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New scientific concepts, interpreted broadly, are con-
tinuously introduced in the literature, but relatively
few concepts have a long-term impact on society. The
identification of such concepts is a challenging predic-
tion task that would help multiple parties—including
researchers and the general public—focus their atten-
tion within the vast scientific literature. In this paper we
present a system that predicts the future impact of a
scientific concept, represented as a technical term,
based on the information available from recently pub-
lished research articles. We analyze the usefulness of
rich features derived from the full text of the articles
through a variety of approaches, including rhetorical
sentence analysis, information extraction, and time-
series analysis. The results from two large-scale experi-
ments with 3.8 million full-text articles and 48 million
metadata records support the conclusion that full-text
features are significantly more useful for prediction than
metadata-only features and that the most accurate pre-
dictions result from combining the metadata and full-
text features. Surprisingly, these results hold even when
the metadata features are available for a much larger
number of documents than are available for the full-text
features.

Introduction

More than a trillion U.S. dollars are spent annually
worldwide on research and development (Grueber & Studt,
2012). Unfortunately, only a small percentage of this
amount is devoted to technologies that will have a high
impact on society. To predict which research concepts hold
the most promise, a framework to forecast whether a par-
ticular new finding will be accepted in future years is
needed.

As a critical building block toward this ambitious goal, in
this paper we present a system that predicts the scientific
impact of research concepts—represented as technical
terms—based on the information available from research
articles in a reference period. For example, by examining
scientific articles published between 1997 and 2003 related
to the term microRNA, our system predicts that the term
gains prominence in scientific articles published in the later

years that we study (2004–2007). Thus, our approach pre-
dicts that microRNA will have scientific impact. In contrast,
by examining scientific articles related to rewiring in the
same time period, our system predicts that this term will not
be prominent in scientific articles published in 2004–2007.

Unlike much previous work on citation prediction (see
the Related Work section), we use the full text available in
the articles and produce an analysis that identifies concepts,
relations, citation sentiment, and the rhetorical function of
sentences.1 We complement these features with measures
derived from the citation and author collaboration networks
and analyze the evolution of the features over time using a
variety of principled time-series analysis methods. Finally,
our system combines all features using logistic regression
and computes an overall prominence score for the input
technical term, to predict its impact in the literature. We
define impact as a function of the relative growth of term
appearance over unique documents (see the Experiments
section for a detailed description).

To show the relative contribution of features drawn from
the articles’ full text in comparison to features drawn from
the metadata, we present the results of a large-scale evalua-
tion. Our first set of experiments, using a 3.8 million docu-
ment data set drawn from Elsevier publications, show that
using text features alone enables significantly more accurate
prediction of scientific impact than using metadata features
alone. When the system uses both text and metadata fea-
tures, prediction improves further.

We also compared the predictive ability of these sets of
features on a much larger data set that combines the Elsevier
full-text articles with 48 million metadata records from
Thomson Reuters’s Web of Science (WoS). The WoS data
include abstracts for each scientific article plus metadata
such as title, authors, publication venue, year of publication,
and citations. Our experiments address the question of

1We tested less sophisticated lexical features such as n-grams in early
experiments, but they did not show a significant impact on results and, thus,
we don’t report on them here.
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whether a very large amount of metadata enables better
prediction even without the text features, making them
redundant. Experiments with this combined data set show
that the accuracy of metadata features alone increases with
data volume, but still does not surpass the performance with
text only. Our overall conclusion is that it is well worth the
effort to obtain the full text of scientific articles and to
exploit the power of natural language analysis.

In the remaining sections we first present related work.
We next give an overview of our system, followed by a
description of the text features and the metadata features. We
then turn to a description of our experiments and results. We
conclude with a discussion of the implications of our work.

Related Work

Studying science is a science in and of itself. For
example, the National Science Foundation has two pro-
grams designed to fund this type of research: Science, Tech-
nology, and Society (STS), which is primarily oriented
toward qualitative research, and Science of Science and
Innovation Policy (SciSIP), which is primarily oriented
toward quantitative research. STS as a field of study has a
long history. As the name indicates, STS uses social science
and humanities approaches to understand the relationships
among science, technology, and society. There is a wide
range of STS approaches. For example, laboratory ethnog-
raphy (Knorr-Cetina, 1999; Traweek, 1992) involves
extended fieldwork within science and technology settings;
in other words, observing and interviewing scientists and
engineers in their native habitats. Actor-network theory
(Latour, 1988) involves tracing the relationships among
human actors and nonhuman actants. As such, technologies
are seen as having some agency, or ability to shape the
world. Another approach commonly used within the domain
of science and technology policy is an expert panel, such as
the Delphi method (Bornmann & Daniel, 2008). Such
qualitative approaches are useful for learning about specific
labs or subfields in rich detail; however, they are not typi-
cally scalable. Thus, to automatically track scientific inno-
vation in real time, quantative approaches are far more
appropriate.

