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Abstract
Automatic closed-captioning of video is a useful application of
speech recognition technology but poses numerous challenges
when applied to open-domain user-uploaded videos such as
those on YouTube. In this work, we explore a strategy to im-
prove decoding accuracy for video transcription by decoding
each video with a language model (LM) adapted specifically
to the topics that the video covers. Taxonomic topic classi-
fiers are used to determine the topic content of videos and to
build a large set of topic-specific LMs from web documents.
We consider strategies for selecting and interpolating LMs in
both supervised and unsupervised scenarios in a two-pass lattice
rescoring framework. Experiments on a YouTube video corpus
show a 3.6 absolute reduction in WER over generic single-pass
transcriptions as well as a statistically significant 0.8 absolute
improvement over rescoring with a very large non-adapted LM
built from all the documents.

1. Introduction
The popularity and ubiquity of online streaming video services
in recent years has spurred interest in the task of producing
closed captions of videos using automated speech recognition.
Generating manual transcriptions is labor-intensive and expen-
sive and, as a result, this is usually not feasible for online video
producers who are often amateur videographers. Automated
closed-captioning systems therefore fill a need for many real-
world applications including the assistance of hearing-impaired
viewers and the indexing and browsing of large video collec-
tions. For this reason, this task is also the focus of many com-
mercial software systems.

YouTube, in particular, ranks among the largest and most
diverse collection of user-generated videos. In order to tran-
scribe every video containing speech, we have to tackle nu-
merous challenges: acoustic models must cope with a variety
of recording environments, noise, sound effects and multiple
speakers, while language models need to be able to decode con-
versational (often spontaneous) speech on a wide range of top-
ics. This final problem is the subject of the work presented here.

We hypothesize that decoding the speech of a particular
video using an LM adapted to the topics of that video will im-
prove automatic transcription. Our approach is to use a general-
purpose topic taxonomy developed at Google, along with text
and video classifiers that assign topics to documents and videos
according to this taxonomy. First, we build LMs specific to
each topic. Next, we perform topic classification for each video.
Finally, we dynamically interpolate amongst our topic-specific
LMs when decoding the video’s speech.

Incorporating topic information into LMs has a fairly long
history. Previous efforts [1, 2] used document clustering using
an unbounded amount of history in a document to model its
topic but are not directly applicable to speech recognition. A
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Figure 1: A sample of some topics from the taxonomy.

major strain of related research focuses on modeling topics as
latent variables [3, 4, 5, 6, 7, 8, 9]; however, our setting assumes
the availability of a comprehensive topic taxonomy. The video
transcription scenario specifically involves the problem of dy-
namic unsupervised LM adaptation, which has previously been
considered by Khudanpur and Wu [10, 11], who use maximum
entropy models to incorporate n-gram and topic constraints, as
well as more recent approaches based on latent Dirichlet allo-
cation [4, 6, 7, 8, 9]. Broadly speaking, these techniques assign
topics to utterances using n-best recognition hypotheses pro-
duced under generic models and then obtain a final transcription
under a topic-adapted model. We employ a similar hypothesis-
guided technique for our unsupervised adaptation strategy.

The main contributions of this paper include on-demand
adaptation strategies for video transcription via linear inter-
polation of topic-specific LMs under both supervised and un-
supervised scenarios. Given a corpus of transcribed videos,
we discuss a nearest neighbor technique to recover interpola-
tion weights from optimal interpolation weights generated from
transcribed utterances. We also construct a simple but effective
unsupervised approach in which mixture weights are optimized
to accurately reproduce a first-pass transcript decoded with a
generic LM. Finally, our experiments consider different choices
in selecting models for interpolation: using video metadata, the
first-pass transcript and the taxonomy structure. The proposed
adaptation techniques generate significant gains against a strong
baseline which employs a very large non-adapted LM.

