learning to correct class imbalance, biased datasets

or corrupted labels [7][17]. Recent research aims to extend these

ideas to online class re-weighting, e.g., by minimizing the loss on a

clean unbiased validation set using a meta-gradient descent step

on the weights of the current mini-batch [25]. We are not aware of

previous work in applying weight redistribution to correct extreme

class imbalances in multi-label classification over large taxonomies.

Pre-trained Language Models. In recent years, models based

on the Transformer architecture [32], which uses a self-attention
mechanism, have driven significant advances on a variety of tasks

such as language generation, translation, question-answering and

classification. Some examples of recent models that build on this

architecture include BERT [12], RoBERTa [21], GPT [6, 24] and Dis-

tilBERT [28]. These models are pre-trained on a large unsupervised

document corpus, and subsequently fine-tuned on a supervised

downstream task [12]. We follow this approach and fine tune pre-

trained language models for hierarchical multi-label classification.

Multilingual Text Classification. Early work on multilingual

document classification typically learns cross-lingual sentence rep-

resentations using parallel corpora [2, 27, 29], which limits the

number of languages that can be classified. Advances in multilin-

gual masked language models, pre-trained with over 100 languages,

such as Multilingual BERT [23], XLM [10], XLM-RoBERTa [9] have

pushed the state-of-the-art for multilingual text classification tasks

in the XNLI benchmark [11]. Different from our work on multi-

label taxonomic classification that targets hundreds of classes, most
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previous work was either on binary classification or multi-class

classification tasks with a very limited number of classes.

Knowledge Distillation. Knowledge distillation (KD) is a model

compression technique for training smaller student models from

larger teacher models without significant loss in accuracy. It has

been extensively used across different natural language tasks to

decrease the sizes of ever growing neural network models. There

are three major categories of KD [15]: response-based [18], feature-

based [26], and relation-based [33]. Most knowledge distillation

work in the natural language domain falls into the first two cat-

egories. In response-based KD, the information from the output

layer of the teacher model is used to train the student model. We

apply response-based KD in our work and show that this approach

significantly improves the performance of smaller models.

Contextual Targeting. Contextual targeting [34] is an advertis-

ing strategy that displays ads relevant to the content of a web

page. Category-based [5] and keyword-based [3] approaches have

been widely adopted in industry. While work on keyword-based

approaches focuses on summarizing page content [1, 20] and match-

ing them against ads [3, 5], category-based approaches focus on

classifying web pages into a category taxonomy. Hashemi [16] sum-

marizes the major web page classification approaches using text,

images or both. To the best our knowledge, our work is the first

web page classification model that solely relies on the URL itself.

3 Web Page Categorization for Contextual
Targeting

Category-based contextual targeting relies on techniques to clas-

sify web pages in terms of categories that reflect user interests. In

this section, we formulate the task in terms of multi-label classi-

fication into a category taxonomy and describe the adaptation of

pretrained transformer encoders like BERT [12] to address it. We

also incorporate knowledge distillation to make models compact

and practical to serve. Finally, we extend these models to support

for multiple languages and the ability to classify web pages without

crawling their content, by using only information from the URL.

3.1 Taxonomic Categories
Categories for contextual targeting must be broad enough to ap-

ply to diverse web pages, but specific enough to capture meaningful

user interests. A tree-structured taxonomy is a natural choice for

organizing such categories, with specific or niche interests grouped

under more general ones. In this work we use the Yahoo Interest

Categories (YIC) taxonomy, which contains 442 interest categories:

12 tier-1 categories, 100 tier-2 categories, 259 tier-3 categories, 66

tier-4 categories and 5 tier-5 categories. Figure 1 shows a few ex-

amples of category names with their paths, and the full taxonomy

is visible in the advertiser interface of the Yahoo Ad Platform.

The hierarchical structure implies that a web page assigned to

any category (e.g., “Content & Entertainment/News”) would also

be categorized to its ancestor categories (e.g., “Content & Entertain-

ment”). A page may also be described by multiple categories (e.g., a

car blog by “Automotive” and “Content & Entertainment/News”),

making the category-based contextual targeting scenario a multi-
label taxonomic classification problem, different from the more

common multi-class setting where classes are mutually exclusive.

3.2 Hierarchical Multi-label Classification
In recent years, text classification benchmarks have been domi-

nated by Transformer-based architectures pretrained on large text

corpora, such as BERT [12] and RoBERTa [21]. These models typi-

cally have a softmax output layer and are fine-tuned using cross-

entropy loss, which is well-suited for multi-class classification. For

multi-label classification we replace the output layer with a sigmoid

activation for each category, allowing output units to learn binary

classifiers independently of other units, although all units share

their input representation from preceding Transformer layers.