Scientometrics, or the measurement of science, has long
been used to understand science at the macro scale as well as
to make policy recommendations (Bornmann & Daniel,
2009; Edge, 1979; Schreiber, 2013). Because ranking algo-
rithms based on scientometric data have demonstrated real
potential to influence the direction of scientific progress
(Beel & Gipp, 2009), it is of utmost importance for these
algorithms to take into account as much information as
possible to inform the resource allocation decisions of
nations, institutions, and individual researchers (Lane, 2010;
Lane & Bertuzzi, 2011).

Study of scientific impact spans almost a century, during
which time expanding data sets and sophisticated tools have
allowed for increasingly powerful results. Following several
decades of small, expensive studies conducted for journal

evaluation and acquisition, major citation indexing projects
enabled the application of quantitative methods to the prob-
lems of research evaluation (Narin, 1976) and scientific
prestige (Bayer & Folger, 1966; Cole & Cole, 1967). Since
then, metrics such as the Journal Impact Factor (Garfield,
2006) that is primarily used to evaluate the impact of a
journal, and, more recently, the h-index (Hirsch, 2005) that
is primarily used to evaluate the impact of a scientist, have
been employed. Scientometrics builds in part on the type of
qualitative research described above, such as study of the
function of citation (Chubin & Moitra, 1975; Moravcsik &
Murugesan, 1975; Spiegel-Rösing, 1977) or the motivations
for citation, often bringing these to bear in a critique of the
use of citations in research evaluation (Bornmann & Daniel,
2008). For example, citation counts include not only works
that build on previous work but also works that negate the
previous work or cite it perfunctorily (Bonzi, 1982; Ziman,
1968). Together these research streams comprise a large part
of the quantitative science of science within the social sci-
ences. Machine learning has introduced new horizons in the
study of science (Losiewicz, Oard, & Kostoff, 2000) that
continue to expand with increasing computational power
and the availability of full-text databases (Arbesman &
Christakis, 2011).

An early paper by Garfield speculated on the relationship
between citation data and future author performance
(Garfield & Malin, 1968), and a few recent studies have
attempted to predict future citations received by an author
based on features of past work. These include studies of the
predictive value of the h-index, which have played a role in
the debates over that metric (Hirsch, 2007; Hönekopp &
Khan, 2012) as well as attempts to predict changes in an
author’s h-index over time (Acuna, Allesina, & Kording,
2012; Dong, Johnson, & Chawla, 2014; Penner, Petersen,
Pan, & Fortunato, 2013). Zhu, Turney, Lemire, and Vellino
(2015) present a variant of h-index called the hip-index
(influence primed h-index) based on data sets of papers and
references that were influential for a paper and use it to
predict fellows of an organization. All of these studies have
tended to use simple feature sets, most often including
citation-based indicators of past performance, although
social factors (Laurance, Useche, Laurance, & Bradshaw,
2013), social network properties (McCarty, Jawitz, Hopkins,
& Goldman, 2013; Sarigöl, Pfitzner, Scholtes, Garas, &
Schweitzer, 2014), and structural variation models repre-
senting impact on state of the art (Chen, 2012) have also
been examined. Others (Ding, Yan, Frazho, & Caverlee,
2009) have experimented with weighted Pagerank algo-
rithms to rank authors in author cocitation networks and a
HITS framework (Wang et al., 2014) for simultaneous
ranking of future impact of papers and authors.

Network-based approaches, building on research in
social network analysis, have proven effective in helping to
understand the structure of science (Birnholtz, Guha, Yuan,
Gay, & Heller, 2013; Velden, Haque, & Lagoze, 2010;
Velden & Lagoze, 2013). Although our research builds on
these approaches, the goal of this paper is to go beyond the
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typical network-based analyses that focus on nodes and
edges and instead consider the content of the edges via
natural language processing of full text.

Previous work has applied bibliometrics at the level of
entities discovered in full text (Ding et al., 2013) as well as
based on productivity, collaboration, and influence
(Havemann & Larsen, 2014). In addition, topic proportions
from Latent Dirichlet Allocation have been used to study the
history of scientific ideas (Hall, Jurafsky, & Manning,
2008). To the best of our knowledge, our work is the first to
predict term frequencies as proxies for the emergence of
scientific concepts and is novel in the sophistication of the
full-text features we bring to bear on the problem. Although
previous work that has used full text in prediction has relied
on bag of words (e.g., Boyack et al., 2011; Yan, Tang, Liu,
Shan, & Li, 2011; Yogatama et al., 2011), we base some of
our analysis on larger units of texts (phrases) and on
more linguistically motivated features such as rhetorical
analysis.