2. Taxonomic Topic Categorization
Throughout this work, we employ a taxonomy of generic cate-
gories to describe video and textual content. This taxonomy is
used widely within Google and features 1112 categories in a hi-
erarchical tree with up to seven levels ranging from depth 0 (the
root) to depth 6. In this work, we apply this general-purpose
taxonomy both to videos on YouTube as well as two types of
text: generic web documents and transcribed utterances. Fig-
ure 1 shows a sample of topics and paths in the taxonomy, and
Figure 2 shows the number of nodes it contains at each level.
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Figure 2: The number of nodes in the topic taxonomy at each
depth starting from the root (depth 0).

2.1. Constructing topic-specific LMs

To build LMs associated with the categories in this taxonomy,
we make use of a large corpus of crawled webpages along with
a multiclass classifier that assigns topics from the above taxon-
omy to them. The classification system is based on binary lin-
ear SVMs with text features and is trained on a human-labeled
corpus. Each document is added to the training corpus of its
most probable category, as well as the training corpora of all
ancestors of that category. As a result, taxonomy nodes at
lower depths are strictly assigned more documents than nodes
at higher depths. For example, documents classified under the
depth-3 topic Arts & Entertainment→ Music & Audio→ Pop
Music would also be included in document sets for the depth-2
topic Arts & Entertainment→Music & Audio, the depth-1 topic
Arts & Entertainment as well as the depth-0 pseudo-topic ROOT.
All documents in the corpus are necessarily also assigned to
ROOT; the root LM therefore functions as a background LM.

2.2. Topic classification for videos

In addition to document classification, we also make use of
topic classification of individual videos in order to guide the se-
lection of LMs at decoding time. The multiclass classifier used
here is an implementation of prior work in taxonomic video
categorization that employs both textual and video content fea-
tures [12, 13]. Each video is assigned up to three topics that are
the most confident labels under the classifier.

3. Adaptation of Topic-specific LMs
Formally, we employ a generic taxonomy T of topic categories
Ct ∈ T , t = 1, . . . , |T |, each associated with a category-
specific LM denoted by Gt. Each candidate video v is assigned
topics from T \{ROOT}; we denote the set of category assign-
ments for v by C(v). Our goal is to produce an LM adapted to
C(v) at decoding time by estimating weights for linear interpo-
lation of the LMs associated with the topics in C(v).

3.1. On-demand LM interpolation

Given a set of m = |T | backoff LMs G , {G1, . . . , Gm}, a
vector of mixture weights λ , (λ1, . . . , λm)T and a vocabu-
lary Σ, a linear interpolation of G by λ is defined as the LMHλ

assigning the following conditional probability for word w ∈ Σ
given context h ∈ Σ∗.

pHλ(w|h) =

m∑
t=1

λt pGt(w|h) (1)

On-demand linear interpolation of G using (1) directly may be
inefficient because the model may need to back off several times
in up to m LMs for any given (w, h) pair. To address this,
the interpolated LM can be reformulated as a single backoff
model [14]:

pHλ(w|h) =

{∑m
t=1 λt pGt(w|h), if hw ∈ S(G)

f(λ,αh) pHλ(w|h′), otherwise
(2)

where αh , (αh(G1), . . . , αh(Gm))T is a vector of back-
off weights for the context h under every LM Gt, S(G) ,
∪m

t=1S(Gt) where each S(Gt) is the set of all unpruned
context-word sequences observed in the construction ofGt, and
h′ is the longest common suffix of h. Although a closed-form
expression for f(λ,α) exists in order to normalize the model
in (2) to be equivalent to (1), simpler approximations such as
f(λ,α) = λTα can be used in practice. Additionally, since
the set of models G is known in advance in our setting, S(G)
can be precomputed.

3.2. Supervised adaptation via nearest neighbors

Let U be a reasonably large training corpus consisting of videos
whose utterances have been manually transcribed. We now aim
to generate interpolation weights λ that can effectively lever-
age the information in U . Recall that interpolation weights are
not independent and so generating mixture weights λ(v) for an
unseen test video v cannot be reduced to estimating each com-
ponent λt(v) separately. Our approach relies on the assumption
that videos with similar topic classifications will yield similar
mixture weights. We therefore estimate weights for an unseen
video from its most similar transcribed videos, as determined
by a distance metric over the topic-based characterization.