Given a single category 𝑐 , the model is effectively trained as

a standard binary classifier. A binary cross-entropy loss can be

defined over all 𝑁 training examples 𝑥1, . . . , 𝑥𝑁 , where each 𝑥𝑖 has

a corresponding binary label 𝑦𝑖,𝑐 ∈ {0, 1} indicating whether it

belongs to category 𝑐 .

𝐿𝑐 =
1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖,𝑐 log𝑦𝑖,𝑐 + (1 − 𝑦𝑖,𝑐 ) log(1 − 𝑦𝑖,𝑐 ) (1)

where 𝑦𝑖,𝑐 ∈ [0, 1] indicates the real-valued activation of the sig-

moid corresponding to category 𝑐 when 𝑥𝑖 is provided as input.

When training multiple categories simultaneously, we introduce

category-specific weights𝑤𝑐 for one of the terms in the loss. The

final loss of the network is thus a weighted average of 𝑁 per-

instance losses summed over all 𝐶 categories.

𝐿 =
1

𝑁

𝐶∑︁
𝑐=1

𝑁∑︁
𝑖=1

𝑤𝑐

(
𝑦𝑖,𝑐 log𝑦𝑖,𝑐

)
+ (1 − 𝑦𝑖,𝑐 ) log(1 − 𝑦𝑖,𝑐 ) (2)

These category weights𝑤𝑐 serve an important role. For hierarchical

multi-label classification, many rare categories may have very few

positive examples in the data. This imbalance would mean that,

without re-weighting, rare classes will have very little influence

on the loss. Additionally, the loss function incorporates a separate

binary cross entropy loss for every category as shown above in

equation (2). Since, for a given example, most of these categories will

be negative (i.e.,𝑦𝑖,𝑐 = 0), it is easy for this loss to become dominated

by the negative labels and for the classifier to converge on a trivial

classifier which makes negative predictions for all categories.
We propose a re-weighting strategy that allows us to simultane-

ously balance the loss between classes (i.e., amplify the influence

of rare classes) and change the global influence of positive versus

negative labels. For negative labels (i.e., 𝑦𝑖,𝑐 = 0), the weight is im-

plicitly always 1, while for positive labels we propose a weighting

function that increases the influence of rare classes and limits that

of frequent classes. We do not strictly enforce equal influence but
define a smoothing factor to control the amount of re-weighting

that is applied. Specifically, the weight𝑤𝑐 is defined as

𝑤𝑐 = 𝜇
max𝑘 𝑓𝑘 + 𝛼

𝑓𝑐 + 𝛼
(3)

where 𝑓𝑐 denotes the frequency of category 𝑐 in the training data,

𝑓𝑐 =

𝑁∑︁
𝑖=1

𝑦𝑖,𝑐 (4)

𝛼 determines the degree of class-based re-weighting, and 𝜇 is a

constant multiplier that controls the overall influence of positive

versus negative labels. As 𝛼 approaches ∞, all categories will have
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the same 𝑤𝑐 , and class-based weighting will not be in effect. If 𝛼

is 0, the loss will be perfectly balanced to ensure equal influence

from each category. Finally, since the influence of 𝛼 is sensitive to

the corpus size 𝑁 , we compute it as a function of 𝑁 :

𝛼 = 𝛾 × 𝑁 (5)

where 𝛾 is a scale-free smoothing factor that can be tuned.

3.3 Knowledge Distillation
The accuracy of BERT-like models typically improves signifi-

cantly as the model size—inner dimensionality, number of layers,

number of self-attention heads—is increased. Larger models, how-

ever, require significantly greater computational resources to serve

and are consequently impractical for many large-scale classifica-

tion tasks. We address this limitation through knowledge distilla-

tion [18], a framework in which the predictions of a large model (the

teacher) are used to train a lightweight distilled model (a student).
Distillation can be accomplished using a variety of techniques. In

our work, knowledge is transferred to the student model through a

large dataset of unlabeled examples. Given a trained teacher model

and an example 𝑥𝑖 from this dataset, the real-valued predictions

𝑦𝑖,𝑐 ∈ [0, 1] from the teacher for each category 𝑐 are recorded as soft
labels for training the student model. These soft labels communicate

additional information to the student about the richer teacher model

and contribute to improved accuracy and generalization [22]. The

loss function for training the student follows the description in

Section 3.2, with the change that the labels 𝑦𝑖,𝑐 in equations (2) and

(4) are now real-valued and lie within [0, 1].
Most previous work on knowledge distillation has been in the

multi-class setting, where temperature scaling is applied to smooth

the predicted label distribution from the teacher to ensure that pre-

dictions for classes outside of the sole positive class have non-trivial

values. In the multi-label classification setting —where predictions

are not normalized over all classes—the benefit of this smoothing is

not clear. In preliminary experiments, we found that temperature

of 1 (i.e., no scaling) performed best, and consequently we use the

teacher predictions directly without any scaling.