Recently, there has been more work on the analysis of
scientific articles that could ultimately be helpful for the
prediction of scientific impact (Louis & Nenkova, 2013; Tan
& Lee, 2014; Tsai, Kundu, & Roth, 2013). For example, the
2003 KDD Cup (Gehrke, Ginsparg, & Kleinberg, 2003)
included a citation prediction track. Since then, approaches
to prediction have matured, and despite varying research
designs, several classes of predictive variables have been
established. These include citation data (Manjunatha,
Sivaramakrishnan, Pandey, & Murthy, 2003), journal char-
acteristics (Callaham, Wears, & Weber, 2002; Kulkarni,
Busse, & Shams, 2007; Lokker, McKibbon, McKinlay,
Wilczynski, & Haynes, 2008), author characteristics
(Castillo, Donato, & Gionis, 2007), n-gram features drawn
from abstracts and index terms (Fu & Aliferis, 2008; Ibáñez,
Larrañaga, & Bielza, 2009), download statistics (Brody,
Harnad, & Carr, 2006), and social media mentions
(Eysenbach, 2011). Fu and Aliferis unified much of the early
work in this area, reporting evidence that author metrics
improved the scores obtained by modeling journal charac-
teristics alone and that adding metadata features improved
scores still further (Fu & Aliferis, 2008). More recent
natural language processing (NLP) research has yielded
mixed results on n-gram and topic features drawn from full
text (Yan et al., 2011; Yogatama et al., 2011), and the use-
fulness of full text in citation prediction for papers remains
an open question.

Much research has focused on particular disciplines
and subdisciplines of science. For example, scientometric
approaches have been applied to computer science (Guha,
Steinhardt, Ahmed, & Lagoze, 2013) as well as its subfields,
such as human–computer interaction (Bartneck & Hu, 2009)
and computer-supported cooperative work (Horn, Finholt,
Birnholtz, Motwani, & Jayaraman, 2004). Because the goal
of this paper is to help predict innovation across various
fields of science and engineering, we build on this earlier
work, but cannot rely solely on metrics that have proven to
be effective within any one field.

System Architecture

Our system predicts the impact of a scientific concept,
represented as a technical term using features derived from
the full text of scientific articles as well as more traditional
features derived from the metadata of the documents. The
technical terms used as input refer to specific scientific con-
cepts and are assumed to have no synonyms.

The system is designed as a three-staged pipeline. Given
an input term, our system first computes the set of docu-
ments relevant to the term by determining when there is an
exact match between the term and the words of either the
title or the abstract. As shown in Figure 1, this first stage,
called shard generation, produces a set of relevant docu-
ments that we call the shard.

In Stage 2, we process each document in the shard using
our core NLP pipline, which produces annotations repre-
senting sentence segmentation, part-of-speech (POS)
tagging, and parsing of citation sentences. We then annotate
each document with the rhetorical function of each sentence
using argumentative zones (Teufel, 2010), entities and rela-
tions expressed in the text, and sentiment toward citations.

In Stage 3, we compute aggregate values for these anno-
tations across the shards and build a coauthorship network
and a citation network for the documents in the shard. We
also generate a time series for each feature over the years in
the reference period and produce additional features from
various functions applied to the time series.

Finally, in Stage 4, our machine-learning modules use the
features to predict the scientific impact in the forecast
period.

Metadata Features

Our system uses the metadata available for each paper in
WoS2 to compute some simple features and other more
complex features based on networks. For the simple fea-
tures, which we call acceptance features, we consider the
number of unique papers, authors and their countries, insti-
tutions, conferences, journals, and books. In addition, we
compute the mean number of authors per paper, the number
of papers with two or more authors, the number of papers
with authors affiliated with multiple institutions, and the
number of papers with authors from different institutions.
For the network-based features, network theory (Newman,
2010) provides a number of tools to model aggregate infor-
mation in relational data. Several recent papers have focused
on applying network techniques to analyze bibliometric data
(Batagelj & Cerinšek, 2013; Fu, Song, & Chiu, 2013; Pan,
Kaski, & Fortunato, 2012; Viana, Amancio, & Costa, 2013).
The use of networks to model bibliometric data such as
collaboration between authors and citations between papers
is based on the view of science as a social process (Sun,
Kaur, Milojević, Flammini, & Menczer, 2013). We derive
network features (specified in Table 1) from two kinds of

2http://thomsonreuters.com/thomson-reuters-web-of-science/
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networks, citation networks and author collaboration net-
works. In an author collaboration network, nodes represent
authors and undirected edges represent the fact that two
authors coauthored at least one paper.3 In a citation network,
nodes represent documents and directed edges record that
one document cites the other (only within the shard). Cita-
tion links between papers indicate topical similarity
(Kessler, 1965; Small, 1973). Many dense clusters in a cita-
tion network may represent fragmented communities of
research where documents position themselves relative to
papers in the same cluster and do not frequently cite other
papers in the area. Similarly, a low clustering coefficient
(meaning that documents do not tend to cite their cited
documents’ cited work) may indicate that a field tends to
make large, disruptive advances (Funk & Owen-Smith,
2012), rather than incremental improvements.

