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ABSTRACT

Multi-Structured Models for Transforming and
Aligning Text

Kapil Thadani

Structured representations are ubiquitous in natural language processing as both the prod-

uct of text analysis tools and as a source of features for higher-level problems such as text

generation. This dissertation explores the notion that different structured abstractions offer

distinct but incomplete perspectives on the meaning encoded within a piece of text. We

focus largely on monolingual text-to-text generation problems such as sentence compression

and fusion, which present an opportunity to work toward general-purpose statistical mod-

els for text generation without strong assumptions on a domain or semantic representation.

Systems that address these problems typically rely on a single structured representation

of text to assemble a sentence; in contrast, we examine joint inference approaches which

leverage the expressive power of heterogenous representations for these tasks.

These ideas are introduced in the context of supervised sentence compression through a

compact integer program to simultaneously recover ordered n-grams and dependency trees

that specify an output sentence. Our inference approach avoids cyclic and disconnected

structures through flow networks, generalizing over several established compression tech-

niques and yielding significant performance gains on standard corpora. We then consider

the tradeoff between optimal solutions, model flexibility and runtime efficiency by target-

ing the same objective with approximate inference techniques as well as polynomial-time

variants which rely on mildly constrained interpretations of the compression task.

While improving runtime is a matter of both theoretical and practical interest, the flex-

ibility of our initial technique can be further exploited to examine the multi-structured

hypothesis under new structured representations and tasks. We therefore investigate exten-

sions to recover directed acyclic graphs which can represent various notions of predicate-



argument structure and use this to experiment with frame-semantic formalisms in the con-

text of sentence compression. In addition, we generalize the compression approach to ac-

commodate multiple input sentences for the sentence fusion problem and construct a new

dataset of natural sentence fusions which permits an examination of challenges in auto-

mated content selection. Finally, the notion of multi-structured inference is considered in a

different context—that of monolingual phrase-based alignment—where we find additional

support for a holistic approach to structured text representation.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Although natural language utterances are typically represented as an ordered sequence

of words, it is well-established that non-local structural relationships between words and

phrases are crucial to recovering the meaning encoded in a particular piece of text. Consider,

for example, the sentence: Alice called Bob in Caracas when she learned that her brother

was in trouble. Various structural annotations that can be drawn over this sentence using

standard computational techniques include (a) tag sequences such as the part of speech—

noun, past-tense verb, comparative adjective, etc—of each word, (b) dependency trees that

capture syntactic relationships between words, e.g., disambiguating whether Alice called

. . . in Caracas, or Bob [is] in Caracas, (c) predicate-argument structures such as frame-

semantic graphs that might represent call as a form of contacting with Alice playing the

role of communicator, Bob as an addressee and her brother was in trouble as a topic,

(d) sets of co-referent entities which might indicate that Bob and her brother refer to the

same entity, (e) relations over entities which can acknowledge a symmetric sibling relation

between Alice and Bob, and (f) discourse relations over clauses that would disambiguate

whether the she learned . . . clause has a causal or temporal relationship with the Alice

called . . . clause, among others.

Much research in natural language processing focuses on computational techniques to ro-

bustly (and efficiently) produce such annotations over text, in part because these structured

formalisms—whether motivated by linguistic theory or computational tractability—often

yield useful features for downstream text processing tasks. Furthermore, these structures
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also serve as practically useful abstractions of information within text for systems that

address high-level problems such as text generation (Belz et al., 2010) and machine trans-

lation (Koehn et al., 2003; Chiang, 2007; Chiang et al., 2013). However, because different

structured representations admit different factorizations over words and therefore different

features for statistical learning algorithms, empirical research is required to determine which

of these representations is most appropriate for any given problem or domain—a decision

that must be revisited as datasets are expanded and tools are refined.

This dissertation aims to explore the notion that the structured abstractions produced

by standard natural language analysis tools offer distinct but incomplete perspectives on

the meaning encoded within a piece of text, and that automated systems must consider mul-

tiple such perspectives in order to capture the complex, multilayered semantics of human

language. We formulate a variety of multi-structured inference1 approaches that simul-

taneously account for different representations of sentences—for instance, as an ordered

sequence of words as well as a tree of syntactic dependencies—in high-level problems such

as text-to-text generation and text alignment. Our research finds that pairing data-driven

supervised learning with the expressive power of multi-structured representations results in

rich models that inevitably surpass single-representation techniques in experimental eval-

uations, even when the latter are aided by hand-crafted linguistic rules. The techniques

investigated make minimal assumptions about language and domain and can consequently

be extended to additional structured representations or applied to new tasks without signif-

icant modification. Moreover, we consider the tradeoff between optimal solutions, runtime

efficiency and model flexibility throughout this investigation and develop or describe more

efficient variants of multi-structured inference that rely on approximate solutions or mildly

constrained interpretations of the problems under study.