We use this process to distill large models like XLM-RoBERTa-

Large (355M parameters) into models like XLM-RoBERTa-Base

(125M parameters) or smaller, resulting in more computationally

efficient inference at scale. In addition, we also use knowledge

distillation to reduce inference latency by classifying web pages

without first crawling them, as described in the following section.

3.4 Categorizing without Crawling
BERT-based classifiers require a sequence of tokens as input and

typically support two segments of input text separated by a [sep]

token. To classify a web page given its URL, we crawl the HTML

and extract the page title and body, stripping HTML tags, white

space and special characters. In addition, we parse the URL and

extract the domain and path as additional tokens to use in the input.

The URL domain, path and page title are designated as the first

segment while the page body constitutes the second segment.

However, crawling to extract page content can add significant

latency, in addition to consuming a lot of resources, when running

contextual targeting at scale. Moreover, we observe that there is of-

ten sufficient information in URL domains (e.g., news.yahoo.com)

and paths (e.g., /sports/football) to produce reasonable cate-

gories. We use the knowledge distillation approach from Section 3.3

to distill a teacher model trained on page content and URL text into

a student model that is provided only a URL. This has the effect of

establishing an association between URL tokens with categories in

the taxonomy, so even URL tokens that are not clearly linked to a

category (e.g., vox.com) can be predictive after distillation.

3.5 Multilingual Classification
When considering pages crawled on the web, their content may

be in languages other than English. Neural language models can

be extended to support multiple languages with modifications to

pretraining [9, 10], allowing contextual targeting to be scaled to

new regions with no additional considerations for modeling other

than obtaining multilingual data for fine-tuning. Using translations

of web page content to expand our dataset, we investigate the

use of multilingual models that support four additional languages:

Spanish, French, Portuguese and Traditional Chinese.

4 Methodology
In this section we describe our approach to building a corpus for

taxonomic multi-label classification, in addition to describing the

methodology that we use for offline evaluation of these models.

4.1 Corpus Development
4.1.1 English Language Corpus.
For our initial work on corpus development, we collected a traffic-

based stratified sample of English language bid request URLs from

the Yahoo Demand-side Platform (DSP) during a 6-month period

from Jan 2020 to July 2020. All data labelling was carried out inter-

nally by an in-house editorial team. The long tail category distribu-

tion, however, means that a random sample of bid request pages

has very low coverage of torso and tail categories. For example, 27

categories have no labelled pages in a 15k random sample, while

114 categories have less than 5 labelled pages in the same sample.

For this reason, we adopt two targeted sampling approaches to

address this problem: (i) URL collection, and (ii) active learning.

URL Collection. Since many of the target categories have zero or

very few labelled samples in our initial random sample, we did not

have data to bootstrap a model that could be used to assist with

data collection. For this reason, in collaboration with the Yahoo

editorial team, we used a method that we refer to as URL Collection
or UC, where the editorial team is given a set of categories and

asked to find URLs from diverse websites that are relevant to those

categories. After these candidate URLs have been collected, they are

then fully annotated with respect to additional taxonomy categories

that they are relevant to. Although this is clearly a biased form of

data collection, since data does not come from the population of bid

request URLs, our results will demonstrate that this is nevertheless

a very useful way to bootstrap models for rare categories.

Active Learning. Active learning is a method for using model

predictions to sample documents for annotation. After first boot-

strapping data with URL Collection, we can train initial models for

tail and torso categories. To gather additional candidate pages for

these rare categories, we adopt the simple approach of sampling



Multilingual Taxonomic Web Page Classification
for Contextual Targeting at Yahoo KDD ’22, August 14–18, 2022, Washington, DC, USA

Figure 2: Pages per category in a random sample and in a
combined sample with URL Collection and active learning.

pages for which the model score is higher than a threshold, and

these pages are then manually labelled by our editorial team.