In contrast, collaborations give us a more direct probe
into the social dynamics of research on a given topic, for
example, dense clusters in this network represent close-knit
communities that exist among the authors in a field. Simi-
larly, an author with high betweenness centrality may act as
a bridge between two different communities that do not
frequently collaborate.

Given a shard, these networks can be built efficiently
using our metadata database. The citation network is built by
querying a database table that contains resolved citations

between papers4; the author collaboration network is built by
querying a table containing authors of each paper.

Full-Text Features

Our full-text features are computed based on aggregates
of information extracted from the text of each article:
entities and relations, argumentative zoning (AZ), and cita-
tion sentiment. Time series are then computed over aggre-
gates of these features.

Entities and Relations

We identify two types of textual information: entities and
relations. The information that we extract enables a more
refined analysis of crucial aspects around a given topic than
would be possible using the original unannotated text. For
example, we can extract the number of algorithms that have
been implemented for a given input problem, and use it as
evidence of the depth in which this problem has been
studied. Similarly, we can gauge the interest in a research
topic based on the diversity of funding agencies involved in
the topic. Entities (e.g., focus, techniques and domains;
Gupta & Manning, 2010) and relations (e.g., protein–protein
interaction; Bui, Katrenko, & Sloot, 2011) involving them
have been extracted from scientific articles, although to the
best of our knowledge, they have not been used in scientific
prominence prediction systems.

Entities

The entity detection module produces annotations con-
sisting of an entity type (e.g., algorithm, data set, gene, virus,
protein, database) and a mention (e.g., CRF, an instance of
algorithm; BRCA1, an instance of gene). We recognize a
total of 15 entity types. Some of the entity types are general
to all domains (e.g., method, problem, theory) and others are
specific to the most frequently occurring family of domains
in the corpus (i.e., medical, genomic, biology). We define
the primary type as the entity type corresponding to the
queried term if it matches one of our 15 entity types.
Otherwise, it is the entity type with the highest document
frequency in the shard. We can now measure how cohesive
a shard is by using the proportion of articles containing a
mention of the primary entity type in the shard. We can also
measure how diverse it is by counting the number of distinct
mentions of the primary entity type in the shard.

If the term is an entity, we also compute as features the
frequency and corresponding rank of the term with respect
to other entities of the same type—both absolute and
normalized—and the ratio between the frequency of the
input term and the most frequent entity of its same type.

3We used the author resolution results produced previously (Wick,
Kobren, & McCallum, 2013).

4Resolving a citation is the process of using the bibliographic text to
locate the cited paper in the database.

TABLE 1. A list of features computed for each network.

Basic

Number of nodes
Number of edges
Number of weakly connected components
Size of largest weakly connected component

Clustering

Average Watts-Strogatz clustering coefficient (Watts & Strogatz, 1998)
Average Newman clustering coefficient (Newman, 2010)

Centrality

Average degree
Average closeness centrality (Freeman, 1978)
Average betweenness centrality (Freeman, 1977)

Distances

Diameter
Average shortest path

Degree distribution

Degree assorativity (Newman, 2003)
In-/out-/total-degree power law exponent (Newman, 2010)
In-/out-/total-degree Newman power law exponent (Newman, 2010)
In-/out-/total-degree power law R2 (Newman, 2010)
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To annotate the entities, we use a dictionary-based tagger
(Neelakantan & Collins, 2014). Dictionaries are compiled
for every named entity type using large amounts of unla-
beled data and a small number of labeled examples. For
every named entity type, first we construct a high recall, low
precision list of candidate phrases by applying simple rules
on the unlabeled data collection. Using Canonical Correla-
tion Analysis (CCA) (Hotelling, 1936), we represent each
candidate phrase in a low-dimensional, real-valued space.
Finally, we learn a binary Support Vector Machine (SVM)
(Joachims, 1998) in the low-dimensional space with few
labeled examples to classify the candidate phrases. We filter
out the noisy phrases from the high recall, low precision list
of candidate phrases using the learned SVM to get a high
recall, high precision dictionary.