1The inference, decoding or argmax problem refers to the task of generating the best output labeling for

a given input under a particular model parameterization. In this work, the input to inference is always text

and the output is one or more structured representations of text or an alignment between text segments.

See §3.2.1 for details.
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1.1 Multi-Structured Inference

Structured prediction problems are ubiquitous in natural language analysis. For instance,

the task of identifying the parts of speech—nouns, verbs, adjectives etc—of the words in a

sentence is usually treated as a sequence-labeling problem in which the per-word labels are

assumed to be interdependent, e.g., the phrase time flies could be jointly tagged as either

NN VBZ (as in “Time flies like an arrow”) or VBP NNS in “You must time flies in the testing

chamber”) but never as VBP VBZ. Structured output spaces are also integral to syntactic

representations which typically take the form of trees representing constituent hierarchies or

grammatical dependency relations between words, i.e., a potential dependency relationship

between two words cannot be established independently as it must not violate the tree of

dependencies between other words. In general, the defining feature of structured prediction

problems is the presence of complex output labelings which cannot be conveniently factored

into independent classification problems.2

Part-of-speech tag sequences and parse trees are just two forms of linguistic abstraction

over a raw stream of words from a vast vocabulary; other possible abstractions include

predicate-argument structures, expressions in first-order logic, entity-relation graphs and

clusters of coreferent entities and events. Automated systems to generate these annota-

tions over unseen text offer both a window into text understanding and, more concretely,

useful features for systems addressing higher-level natural language problems. For exam-

ple, the sentiment analysis problem is often viewed as a sentence-level classification task in

which lexical features take priority, but prediction performance has been shown to improve

significantly with models which take syntactic structure into account (Socher et al., 2013).

In this work, we seek to examine the representational power of such heterogenous text

abstractions by utilizing them for higher-level structured prediction tasks. These structured

formalisms, largely motivated by linguistic theories of syntax and semantics, are usually

manifested as category labels defined over one or more words in a sentence or as binary

relations between pairs of words. Consequently, we direct our attention to jointly modeling

2Despite the importance of structured prediction problems to natural language processing, a formal

definition is elusive in the literature. Daumé III (2006) §2.2.1 discusses the conditions under which a

problem might fall under the purview of structured prediction.
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the various graph structures—paths, trees, directed acyclic graphs, etc—that these abstrac-

tions are built on, which in turn inform the types of scoring functions that can be defined

over natural language text.

For instance, an obvious structural phenomenon in natural language text is the ordering

of words in a sentence. In English, altering the order of words can dramatically affect the

meaning and perceived fluency of a given piece of text, even when the rearranged words

share the same syntactic role, e.g., the widespread preference for big red ball as opposed to

red big ball. This phenomenon motivates the widespread use of n-gram factorizations—nth-

order Markov factorizations of a sequence of tokens—which are often used with probabilistic

language models (LMs) for scoring and decoding sentences. However, these factorizations

depend on unrealistic independence assumptions and cannot adequately account for the

non-local syntactic dependencies prevalent in real-world text.

This limitation can be partially overcome by considering text representations built on

syntactic structure such as a parse tree consisting of dependency relations between words.

An edge factorization of a dependency tree maintains modifier relationships—including

long-range dependencies—regardless of their ordering in the input sentence. However, de-

pendency structures by themselves cannot always be deterministically linearized to fluent

text and are often paired with LMs for this task (Bangalore and Rambow, 2000). In addi-

tion, syntax-based representations require the use of statistical parsing which can be noisy,

particularly when working with longer sentences and informal speech.

We hypothesize that both these structural perspectives—n-gram sequences and syntactic

trees—as well as other structured representations of text offer complementary views on the

meaning embedded within a sentence. Joint inference under these diverse structures might

therefore yield more robust and effective solutions to structured prediction problems over

natural language—analogous to the well-known advantages of multi-view learning (Xu et

al., 2013). In order to explore these ideas, we develop inference techniques which explicitly

account for multiple structural perspectives in the context of natural language tasks which

require the assembly of novel sentences and the alignment of related sentences. The following

section describes these tasks in detail.
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1.2 Tasks

We investigate the application of multi-structured inference in the context of discrimina-

tive structured prediction tasks wherein systems take natural language text as input and

produce a well-defined structured labeling under some learned model parameters. Specifi-

cally, we consider inference for text-to-text generation, in which the structured labeling to be

generated represents a complete sentence produced by some transformation of input text,

as well as text alignment, in which the labeling expresses the connection between two re-

lated pieces of input text. Both types of problems operate over natural language input and

produce outputs that can be directly interpreted by laypersons, thereby providing a useful

framework to compare structures used in text representation. In addition, these systems

have practical utility in a variety of applications such as abstractive summarization and

textual entailment recognition.