During corpus construction, this process of random sampling

followed by targeted sampling was iterated a number of times, each

time based on a recent 6-month stratified sample. Figure 2 shows

how this improves coverage for tail categories.

4.1.2 Non-English Corpus.
In addition to English, we identified 4 other target languages for

bid request page classification: Spanish, French, Portuguese and

Traditional Chinese. 28k of the English language documents were

automatically translated into each of the 4 target languages using

the Google Translate API.
1
In addition, 29.2k bid request pages per

language were sampled using a mix of stratified random sampling,

active learning and URL Collection per language for each of the 4

non-English target languages. These documents were annotated

with YIC taxonomy labels by an editorial team.

4.1.3 Corpus Partitioning.
The corpus was partitioned for each target language as follows:

• Training Set, containing a mix of data sampled randomly, by

URL Collection, and by active learning, as described above.

• Development Set, used to make initial decisions on optimal

hyperparameters and model selection via early stopping.

This data is a random subset of the stratified random sample

of DSP bid request URLs.

• Test Set: held-out dataset, which serves as a gatekeeper that

determineswhether themodel can be deployed in production.

If the model passes the overall quality requirements agreed

upon, it is put into production. Like the development set,

this is a random subset of the stratified random sample.

Corpus statistics for each target language can be found in Table 1.

4.2 Implementation & Evaluation
Evaluation Metrics and Data. We primarily rely on mAP (Mean

Average Precision)—which is computed as the mean of the average

precision for each category—as a single metric that allows us to

compare the fine-tuned models in a threshold-independent manner.

All models were trained over the entire set of 442 categories. Due

to the skewed category distribution in the random test set, we

did not have labelled examples available for all categories. For our

evaluation, we only calculate mAP for categories that are testable,
1
https://translate.google.com

Table 1: Corpus statistics per language considered.

Language Train Dev Test Testable

docs docs docs categories

English 56k 5k 13k 391

Spanish 48k 1.2k 7k 378

French 48k 1.2k 8k 384

Portuguese 48k 1.2k 8k 380

Traditional Chinese 48k 1.2k 8k 387

Total Non-English 192k - - -

Total 248k - - -

Table 2: mAP for various weighting strategies for English
web page classification with RoBERTa-Large.

Model 5 epochs 80 epochs

XGBoost 0.337

Transformer models
No re-weighting 0.326 0.450

Positive-class weighting 0.435 0.460

Class-based weighting 0.440 0.462

defined as any category with at least one positive test example.

Table 1 shows the number of testable categories for each language.

Hyperparameter Optimization and Model selection. All hy-
perparameters were optimized using grid search by selecting the

values that corresponded to the optimal mAP on the development

set. For each training run, early stopping was used to select the

best model, again according to mAP on the development set. Unless

otherwise stated, models were trained for 80 epochs.

Implementation. We use the Hugging Face Transformers2 li-

brary, which contains open-source implementations of a large num-

ber of models including BERT, RoBERTa, DistilBERT and XLM-

RoBERTa. We modified the original code to support the multi-label

output layer and loss re-weighting scheme described in Section 3.2.

Models based on full-content input use a maximum sequence length

of 512 tokens; URL-only models use a maximum sequence length of

128 tokens. Experiments were conducted using eight NVidia V100

GPUs with 32GB of RAM/GPU and two Intel Xeon 2.6GHz CPUs,

with a total of 64 cores and 640GB of RAM.

5 Results
In this section, we present offline evaluation results for our mod-

els, using the test corpus described in the previous section.

5.1 Loss Re-Weighting
Since preliminary results showed that RoBERTa-Large [21] mod-

els outperformed similarly sized BERT models, consistent with

published results, we use RoBERTa-Large as our English language

in this section. Table 2 shows baseline results for RoBERTa-Large

models evaluated on the entire set of 391 testable categories on the

English language test set. These models are compared against a uni-

gram+bigram XGBoost [8] model trained on the same data. We use

XGBoost as a baseline here as this was used as our legacy production

model, and XGBoost has been shown to perform well on a variety

2
https://huggingface.co/docs/transformers/index

https://translate.google.com
https://huggingface.co/docs/transformers/index
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(a) Varying 𝜇 with no per-class re-weighting (𝛾 = ∞) (b) Varying 𝛾 with no positive weight (𝜇 = 1) (c) Varying 𝜇 at optimal 𝛾 = 0.0001

Figure 3: Analysis of the effect of positive class weight 𝜇 and smoothing factor 𝛾 with RoBERTa-Large.