The training corpus is first preprocessed to determine the
optimal mixture weights λ∗(u) for each training video u ∈ U .
Optimization is performed with a standard iterative EM-based
approach over the true transcript of u in which each λt(u) com-
ponent is set proportional to the fraction of the probability that
Gt contributes to the overall mixture:

λ
(i+1)
t =

1

n

n∑
j=1

λ
(i)
t pGt(wj |hj)∑m

r=1 λ
(i)
t pGr (wj |hj)

(3)

To avoid slow convergence when the number of LMsm is large,
we consider only a subset of the components of each λ(u) for
optimization. Specifically, we restrict λt(u) to be non-zero
only when Ct ∈ C(u) ∪ {ROOT}, i.e., at most four λt(u) are
non-zero. The inclusion of the ROOT category background LM
avoids limiting the decoding to potentially small LMs; instead,
the optimization procedure must capture how topic-specific a
given video is relative to the background model.

We indicate a video’s topic content by a vector of per-
category confidence scores su ∈ R|T | in which the t’th com-
ponent contains the confidence of the taxonomic classifier that
Ct ∈ C(u). The estimation of λ(v) , (λ1(v), . . . , λ|T |(v))T

for an unseen video v then proceeds in two steps:
1. Find the k training videos u1, . . . , uk ∈ U with smallest
d(sv, sui)

2. Set λt(v) =
∑k

i=1 βi λ
∗
t (ui) ∀t

where d(sv, sui) is a distance function between two topic char-
acterizations1 and β , (β1, . . . , βk)T is a vector of linear co-
efficients which can be set to preferentially weight the influence
of similar videos,2 i.e., setting βi ∝ 1/d(sv, sui). The first step
can be performed through either explicit search (for small U),
approximate search [15, 16] or locality-sensitive hashing [17].

3.3. Unsupervised adaptation to first-pass transcripts

Obtaining manual transcriptions for a sufficiently large train-
ing corpus of online videos can be both expensive and time-
consuming, prompting the question of whether interpolation

1sv ∈ R|T | in our implementation so we use Euclidean distance.
Potential alternatives include divergence measures for distributions and
learned metrics.

2We report results for a uniform β = 1k in our experiments.
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Figure 3: Proportion of topics in (a) the set of LMs G, as seen by
the aggregated size of LMs in terms of number of n-grams, and
(b) the total number of corresponding topic assignments in the
YouTube video corpus. Depth-1 categories are used to represent
the assignment of all their taxonomic descendents in both plots.

weights λ for topic-specific LMs G can be estimated without the
use of human-generated transcriptions. Our unsupervised adap-
tation strategy employs a two-pass approach to decoding. The
first pass is performed with a generic LM F which is built from
a large multi-domain document corpus. Interpolation weights λ
for each video are then optimized to maximize the likelihood of
the transcript xF generated in the first pass. A second decoding
pass is then performed with the interpolated model Hλ to yield
the final transcription.

Optimizing towards a noisy first-pass transcript is analo-
gous to the maximum likelihood linear regression (MLLR) ap-
proach for speaker adaptation in acoustic modeling [18]. We
assume that F correctly transcribes enough of a video’s utter-
ances on average to provide a reasonable signal of its topic con-
tent. Hλ is then adapted to better model this topic distribution.

Since optimizing a mixture of all |T | LMs is problematic
due to slow convergence, we only target mixture weights for
a subset of topics derived from C(v) and its taxonomic ances-
tors. We can also obtain taxonomic categories C(xF ) from the
first-pass transcript xF using the same text-based topic classi-
fier from §2.1; these topics provide a more direct characteriza-
tion of the language in the target transcription and can therefore
augment or replace those in C(v), which was produced by the
video classifier. This offers a robustness to inconsistent topic
semantics between the text classifier and the video classifier.

4. Experiments
The speech recognition system used was a speaker-adaptive sys-
tem using maximum mutual information (MMI) training, along
with MLLR and constrained MLLR (CMLLR) adaptation. For
interpolation experiments, we make use of a two-pass rescoring
framework in which word lattices obtained by decoding with
the generic LM F are rescored using on-demand interpolation
of the topic-specific LMs G with mixture weights λ.