Our primary application for these ideas is in text-to-text generation systems that auto-

matically manipulate short pieces of text for various purposes—for instance, the compression

task requires sentences to be shortened significantly without losing their essential meaning

while fusion requires the merging of multiple related sentences in order to emphasize com-

mon information. The aim of inference for these tasks is the construction of fluent and

eloquent sentences from the words in the input text, thereby implicitly raising the question

of how sentences should be represented and scored.

Beginning with the well-studied single-sentence compression task, we describe a super-

vised text-to-text generation system which uses integer linear programming to simultane-

ously infer an optimal compressed sentence consisting of both a good ordering of input words

and a good syntactic parse tree over the words. This technique generalizes over many prior

approaches to the compression task and experimental evaluations indicate that it achieves

state-of-the-art performance without any need for carefully chosen linguistic constraints.

We also confront practical issues in trading off the efficiency and flexibility of inference

within the context of sentence compression. In addition to the exact inference approach

which uses integer linear programming, we investigate approximate inference algorithms

which recover good-enough solutions along with a practical improvement in runtime. When

further restrictions are imposed on the ordering and dependency structure of output com-
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pressed sentences, the multi-structured inference formulation also admits a dynamic pro-

gramming approach which offers both asymptotic efficiency and the ability to use higher-

order dependency features with no runtime overhead.

In addition, we exploit the flexibility of the basic integer linear programming formulation

for compression and extend it to additional structured representations and text-to-text

applications. For the former, initial work is presented on incorporating directed acyclic

graphs representing predicate-argument structures, allowing us to directly compare the

utility of syntactic and semantic representations under a task-based compression evaluation.

We further show how this single-sentence compression approach can be straightforwardly

extended to multiple input sentences—the sentence fusion task—and identify a novel corpus

of naturally-occurring sentence fusions which enables experimentation on this problem.

Furthermore, we note that this inference approach can also be generalized to other text-to-

text problems such as paraphrasing, simplification and error correction, although a deeper

consideration of these tasks is left to future work.

Finally, in addition to text-to-text generation, we also examine the utility of multi-

structured inference in text comparison—specifically, the problem of monolingual text align-

ment, a supervised task which involves pairing up fragments of text that convey identical

meaning in related sentences. Monolingual alignment is often used as a precursor to sen-

tence fusion and has direct application in higher-level pairwise problems like paraphrase

recognition and textual entailment recognition. As with the generation problems described

previously, we find that joint alignment over phrases in the input sentences and over the

dependencies in their parse trees is more robust than using either in isolation.

1.3 Broader Impact

The modern information age is marked by an unprecedented availability of vast amounts

of data on the World Wide Web that ranges widely in temporal scope (from historical to

real-time), subjectivity (from technical to anecdotal), veracity and style. Much of this in-

formation exists in the form of unstructured text intended for human eyes, while the sheer

volume of this content necessitates the use of automated techniques such as indexing and
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keyword search to help users identify relevant content. However, as mobile computing de-

vices have become pervasive in recent years, access to the web is increasingly accomplished

through interaction with small screens—often while users are multitasking—thereby em-

phasizing the need for automated systems that can understand and respond to users in

natural language.

Text-to-text generation techniques have the potential to make information access more

efficient and responsive, particularly in mobile computing scenarios. Tasks such as sentence

compression and sentence fusion are important components of abstractive text summariza-

tion with which text can be rewritten at the sentence level to suit the particular informa-

tion needs of a user. Similarly, paraphrasing and sentence simplification hold promise for

automated approaches that adapt output text according to the speaking preferences and

language proficiency of the user. A wide variety of applications fall under the paradigm of

text-to-text generation, ranging from editorial tasks like grammatical error correction and

headline generation to creative projects like poetry generation.