of tasks compared with other decision tree models [8]. Optimal

values for 𝜇 and 𝛾 are selected based on mAP on the development

set. The results for models trained for 5 epochs show the benefit

of loss re-weighting, with a vanilla implementation achieving an

mAP of 0.326, which is worse than the baseline XGBoost model,

and far behind that of the best mAP of 0.44, when re-weighting is

used. Interestingly, positive class weighting achieves results almost

on par with the more sophisticated class-based weighting. Although
the early work on BERT models reported task-specific fine tuning

results for a small number of epochs [12], our preliminary results

suggested that training for longer can lead to significant improve-

ments. The results in Table 2 show that the mAP for the best model

improves significantly, from 0.440 to 0.462, with longer training.

Longer training also appears to make these models more robust

to the choice of loss, as the difference between the unweighted vs

weighted models is much smaller in this case. Overall, apart from

the 5-epoch RoBERTa model with no re-weighting, all models show

dramatic improvements over the baseline XGBoost model.

Figure 3 examines the impact of the re-weighting hyperparam-

eters 𝜇 and 𝛾 in more detail for models trained for 5 epochs. In

addition to reporting mAP averaged over all categories, for this

analysis we split the taxonomy into head, torso and tail categories

based on the number of training samples per category in a 25k strat-

ified random sample, as follows: (i) head: categories with >=500

examples, (ii) torso: categories with >=30 and <500 examples, (iii)

tail: categories with <30 examples. Figure 3a examines the effect of

the positive weight factor 𝜇 without per-class re-weighting: while

a default value of 1 is optimal for the head categories, this leads to

poor performance on tail categories and sub-optimal performance

on torso categories, with an optimal value for torso/tail at around

𝜇 = 10. Figure 3b examines the effect of the smoothing factor when

the positive labels have no additional weight (𝜇 = 1). For larger

values of the 𝛾 hyperparameter (i.e.less re-weighting), we see that
torso/tail categories perform poorly, with torso/tail performance

improving as re-weighting is applied by reducing𝛾 . Figure 3c shows

the effect of changing 𝜇 when an approximately optimal smoothing

factor is used: while the trend is the same, the interaction of the

two hyperparameters leads to a lower optimal value for 𝜇.

5.2 Evaluation of Targeted Data Collection
In this section, we examine the effect of the targeted data sam-

pling approaches described in Section 4. For these experiments, we

Table 3: mAP for RoBERTa-Large on English web page classi-
fication using various sampling methods. Random - Random
sample. UC - URL Collection. Active - Active learning.

Sampling Strategy #samples All Head Torso Tail

Random15k 15k 0.390 0.652 0.439 0.269

Random20k 20k 0.397 0.659 0.450 0.271

Random15k + UC5k 20k 0.447 0.652 0.452 0.394

Random25k 25k 0.401 0.655 0.451 0.282

Random20k + UC5k 25k 0.445 0.647 0.448 0.393

Random15k + Active5k + UC5k 25k 0.452 0.649 0.448 0.413

train RoBERTa-Large models using various subsets of the training

set, comparing 15k, 20k and 25k documents composed of various

combinations of random, URL Collection and active learning data.

The results in Table 3 show a moderate improvement across all seg-

ments when adding additional random data to the 15k dataset, while

URL Collection data leads to a massive improvement for tail cate-

gories and a modest improvement for torso categories. Although

this is expected, as URL Collection specifically targets these cate-

gories, the results demonstrate that this strategy, although biased,

is an effective way of bootstrapping a model for rare categories.

Having trained a model with URL Collection data, we have

enough data to bootstrap models for torso/tail categories, enabling

the use of active learning for sampling those categories. The final

3 rows of Table 3 show the impact of further increasing the train-

ing corpus size, demonstrating that active learning sampling gives

additional improvements over URL Collection for tail categories.

5.3 Evaluation of Multilingual Models
For multilingual classification, we train models on the multilin-

gual dataset described in Section 4.1.2 using XLM-RoBERTa-Large,

which has been shown to be state-of-the-art for multilingual NLP

tasks [9]. We then use knowledge distillation to reduce the model

size. The results in Table 4, which compare XLM-RoBERTa-Large

models trained with human annotated editorial data, translated

data and both, show that training a non-English classifier purely

based on translated data performs competitively with training data

directly annotated in the target language. These results are very

encouraging as using automatically translated data not only in-

creases our training data without additional human effort, but also

allows us to benefit from English-language URL Collection and
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Table 4: mAP for multi-lingual models, with various sources
of training data. E - Editorial data. T - Translated data.