Relations

Table 2 lists the relations that we extract. For the Funding
relation, we produce frequency- and average-based features
indicating the number of funding agencies and the number
of grants in each article. In addition, we produce Boolean
features indicating whether there are multiple grants or insti-
tutions supporting the research reported by articles in the
shard. For the other relations, we extract all the mentions of
each type in an article and then produce numeric features
indicating their frequency and average in the shard. To anno-
tate the relations, we use two different methods. For funding
information, we can, in some cases, retrieve it directly from
the article metadata. However, in most cases, especially for
older articles, we can only obtain this information from text,
as follows. We first use string matching to locate the
acknowledgment section of the article in question, where the
funding information for the article usually resides. Then we
use two supervised conditional random fields (CRF) models
(Lafferty, McCallum, & Pereira, 2001) to identify the
funding agencies and grant numbers. Finally, we build
<funding agency, grant> pairs by combining the agencies
and grants that coexist in a sentence in order of appearance.
To annotate the remaining relations, we use a supervised
sentence classification approach (Bach & Badaskar, 2007).
Because only a few of the sentences in an article will likely
include mention of these relations, for efficiency we only
classify the sentences that mention at least one of the 10
most relevant terms according to their weight in the SVM
classification model. In our experiments, we used an SVM-
based classifier trained on stemmed terms along with their

respective POS tags as features, from a manually annotated
data set. The accuracy of our classifiers range from 0.72 F1
measure for novelty claim relation to 0.89 for funding
relation.

Argumentative Zoning

The AZ component marks up each sentence in a scientific
document according to its rhetorical function. We expect
that an entity’s prominence in the scientific community is
reflected in the way scientists write about it, for example,
whether the entity is presented as a novel contribution (AZ
category Own Work) or a well-established concept in the
literature (AZ category Background). The relevance of such
rhetorical categories comes from the hypothesis that the first
occurrence of new ideas should be in some paper’s goal
statement (Myers, 1992). However, as the idea emerges and
gets accepted, it is mentioned in other areas of papers refer-
ring to the original idea—thereby “traveling” through other
rhetorical categories. When the new idea is competing
against other existing ideas, it will occur in contrast and
comparison statements (MacRoberts & MacRoberts, 1984).
If it comes to be adopted by other researchers in the field, it
will be mentioned as the basis for their work, indicating a
different phase of acceptance (or a different status of the
cited idea). If the concept becomes widely accepted, it will
be found with increasing frequency in rhetorically neutral
sentences and eventually even in background sections
(Swales, 1990). These ideas are formalized in the “argumen-
tative zoning” theory of Teufel (2010), whereby the text of
an article is partitioned into zones defined by their rhetorical
function.

The core functionality of the AZ component in our
system is automatically labeling each sentence in an article
with a category specifying the rhetorical status of that sen-
tence. We use six categories: Aim, Own Work, Back-
ground, Contrast, Basis, and Other; for more details on
these categories, see Teufel (2010). The document-level AZ
system takes a document as input and labels every sentence
with one of the six categories listed above, using a
Maximum Entropy Markov Model classifier suitable for
sequential labeling. The features extracted for each sentence
include internal information about the words, n-grams, and
citations it contains as well as external information about its
absolute and relative position in the document, the section in
which it appears, and whether a string from an extensive
pattern lexicon matched. This system has been trained using
a manually annotated set of documents from the computer
science and chemistry domains. Using cross-validation on
the chemistry subset of the data, the system’s accuracy has
been measured at 75%.

To produce AZ indicator values for a concept term, we
aggregate over the AZ labels of all sentences that contain a
mention of the term. The aggregate indicators we produce
are the absolute count totals of each AZ label in the set and
the relative count proportions of each AZ label in the set,
that is, 12 indicators in total.

TABLE 2. Relations extracted by the system.

Funding <grant, funding agency>
Novelty Claims (an article claims novelty over something, e.g., we are

the first ones to apply technique X to problem Y)
Data set Purpose (an article proposes a new data set or uses an existing

one)
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Citation Sentiment

The citation sentiment component labels each sentence
containing a citation as expressing positive, negative, or
objective sentiment toward the cited entity. It implements
the hypothesis that emerging ideas will initially be cited in
the context of strong opinions, whether these are negative or
positive (Small, 2011). We also hypothesize that the more an
idea is accepted in a scientific community, the more it will be
presented as an “objective fact.” As might be expected, most
citations in scientific articles are objective in terms of sen-
timent (86% of sentences in the annotated corpus described
below); this may be an indication that positive or negative
citations are somewhat rare and may be important.

Similarly to the AZ component, the citation sentiment
module first assigns sentence-level labels and later aggre-
gates over them to produce feature values for the entity of
interest. The sentence-level classifier, based on Athar
(2011), is an SVM that takes n-gram features and basic
negation features as input and outputs one of three sentiment
labels: Positive, Negative, or Objective. It was trained on
Athar’s corpus of 8,736 hand-labeled citation sentences. The
entity-level feature values are then calculated as total and
proportional counts of these labels over a set of sentences
that are relevant to the entity of interest. Because citation
sentiment is by definition only meaningful in the presence of
citations, we aggregate over all sentences that contain the
term and also contain a citation. The performance of the
citation sentiment component is 0.6 F measure (macro).