Looking forward, we envision these ideas coalescing into a single framework for text-to-

text generation that is capable of addressing many disparate tasks which involve the produc-

tion of fluent sentences. By pairing supervised learning with expressive multi-structured

inference algorithms, a wide variety of features, representations, learning techniques and

specific annotation tools can be compared in task-based evaluations. The use of a com-

mon architecture also invites the exploration of multi-task learning approaches that utilize

annotated data from different tasks in order to learn better models of human language.

Beyond the immediate aim of progress on real-world applications of text-to-text genera-

tion and monolingual alignment, our long-term goal is to advance the symbiosis between text

production and analysis. We anticipate that errors made by automated text transforma-

tion systems will provide insight into the relative benefits and weaknesses of different types

of analysis and perhaps even indicate areas in which new tasks or annotation efforts can

be focused. Furthermore, we offer a hypothesis that even potentially-noisy generated text

and its jointly recovered annotations may comprise useful training data for standard natu-

ral language structured prediction tasks, perhaps leading to novel semi-supervised learning

scenarios involving text-to-text tasks.
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1.4 Contributions

The broad contributions of our work include:

• Rich text representations: The combination of standard structured representa-

tions such as n-gram factorizations and dependency trees in our inference approaches

enables models to consider a rich set of features over phrases, syntactic relations and

other similar structures.

• A unified text-to-text framework: We present powerful inference techniques that

generalize over existing systems for supervised compression and fusion and can also

extend to other text-to-text problems with little modification.

• A multi-structured text aligner: In addition to text-to-text systems, we also

developed a supervised monolingual text alignment system which jointly produces

phrase-based and dependency alignments.

• Approximate inference strategies: In addition to exact inference approaches,

we describe an approximate multi-structured inference strategy which offers practical

speedups for applications in both text-to-text generation and alignment.

• New corpora: We produce a new, natural dataset for sentence fusion in order to

address annotation issues that have previously limited research in this task. In addi-

tion, we have developed and released an improved version of the alignment dataset of

Cohn et al. (2008) with corrected tokenization and annotations.

1.5 Overview

Our primary goal for this research is to explore rich and flexible inference approaches in

problems that bridge the gap between natural language analysis and generation. Chapter 2

provides background information and related work for the applications under study.

An exact multi-structured inference technique is introduced in Chapter 3 for the sentence

compression task. We use integer linear programs with flow-based constraints to assemble

an output sentence from the words of the input sentence under factorizations of n-gram

and dependency tree representations. When evaluating on supervised sentence compression
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tasks, we find that using a heterogenous output space to represent output text under both

structured representations improves significantly over using either in isolation.

Integer linear programming can be computationally expensive on large problems, raising

the question of whether we can sacrifice optimal solutions for a practical improvement in

runtime. In Chapter 4, we consider approximation strategies for the same task, using dual

decomposition to pair an exact inference approach under n-gram factorization with a linear

programming relaxation for syntactic structure. In experiments, this approach produces

runtime gains over the exact approach with a small loss in output quality.

Do efficient algorithms exist for multi-structured inference? Chapter 5 describes a dy-

namic programming approach to recover multi-structured compressions when output struc-

tures are restricted to order-preserving bigram factorizations and projective dependency

trees. This yields polynomial-time inference for multi-structured compression and conse-

quently significant runtime improvements over the less constrained inference formulations.

Furthermore, this approach also permits richer parameterizations over second-order depen-

dencies with no asymptotic overhead in runtime.

Can these techniques also address richer representations of textual meaning? In Chap-

ter 6 we revisit the flexible integer linear programming approach and propose a flow-based

constraint framework to recover optimal directed acyclic graphs, which can represent various

kinds of predicate-argument structure for inference in text-to-text problems. In addition,

we specifically examine the empirical utility of frame-semantic structures in the sentence

compression task.

Does this approach generalize to other text-to-text generation tasks? In Chapter 7, we

apply our inference framework to the sentence fusion task through additional features and

constraints that capture the support of words and concepts across input sentences. In order

to train models, we introduce a new corpus of natural sentence fusions drawn from datasets

intended for summarization evaluation. Our experiments indicate that multi-structured

inference proves advantageous in this setting as well regardless of the mechanism used for

content selection.

Are these ideas applicable to other natural language problems? Chapter 8 turns to

the problem of monolingual alignment between related fragments of text such as para-
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phrases and introduces an inference approach to jointly produce consistent alignments over

phrases and dependencies. We observe that the use of multi-structured output space leads

to improvements over standard phrase-based techniques on a dataset of manually-aligned

paraphrases from various sources.