Model Train Language en es fr pt zh-tw

Monolingual
RoBERTa-Large E:en 0.460 - - - -

XLM-R-Large E:en 0.458 - - - -

Multilingual
XLM-R-Large E:en + T:es/fr/pt/zh-tw 0.447 0.544 0.519 0.517 0.485

XLM-R-Large E:en/es/fr/pt/zh-tw 0.468 0.555 0.552 0.536 0.532

XLM-R-Large E+T:es/fr/pt/zh-tw - 0.550 0.529 0.536 0.520

XLM-R-Large E+T:en/es/fr/pt/zh-tw 0.474 0.577 0.557 0.560 0.543

active learning strategies for increasing coverage of tail categories.

Combining translated and directly annotated data gives the best

results for all languages, including English, improving mAP by 1.3%

for English, 4.0% for Spanish, 0.9% for French, 4.5% for Portuguese

and 2.1% for Traditional Chinese.

Surprisingly, these results also show that the mAP of the mul-

tilingual model trained with data from 5 languages evaluated on

English not only matches the English-only models, it achieves a

relative improvement of 3.0% over the English-only RoBERTa-Large

model and 3.5% over an English-only XLM-RoBERTa-Large model.

Similarly, Table 4 indicates that adding English data while fine-

tuning the XLM-RoBERTa-Large multilingual model significantly

improves mAP for all the non-English languages.

Knowledge Distillation. The results above show that it is possi-

ble to achieve promising results using large Transformer models

such as XLM-RoBERTa-Large. These models are too computation-

ally expensive to directly deploy in our production environment,

however, so it is necessary to train smaller models. We choose XLM-

RoBERTa-Base as a student model as it is the smaller sibling of the

multilingual XLM-RoBERTa-Large teacher model.

The results of our distillation experiments are presented in Ta-

ble 5. Standard training of smaller models with editorial labels

(XLM-R-Base) leads to performance that is much worse than the

largemodel (XLM-R-Large).We compare this model against XLM-R-

Base KDmodels trained for 1M steps using soft labels from editorial

data, randomly sampled data, or a combination of both. First, train-

ing directly with soft labels from the editorial data does, as expected,

lead to an increase in mAP. Introducing random data labelled by the

teacher model for distillation leads to further performance gains,

matching or exceeding the teacher model, likely because the label

distribution is better represented by this data. However, when mix-

ing editorial and unlabelled random training data, increasing the

proportion of random data does not appear to significantly affect

performance. This is also observed when we distill with only the

larger random dataset, removing editorial data entirely.

5.4 Classification of Uncrawled URLs
Due to the limited capacity of our web crawlers, there is a signif-

icant number of web pages for which content is not available: we

rely solely on tokens from the URL to classify these pages. Similarly

to content-based models, we train DistilBERT and XLM-R-Base

models using URL tokens as the input. We also train an XLM-R-

Large URL-only model to be used as a teacher model for knowledge

distillation. In addition, we train a distilled model that uses the

Table 5: Results for knowledge distillation of multilingual
models. mAP for various KD training datasets with soft la-
bels extracted from editorial labeled data (E) and additional
random unlabeled data (R). Numbers in the #R column are
per language: e.g. 50k × 5 indicates 50k each for 5 languages.

Model #E #R en es fr pt zh-tw

Trained with binary editorial labels
XLM-R-Base 248k - 0.440 0.542 0.520 0.529 0.502

XLM-R-Large 248k - 0.474 0.577 0.557 0.560 0.543

Distilled from XLM-R-Large
XLM-R-Base KD 248k - 0.468 0.585 0.556 0.566 0.551

XLM-R-Base KD 248k 50k × 5 0.480 0.588 0.555 0.569 0.552

XLM-R-Base KD 248k 600k × 5 0.483 0.581 0.564 0.570 0.548

XLM-R-Base KD 0 600k × 5 0.485 0.585 0.564 0.569 0.549

best content-based teacher model as the teacher, enabling us to

investigate if a model trained with impoverished input (URL-only)

can benefit from the knowledge contained in a model trained with

richer input (URLs and page content).