4.1. Corpora

The vast majority of documents for building our first-pass LM
F were web pages obtained from a web crawl, but this model
also contained the manually generated transcripts of training
videos. We treated the first-pass LM as a black box as it had
been trained and used in a speech recognizer prior to this work.

The corpus on which we performed all our speech recog-
nition experiments is a set of YouTube videos containing news
broadcast–style material downloaded in 2008. Colleagues iden-
tified a fairly broad array of YouTube news “channels” from

Interpolation strategy WER Relative reduction from
F GROOT

First-pass decoding with F 34.64 0.00% -
Rescoring with GROOT 31.84 34.83% 0.00%
Supervised NN (k=10) 31.19 42.91% 12.40%
Optimization over 31.07 44.40% 14.69%first-pass transcript

Table 1: WER for proposed adaptation techniques. Relative
WER reduction from baselines is computed under the oracle
condition (see §4.2). Utterance-level and video-level gains from
adaptation are statistically significant compared to baselines at
p ≤ 0.05 under a paired t-test and Wilcoxon’s signed rank test.

which videos would be drawn. To ensure that both short and
long videos were well represented, videos from each channel
were sampled according to duration: the ith video was drawn
from a duration-sorted list of n videos according to the normal
distributionN (n

2
, s
√

n
2

), where swas a user-controlled scaling
factor. The corpus of sampled videos consisted of 3643 training
videos and 77 test videos, constituting roughly 200 hours of au-
dio. Videos were automatically segmented into short utterances
(158942 in total) based on pauses between speech. The audio
was transcribed at high quality by humans trained in the task.
Topic assignments for videos were obtained by taxonomic clas-
sification as described in §2.2; each video was automatically
assigned up to three categories based on classifier confidence
scores. We chose a corpus of news-like videos in order to dimin-
ish the factors of acoustic environment, sound effects and music
on our evaluation; however, the distribution of topic categories
obtained on our video corpus is quite diverse (see figure 3).

All LMs used for the second pass rescoring stage were con-
structed using a text corpus obtained from a very large random
web crawl performed in 2010. Each web document was cleaned
of extraneous material (such as HTML tags) and then passed
through an automatic filter to determine if the document was
primarily in English. The full corpus contains approximately
59 billion words. We follow the hierarchical strategy described
in §2.1 for building topic-specific LMs from this corpus. The
root topic LM GROOT, which is built from all the documents in
this collection, contains over 19 billion unique n-grams while
the smallest topic-specific LM contains in excess of 400K n-
grams. Every LM built was a 4-gram model using Kneser-Ney
smoothing, compactly encoded as an FST.

4.2. Evaluation

Table 1 lists word error rates (WER) for decoding experiments3

on the YouTube corpus described above. The baselines featured
are single-pass decoding with F and the two-pass rescoring
approach with the very large aggregate LM GROOT. The lat-
ter significantly outperforms naı̈ve topic-based techniques such
as rescoring with the single LM corresponding to the highest-
confidence assigned topic (WER 32.65) or with a confidence-
proportional interpolation of LMs for all topics assigned (WER
32.02). This LM therefore represents a strong baseline for adap-
tation strategies. Furthermore, the best-case (i.e., oracle) WER
from first-pass lattices is just 26.6; this high oracle error rate il-
lustrates the challenges posed by the YouTube video transcrip-
tion task. We account for errors introduced specifically by our
rescoring strategies (as opposed to oracle errors) when reporting
relative WER reduction from the baselines in Table 1.