Aggregation and Time Series

All components described so far produce features as
aggregated statistics over the full time–window under con-
sideration. The time-series analysis (TSA) component, in
contrast, computes features that can capture the temporal
variation of such statistics.

For every feature given as input, TSA computes a time-
series sequence that represents its aggregated values per year
instead of its aggregated value for the full time period. To
capture how these characteristics grow and fade over time,
we model time series using six growth functions: Linear,
Quadratic, Logistic, Exponential, Gompertz, and Richards.
For the Linear and Quadratic functions we use linear least-
squares estimates; for the other functions we use nonlinear
least-squares estimates of their parameters. Once all func-
tions have been fitted to a time series, we select the function
with the smallest Akaike Information Criterion (AIC)
(Akaike, 1974) value as the best.5 We use the name of the
best-fitted function, as well as its slope, as features for our

machine learning (ML) component. We also use as features
the coefficients of the first- and second-degree terms of the
Linear and Quadratic functions, respectively, with which we
can determine the trend and its rate of change.

In addition to these model-based features, we also con-
sider a variety of statistical measures from the literature to
capture global characteristics of time series and detect inter-
esting patterns. In particular, we use nine such characteris-
tics and compute them as proposed previously (Wang,
Smith, & Hyndman, 2006). Briefly, Seasonality, Periodicity,
and Trend are features that attempt to detect cycles, the
period of those cycles, and the strength of the long-term
trend of a time series. Skewness measures the degree of
asymmetry of data points of a time series around their mean
and Kurtosis measures the peakness and flatness of data
points, relative to a normal distribution. Serial correlation
measures how noisy a time series is by fitting a white noise
model and is defined as the Box-Pierce Statistic (Box &
Cox, 1964). Nonlinearity measures the nonlinearity struc-
ture of time series data, from which we can determine if
linear or nonlinear models can better forecast the data
(Teräsvirta, Lin, & Granger, 1993). Self-similarity, which
relates to the autocorrelation statistic, measures the long-
range dependence of a time series; we compute this feature
as the Hurst Exponent (Willinger, Paxson, & Taqqu, 1998).
Finally, we use the Lyapunov Exponent that measures the
chaotic behavior of a time series; it detects the degree of
randomness and the possibility of accurately predicting the
near future (Hilborn, 2000).

Experimental Evaluation

In this section we describe the methods, settings, and
findings of our experimental evaluation.

Data Set

Our data set includes 3.8 million full-text articles pub-
lished by Elsevier as well as 48 million metadata records
from WoS.6 The metadata include titles, author names, and
institutions, in some cases funding, citations with the IDs of
cited papers, and abstracts. The full text of the Elsevier
articles was parsed into a common XML representation that
identifies not only metadata, but in many cases also provides
structural markup for the text, for example, identifying
tables, sections, and paragraphs and linking in-text citations
to the corresponding bibliography entries.

Methods

The system was developed as part of a government-
funded program to predict the scientific impact of entities
such as terms in some future forecast period F given
some observations in the reference period R where R < F.

5We experimented with other measures, including BIC and chi-square
as measures to estimate the quality of each model under consideration. We
did not observe significant differences in the selection of each model (i.e.,
for the majority of our experiments these measures were in agreement). In
general, AIC penalizes less strongly the number of parameters in compari-
son to BIC, and previous research (Burnham & Anderson, 2002, 2004)
argues that AIC has several theoretical and practical advantages over BIC.

6This data set was provided by the government sponsor to all teams who
were part of the funded program.
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Scientific impact is quantified by the program in the form of
ground truth functions (GTFs), which concentrate on rela-
tive growth of term appearance in unique documents over a
baseline count as opposed to absolute growth. Previous
work has often looked at absolute growth of counts such as
citations (Yogatama et al., 2011). The underlying motivation
of GTFs is to temper variance in count quantity across
disciplines (e.g., biology tends to have more publications
than pure math) and time (i.e., absolute publication counts
increase from past to present). Formally, the GTF for a term
e is defined in terms of document counts for e for R or F:

1. r(e): exponentially weighted average of counts of unique
TS-documents containing e for the years leading up to
and including R, where the interval used for averaging is
the size of the forecast gap and where counts in recent
years are weighted more heavily.

2. f(e): exponentially weighted average of counts of unique
TS-documents containing e for the years up to and includ-
ing F, where the interval used for averaging is the size of
the forecast gap and where counts in recent years are
weighted more heavily.