The results in Table 6 show that URL-only inference using a

model trained with content yields poor performance in terms of

mAP, motivating the need for separate URL-only model for classi-

fying uncrawled pages. And, indeed, a model trained specifically

with URL-only input shows significant improvement. We can also

see that for URL-only models trained with editorial data, models of

larger size lead to higher mAP, although these models are signifi-

cantly outperformed by the best content models. More importantly,

when using knowledge distillation to train a URL model with soft la-

bels generated by an XLM-RoBERTa-Large model (either using page

content or URL only), a base-sized model can achieve higher mAP

than a large model trained with editorial data. We again observe

that soft labels from a randomly sampled dataset play a critical role

in improving the mAP. Finally, the teacher model trained with con-

tent trains a much better student model compared with a URL-only

trained teacher model. A possible reason is that this model makes

more accurate classifications and thus generates higher-quality

soft labels. Overall, the best distilled multilingual URL-only model

achieves a relative improvement in mAP of 13.1% for English, 8.1%

for Spanish, 10.7% for French, 11.2% for Portuguese, and 11.2% for

Traditional Chinese, compared with a traditionally trained XLM-R-

Large model, while making the model much less computationally

expensive for deployment. It also achieves a 26% improvement in

mAP over our previously-deployed XGBoost categorization model.

6 System Implementation and Product Impact
6.1 System Implementation

We built a Spark Streaming inference pipeline on AWS to classify

the incoming ad request URLs in Yahoo’s DSP using the proposed

multilingual distilled XML-RoBERTa base models for crawled and

uncrawled web pages. The URL profiles that consist of a list of

contextual targeting segments corresponding to the predicted cate-

gories for each URL are written to a key-value store for real time

lookup at ad serving time. The Spark Streaming component runs

in an AWS EMR cluster and consumes input data from AWS Kafka.

The EMR cluster hosts rely on docker images to run model infer-

ence for the pages that newly appear in AWS Kafka’s streaming
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Table 6: mAP for URL models. E - Editorial corpus. R - Ran-
domly sampled unlabeled data (600k). KD𝑢 - distillation from
teacher model trained with URL input. KD𝑐 - distillation
from teacher model trained with URL + page content.

Model Training Data en es fr pt zh-tw

Content Model (Tested with URL+Content input) - binary editorial labels
XLM-R-Large E 0.474 0.577 0.557 0.560 0.543

Content Model (Tested with URL-only input) - binary editorial labels
XLM-R-Large E 0.309 0.380 0.381 0.368 0.306

URL Models trained with binary editorial labels
DistilBERT (en) E 0.353 - - - -

XLM-R-Base E 0.345 0.433 0.415 0.430 0.351

XLM-R-Large E 0.374 0.470 0.449 0.455 0.376

URL Models distilled from XLM-R-Large
XLM-R-Base KD𝑢 E 0.363 0.450 0.438 0.442 0.363

XLM-R-Base KD𝑐 E 0.385 0.477 0.453 0.467 0.386

XLM-R-Base KD𝑢 E+R 0.382 0.479 0.460 0.464 0.374

XLM-R-Base KD𝑐 E+R 0.423 0.508 0.497 0.506 0.418

source. The categories assigned to a web page are filtered based on

pre-defined per-category thresholds to only store categories with

high confidence. The category list for a web page is then extended

to include all the ancestors of each predicted category according to

the YIC taxonomy structure. The final results are then written to

the key-value store using AWS Kafka.

6.2 Impact on Contextual Targeting
The taxonomic web page classification models described above

are developed to support contextual targeting in the Yahoo DSP. As

described in Section 6.1, a URL and its predicted categories are pre-

computed using one of our multilingual distilled XLM-RoBERTa-

Base models, and the results are stored in a key-value store for

real-time lookup at ad serving time. Once a bid request, requesting

an ad on a publisher web page, comes to our DSP, any ads that target

at least one of the URL’s categories through contextual targeting

(in addition to the ads that are eligible through other targeting

strategies) are eligible for the ad auction.

In this section, we report the performance of three representative

model launches in production for contextual targeting during the

course of building the product. For each model, we apply a per-

category confidence threshold so that the expected precision is at

least 0.8. We measure the contribution of contextual targeting to the

entire Yahoo DSP before and after a model launch for impressions,

clicks and revenue. These contributions aremeasured 15 days before

and 15 days after each launch date, and the relative improvement

for each metric is summarized in Table 7. Relative changes are

computed to de-emphasize temporal effects.

The first launch replaced the production XGBoost model with

our Transformer-based model for crawled English web pages. The

XGBoost model consists of one binary classifier for each category,

trained using words andWiki entities from the web page content as

features. We observe that the Transformer-based model increased

the contribution of Contextual Targeting to DSP by 56% for impres-

sions, 17% for clicks, and 53% for revenue.