Both adaptation strategies exhibit statistically significant

3For the supervised approach, interpolation weights for each train-
ing video were estimated using LMs associated with C(u) ∪ {ROOT}.
First-pass optimization for each video v used all LMs associated with a
combination of the C(v) topics from video-based classification, C(xF )
topics from text-based classification of the first-pass transcript, and all
their ancestors in the taxonomy.
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Topic selection First-pass True
strategy transcript transcript
C(v) ∪ {ROOT} 31.27
Ancestors of C(v) 31.28
C(v) ∪ C(xF ) ∪ {ROOT} 31.13 30.99
Ancestors of C(v) ∪ C(xF ) 31.07 30.98
Supervised NN (k=10) 31.24 31.13

Table 2: WER for unsupervised optimization using different
topic selection strategies and optimization targets (first pass vs.
true transcript).

GROOT by replanting forests that were cut down from my game
NN by replanting forests that were cut down for binding
Opt by replanting forests that were cut down for mining
GROOT the master springs was on the eastside you know the ignition
NN the master springs was only the start you know the ignition
Opt damascus springs was only the start you know the ignition

Table 3: Selected fragments of system-generated transcriptions
from the test corpus. Boldfaced words indicate errors.

absolute WER improvements (approx. 3.5 over F , 1.0 over
GROOT) at p ≤ 0.05 when averaging at the utterance level and
the video level. 65% of videos show a WER reduction of 1.3
on average over the stronger GROOT baseline using the super-
vised approach, while 56% of videos show an improvement of
1.7 on average with unsupervised optimization. 97% of videos
improve over the first-pass F baseline using either adaptation
approach. Table 3 shows some examples of the type of errors
addressed by the adaptation techniques.

Table 2 compares WER results for optimizing towards the
first-pass transcripts and human-generated gold transcripts on
the test corpus. Comparing just approaches for optimization
towards true transcripts, we observe that the inclusion of top-
ics from C(xF ) significantly improves WER. We speculate that
this is due to the topic selection better fitting the actual target
domain and bridging the gap between the semantics of cate-
gories for videos and categories for text. This may also account
for the relatively weaker performance of a hybrid method which
uses the supervised NN technique for selecting LMs: it doesn’t
make use of C(xF ) and only indirectly considers C(v).

Finally, the relatively small gains seen when optimizing to
the true transcript instead of the first pass (although significant
under Wilcoxon’s signed rank test at p ≤ 0.05) appear to sup-
port the hypothesis that noise in first-pass transcripts does not
preclude a reasonable topic characterization. This is also seen
in Figure 4 which shows only a slight average increase in WER
for utterances whose first-pass WER was near perfect (0–10),
and a decrease in all other cases.

5. Discussion and Conclusion
Our evaluation primarily considered basic scenarios but para-
metric adjustments will likely result in further WER gains. For
instance, the interpolated rescoring procedure ignores first-pass
lattice weights assigned by F in order to make rescoring dom-
inate the evaluation, but we have observed that permitting a
tradeoff between F and Hλ generally outperforms either stan-
dalone model. Similarly, tuning k and β would almost certainly
be beneficial. Analysis of per-utterance results, as in Figure 4,
shows that optimization over first-pass transcripts can perhaps
be further improved by leveraging the confidence scores associ-
ated with each hypothesis; we intend to explore this further.

In summary, we present two strategies for on-demand LM
adaptation for video transcription via lattice rescoring. These
approaches employ (1) Google’s general-purpose taxonomy of
topics, (2) text classifiers to build topic-specific LMs from web
data, and (3) video classifiers to determine the topic content
of videos. Our first approach utilizes training examples and a

Figure 4: Average absolute change in WER for test utterances
after rescoring, binned by WER after first-pass decoding.

nearest-neighbor algorithm to predict LM interpolation weights
for a new video. The second approach optimizes the interpola-
tion weights directly using the transcripts from first-pass decod-
ing. In addition to being simple to implement, the unsupervised
technique achieves the best performance in our experiments: we
obtain a WER of 31.1, an absolute improvement of 3.6 over a
single-pass baseline and a significant absolute improvement of
0.8 over rescoring with a single huge LM trained on all our data.
Relative to the best (oracle) WER obtainable from rescoring
(26.6), the latter improvement amounts to a 14.7% reduction
in WER. Further analysis suggests that these adaptation tech-
niques are fairly robust and well-suited to the YouTube corpus.
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