Finally, we conclude with a discussion of the limitations of this research and directions

for future work in Chapter 9.
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Chapter 2

Background on Tasks

Monolingual text-to-text generation tasks can broadly be described as tasks that take nat-

urally occurring human language text as input and generate fluent output text, performing

some transformations that humans can (and do) perform naturally while writing and edit-

ing. This is broadly defined to include problems in the literature which involve:

1. Natural language text as input and output, specifically sentences or documents with-

out additional structure.

2. Transformations that rely only on the information provided in the input and generic

linguistic knowledge.

The second point above is needed to distinguish tasks that are normally considered as

text-to-text generation from information retrieval (IR) or question answering (QA) tasks.

These latter problems involve the retrieval of documents or sentences from a document

collection that are relevant to natural language queries or questions respectively. Although

the input and output in these problems does consist of natural language text, the document

collection must also be implicitly regarded as part of the input along with the query or

question; this structural differentiation between input components places these tasks outside

our operational definition of text-to-text problems. Under this definition, we would consider

query-based generation problems such as query-based fusion (Krahmer et al., 2008) to be

hybrid text-to-text/IR tasks.
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Sentence a Production was closed down at Ford last night for the Christmas period.

Sentence b Negotiations with union leaders remained stalled as assembly lines

wound down and are scheduled to resume in January.

Compression of a Production closed at Ford for Christmas.

Paraphrase of a Ford production was halted yesterday for the holidays.

Fusion of a and b Negotiations remained stalled as Ford production closed for Christmas.

Simplification of b
{ Negotiations with union leaders remained stalled.

They are scheduled to resume in January.

Table 2.1: Illustrative examples of some text-to-text operations.

Prior work in text-to-text generation has largely centered around a few specific problems

driven by application needs and data availability. Table 2.1 lists a few frequently studied

text-to-text operations. In this dissertation, we focus on inference techniques for sentence

compression and sentence fusion along with the related problem of text alignment which,

although not a generation task, is frequently used in text-to-text problems for corpus con-

struction, feature generation and evaluation. We describe these tasks and summarize prior

research in relevant areas below.

2.1 Sentence Compression

Sentence compression is a popular text-to-text generation problem in which an input sen-

tence must be transformed into a shorter output sentence which accurately reflects the

essential meaning of the input and also remains grammatically well-formed. The name

derives from an analogy to the general problem of lossy data compression in which the

size of the input—quantified here in the number of words or characters in a sentence—

must be reduced while preserving its essential characteristics—in this case, the most salient

information in the sentence.

The definition of sentence compression is somewhat analogous to document summariza-
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Input For the first time , archaeologists have been able to study in detail the tech-

niques used by post-medieval builders to construct the typical “ cob ” houses

for which the West Country is famous .

Compression For the first time , archaeologists have been able to study the techniques used

to construct “ cob ” houses .

Table 2.2: An example of human-generated extractive sentence compression from the compressed

news corpus of Clarke and Lapata (2007).

tion defined at the sentence level. Just as summarization is often reduced to a sentence

extraction problem in order to sidestep the challenges of fluent text generation, sentence

compression is typically formulated as a word deletion task in which an output sentence is

constructed by dropping tokens from the input sentence without any paraphrasing or re-

ordering. This deletion-based approach is also referred to as extractive compression by Cohn

and Lapata (2008) & Galanis and Androutsopoulos (2010) following the distinction between

extractive and abstractive approaches to document summarization. Table 2.2 contains an

example of extractive compression from a corpus of human-generated compressions.

Compression problems have received significant attention in recent years due to their

usefulness in document summarization as well as the increasing number of sources of com-

pression data for training and evaluation (Knight and Marcu, 2000; Clarke and Lapata,

2006b; Cohn and Lapata, 2008; Nomoto, 2009; Galanis and Androutsopoulos, 2011; Filip-

pova and Altun, 2013). With a straightforward task definition and minimal domain assump-

tions, compression is therefore seen as a fundamental problem for data-driven approaches

involving language generation.

2.1.1 Related work

Text-to-text generation tasks first emerged as techniques to achieve abstractive summa-

rization. An early notion of text-to-text generation was proposed by Dras (1997) in the

form of reluctant sentence paraphrasing under constraints of word length. Jing and McKe-

own (2000) analyzed human-generated summaries and reported that human summarization
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relied heavily on sentence reduction (Jing, 2000) and sentence merging.