One major contribution of this work is a distilled Transformer-

based model that can accurately classify uncrawled web pages

Table 7: Post launch metrics for contextual targeting. The
relative improvement for the contribution percentage of con-
textual targeting to DSP before and after launch are reported.

Post launch coverage Relative change w.r.t. pre-launch

Market Uncrawled Impression Click Revenue

en No +56% +17% +77%

en Yes +257% +194% +353%

en/es/fr/pt/zh-tw Yes +37% +31% +33%

solely based on tokens from the URLs. When we launched this

model into production for English pages, in addition to the model

that only classifies crawled web pages, the contribution of contex-

tual targeting to DSP impressions increased by 257%. Given that a

significant fraction of web pages do not have their content available

for analysis, and therefore could not previously be classified, this

launch enabled classification of a far greater number of documents,

and so greatly increased the impact of contextual targeting.

The third launch involved the two distilled multilingual models

that extend our contextual targeting solution to crawled and un-

crawled web pages in Spanish, French, Portuguese, and Traditional

Chinese. As expected, compared to the earlier models that only

classify English pages, this launch increased the contribution of

Contextual Targeting to DSP by 37% for impressions, 31% for clicks,

and 33% for revenue. Together, these post-launch metrics show

that each of these launches, based on model variations described

in this paper, contributed significantly to the growth of contextual

targeting within the DSP platform at Yahoo.

6.3 Impact beyond Contextual Targeting
In addition to contextual targeting, interest-based audience tar-

geting is another prevalent way of showing personalized ads to

users. Different from contextual targeting, which targets users

solely based on the interest categories derived from the current

web page being viewed, interest-based targeting usually derives

users’ interest categories based on their historical interactions with

the web (e.g., browsing, search, purchase, etc.). Regardless of the

content of the current page being viewed, ads that are relevant to

a user’s historical interest categories are eligible to be shown on

the page. If a user is viewing a web page whose categories are not

yet part of her historical interests, and an advertiser is not opted

in for contextual targeting, we may miss the opportunity to show

this user relevant ads that target these categories. Therefore, we

use the categories of the current web page for real-time user interest
expansion for interest-based Yahoo Audience Targeting.

We run an A/B test to evaluate this new feature in Yahoo Native.

In the control bucket, only the ads targeting a user’s historical

interest categories are eligible for the ad auction. In the test bucket,

at ad serving time, if some of the contextual categories assigned by

our model to the web page being viewed do not belong to a user’s

historical interest categories, these categories are also considered

as the user’s interest categories and used to qualify additional ads

for the auction. Although these categories eventually become the

user’s historical interest categories when the user returns to our

system in the future, the real-time user interest expansion feature

allows user interests to be captured in real time. Both the control
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and test buckets ran at 20% of the entire traffic for 10 days. We

observe that using the real-time user interest expansion increases

CPM (Cost-Per-Mille, i.e., ad platform’s revenue for one thousand ad

impressions) by 0.57%. The CPM increase is more significant (1.30%)

for users without any historical interest categories. In addition to

increasing Yahoo Native’s revenue, CPA (Cost-per-Acquisition), i.e.,

advertiser spend for a pre-defined conversion such as purchase or

subscription, reduces by 1.27%. This implies that ads in the test

bucket are better aligned with user’s instant interests, leading to

better return on investment for advertisers. After this successful

A/B test, the real-time user interest expansion for interest-based

Yahoo Audience Targeting was launched in production.

7 Conclusion
In this paper, we addressed the problem of hierarchical multi-

label classification as used in category-based contextual targeting at

Yahoo. We proposed for the first time a multilingual model that can

accurately classify web pages into a hierarchical taxonomy (specifi-

cally, the Yahoo Interest Categories taxonomy) without crawling

their content. The proposed models are fully launched to support

contextual targeting in the Yahoo DSP, in addition to supporting

real-time user interest targeting. We discussed a number of practi-

cal lessons learned from our experimentation: (i) URL Collection

(i.e. tasking editors with actively searching for web pages relevant

to rare categories) is critical to bootstrap models for torso/tail cate-

gories, which further enables the use of active learning sampling,

to address the skewed category distribution; (ii) class-based loss re-

weighting is important to improve classification accuracy for rare

categories; (iii) knowledge distillation allows us to train lightweight

and more accurate models, especially when page content is not

crawled for URLs; (iv) augmenting multilingual data through ma-

chine translation significantly improves the classification accuracy

for both English and non-English pages.
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