TS-documents are documents drawn from three trusted
sources, Science, Nature, and the Proceedings of the
National Academy of Sciences (PNAS). When f(e) < max(1,
r(e)) the GTF is defined to be zero, otherwise it produces
values in the range from 0 to 1 and it is computed as follows:

GTF e r f
r e

f e f e
( , , )

( )

( ) ( )
= −⎛

⎝⎜
⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

1 1
1

(1)

The goal of the system is to predict the GTF(e, r, f), having
observed e and its derived features in the data set up to
reference period R. In sum, the goal is to predict the GTF of
e at F (i.e., the relative increase in counts of unique
TS-documents in which e appears) having observed e up
to R.

Because most papers receive no citations or a very small
number of citations, the distribution of GTF values for our
data sets tends toward an exponential distribution as the
distance between R and F increases.

The Models

GTFs for terms are ∈ [0, 1], and thus, it is possible to
model the desired prediction using vanilla logistic regres-
sion.7 Although logistic regression is typically used in the
literature for classification and the output is defined in the
interval {0, 1}, it can be directly applied to regression tasks
where the output range is [0, 1] by defining the objective
function in terms of minimizing the KL divergence between
the GTF and the hypothesis.

In addition to logistic regression, the following other
standard regression models were considered for the task of
modeling the GTF: linear regression, regression trees,
random forests, gradient boosted decision trees, and support
vector regression. Using the metadata features only, the
models were trained on a set of documents with GTFs
defined for the period R = 2003 and F = 2007. They were
then evaluated on a held-out data set over the same period in
terms of R2 and Kendall’s τ. The results in Table 3 show
logistic regression outperforming all other models in R2 and
tying in τ. Thus, we chose logistic regression as the model
for the system.

Experiments

We conducted experiments to compare systems that use
only text-based features with systems that use more tradi-
tional metadata features as well as systems that use both on
a data set of scientific documents published in 1991–2007.
We ran each system to forecast scientific impact in four
different scenarios, varying the forecasting period from 1
year past the reference period (chosen as 2003) to 4 years
past the reference period, that is, 2004 to 2007. Finally, each
of the above settings was evaluated over a data set that
contained all 48 million documents in the WoS metadata
records as well as the subset of Elsevier-published docu-
ments for which the full text of the document was available.
In total, this yields 24 experimental configurations: three
systems to predict scientific impact on four forecast years
for two data sets.

Our experiments were conducted on 5,923 terms from a
list provided by the evaluators for our funding agency. A
term is an n-gram from one to four words; the term popula-
tion is drawn from abstracts and titles of documents pub-
lished within the trusted sources (Nature, Science, and
PNAS) in the time period from 1991 to 2007. Terms were
filtered using a common stop word list, low frequency
terms,8 and common scientific terms. Some examples are
provided in Table 4 along with the GTF value defined by
Equation 1 in the Methods section. We selected terms

7An alternative would be to train a model to predict the cumulative
counts r(e) and f(e), from which the GTF can be calculated. We adopted our
current approach after preliminary experiments on development data.

8Because we are evaluating impact within our corpus, if a term has low
frequency, then it never emerges within the time frame of the corpus. It is
possible that it emerges years later, but we will never be able to evaluate
whether we can pick that up.

TABLE 3. Performance per regression model on held-out development
set using metadata features only.

Model R2 τ

Linear regression −0.025 0.322
Regression tree 0.160 0.339
Random forest 0.200 0.345
Gradient boosted dec. tree 0.235 0.372
Support vector regression 0.253 0.355
Logistic regression 0.263 0.372
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using the following approach. We tallied all documents that
contain the term in its title or abstract and retained terms for
which at least 10% of the computed documents came from
the Elsevier collection and therefore had full text. This is the
same method used to compute shards and, thus, we knew
that the shards used for prediction would not be empty when
restricted only to the Elsevier collection. We used fivefold
cross-validation, with 90% of the data in each fold used for
training and the rest used for testing. We compared our
system results to the gold standard GTF values using
Pearson correlation r and Spearman rank correlation ρ.

For analysis, we categorized the features as metadata or
full-text features. Earlier experiments on development data
showed that time series analysis over AZ, sentiment, and
coauthorship was not helpful; given that time series analysis
is computationally expensive, we did not include these fea-
tures in the evaluation.

Experimental Results and Discussion

The charts below graphically illustrate how our predic-
tions correlated with the ground truth over the four forecast
years. We also show numeric results in Table 5 for a repre-
sentative forecast year, reference year 2003, and forecast
2007.

Figure 2 shows the results for experiments carried out on
full text drawn from Elsevier; the top graph shows Pearson r
and the bottom one Spearman ρ. Here metadata features
underperform text-based features by a substantial margin
as measured by ρ and, thus, the benefit of full text in
comparison to metadata is clear. Adding text-based
features to metadata-only features also gives substantially
improved results. Our results show that the combination of

full text and metadata performs the best, outperforming the
text indicators only by a slight margin, as indicated by r.
These results indicate that the metadata features do add
value.

Figure 3 shows the results for experiments carried out on
the full data set, including both Elsevier and WoS records. In
this case, the shard, which includes all documents relevant to
the term, is substantially larger. We might expect metadata
features to outperform text-based features because the cita-
tion and coauthorship networks that are built can be more
comprehensive; more articles corresponding to the citations
will be found in the data set. Furthermore, the metadata
acceptance features will be drawn from all articles, whereas
the text features will only be drawn from a subset. We do see
a substantial improvement in metadata alone, but the results
still do not surpass those of the text-based and the full set of
features. Under Spearman ρ, both the system based on text-
based features and the system based on combined text-based
and metadata perform significantly better (p < .05 using the
paired permutation test) than metadata only across all fore-
cast years except 2005. Note that the system using text-
based features also improves because the larger data set
contains abstracts and text features are extracted from these.
The text-only system and the system using a combination of
text and metadata indicators are similar in performance, with
the combination of features usually slightly outperforming
the text-only.

In Table 6 we describe an ablation study of the system for
2006, the first year where combined text and metadata fea-
tures outperform text-only features according to Spearman
ρ. We show the performance using individual indicators in
isolation, sorted by Pearson r. Text indicators are shown in
bold. The top-performing indicators are times series over
entities, acceptance, and relations, of which only acceptance
is derived from metadata. Network indicators perform at the
bottom of the times series and near the bottom of the regular
indicators. AZ, a text indicator that reflects the rhetorical
structure of the article, performs near the top of individual
indicators. We see two unexpected results: (a) acceptance,
which is a metadata indicator, performs well, both in times
series and without, and (b) citation sentiment performs
poorly. Acceptance simply counts the number of venues,
authors, and institutions in the shard of relevant documents,
with the rationale being that the more places and authors that
have published on this topic, the more impact it has had.
Other than these two exceptions, the individual results
support our overall results showing that text indicators tend
to perform better.

We see that time-series over entities has a much greater
impact than other indicators. Over time we expect the
shards centered around prominent entities to be more cohe-
sive and less diverse. We hypothesize that cohesiveness
increases with the number of mentions of the prominent
entity type, whereas diversity decreases because there are
fewer comparisons to other entities of the same type. This
occurs precisely because people accept that the prominent
entity is important. For example, consider a gene that is in

TABLE 4. Example GTF values for four forecast periods.

Term 2004 2005 2006 2007

Dopamine signaling 0.250 0.062 0.208 0.249
Lower ros 0.000 0.000 0.000 0.000
Rewiring 0.222 0.000 0.000 0.145
Wd40 0.000 0.250 0.585 0.629
Microrna 0.547 0.857 0.863 0.905
Cell self-renewal 0.188 0.393 0.332 0.330
Plant homeodomain 0.000 0.000 0.492 0.718

TABLE 5. Evaluation for forecast year 2007.

Indicators Data set r ρ

All indicators Elsevier 0.364 0.392
Text only Elsevier 0.346 0.373
Metadata only Elsevier 0.194 0.193
All indicators Complete 0.393 0.428
Text only Complete 0.365 0.407
Metadata only Complete 0.316 0.340
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FIG. 1. System architecture.

FIG. 2. Evaluation on Elsevier-only data. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

FIG. 3. Evaluation on Elsevier + WoS data. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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the process of being mapped. Early in the time series, we
would expect to see discussions of related genes. As time
goes on and the specific gene of interest becomes more
important, we would expect it to appear more in the
context of associated diseases and drugs as opposed to
related genes. As time goes on, we would also see more
documents that mention the gene.

In addition to the indicator-level ablations, we also
looked at individual feature performance using their odds
ratios. Although the ablations show the overall contribution
of an indicator (which combines multiple features), all indi-
cators contain important individual features. For example,
although TimeSeries : networks is not among the highest-
performing indicators, some of its member features (e.g., the
slope of the growth function best fitted to the article citation
count) are among the best overall. Similarly, the total counts
of the AIM and OWN categories from AZ, among others, are
some of the most powerful features.

Conclusion

Our results show the clear benefit of text features over
metadata. When prediction is performed on a data set
including only full-text articles, a system that makes use of
features drawn from full text performs significantly better
than a system that uses only metadata features. The addi-
tion of all data in WoS does yield an improved perfor-
mance of metadata features, both in the metadata-only
performance and in the full-feature performance. Nonethe-
less, across all metrics, the text features are so strong that
even in this scenario where metadata features are com-
puted over all documents relevant to a term while text fea-
tures are computed over only a subset of the relevant
documents, the model based on metadata alone cannot out-
perform text features. We conclude that the benefit of
analysis of the full text of scientific articles is well worth
the increased performance cost of the natural language
analysis.
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