Knight and Marcu (2000) created a dataset of extractive compression problems by align-

ing news documents to document abstracts from the Ziff-Davis summarization corpus, con-

sequently generating interest in supervised approaches to compression problems (Knight

and Marcu, 2002; Riezler et al., 2003; Turner and Charniak, 2005; McDonald, 2006; Unno

et al., 2006; Galley and McKeown, 2007; Nomoto, 2007; Cohn and Lapata, 2009). A larger

dataset of extractive sentence-level compressions within entire documents was produced by

Clarke and Lapata (2006b) for broadcast news transcriptions and later extended to written

news stories in Clarke and Lapata (2007); these have been used for most recent work on the

sentence compression task (Clarke and Lapata, 2006a; Cohn and Lapata, 2007; Filippova

and Strube, 2008a; Nomoto, 2009; Cohn and Lapata, 2009; Galanis and Androutsopoulos,

2010; Napoles et al., 2011a; Qian and Liu, 2014) as well as the experiments presented in this

dissertation. Other lines of research have also attempted to broaden the notion of compres-

sion beyond mere word deletion to incorporate paraphrases (Cohn and Lapata, 2008; Cohn

and Lapata, 2009; Nomoto, 2009; Galanis and Androutsopoulos, 2010; Marsi et al., 2010;

Ganitkevitch et al., 2011; Napoles et al., 2011a). Although we focus on the more common

extractive setting in this work, many of the inference techniques presented in the following

chapters can accommodate paraphrases and therefore remain viable for these abstractive

compression problems.

A wide variety of techniques have been explored for extractive sentence compression.

Of particular relevance to our work is McDonald (2006) which builds on Knight & Marcu’s

(2002) transition-based model and proposes a dynamic programming approach to recover a

bigram factorization of a compressed sentence. Clarke and Lapata (2006a) further extends

this idea by using integer linear programming to replace pairwise bigrams with trigrams

and enable unsupervised compression with a language model. Other recent work (Filippova

and Strube, 2008a; Galanis and Androutsopoulos, 2010) avoids n-gram factorizations and

instead uses dependency trees as representations of compressed sentences. We propose

inference strategies to generalize over both these n-gram and dependency-based techniques

in the multi-structured inference approaches presented in the following chapters.

Progress on standalone compression tasks has also enabled document summarization
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techniques that address both sentence selection and compression (Daumé and Marcu, 2002;

Clarke and Lapata, 2007; Madnani et al., 2007; Zajic et al., 2007; Gillick and Favre, 2009;

Liu and Liu, 2009; Martins and Smith, 2009; Berg-Kirkpatrick et al., 2011; Chali and Hasan,

2012; Genest and Lapalme, 2012; Woodsend and Lapata, 2012; Almeida and Martins, 2013;

Li et al., 2013; Molina et al., 2013; Morita et al., 2013; Qian and Liu, 2013; Wang et al.,

2013; Kikuchi et al., 2014; Li et al., 2014), with recent work formulating the summarization

task as joint sentence extraction and compression and often employing ILPs or Lagrangian

relaxation for constrained inference. Although we restrict the scope of this dissertation

to sentence-level compression techniques, our proposed approaches are compatible with a

number of these systems and we intend to extend them to the summarization setting in

future work.

2.2 Sentence Fusion

Sentence fusion is the general term applied to tasks which take multiple sentences as input

to produce a single output sentence. Just as sentence compression can be thought of as a

sentence-level analog to single document summarization, fusion serves as a sentence-level

variant of multi-document summarization. However, the term fusion has also been applied

to different tasks involving sentence combination over the years; for instance, in addition

to the combination of related sentences from different documents, it has also been used

to refer to the combination of contiguous or narratively cohesive sentences from a single

document (Daumé III and Marcu, 2004; Elsner and Santhanam, 2011).

Generic fusion of sentences has been noted to be difficult for humans to annotate

consistently, prompting doubt about whether the task is well-defined for automated sys-

tems (Daumé III and Marcu, 2004). However, the challenge of identifying salient content

in sentences with more than one predicate is also common to other tasks such as sentence

compression, as noted by McDonald (2006). This problem can be alleviated by introducing

external sources of salience such as in query-based sentence fusion (Krahmer et al., 2008)

or by using a stricter definition of the task, e.g., McKeown et al. (2010) find that untrained

annotators can consistently construct the union of all information in the input sentence.
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Input 1 The heavy-metal group Metallica filed a federal lawsuit in 2000 against Napster

for copyright infringement, charging that Napster encouraged users to trade copy-

righted material without the band’s permission.

Input 2 The heavy metal rock band Metallica, rap artist Dr. Dre and the RIAA have sued

Napster, developer of Internet sharing software, alleging the software enables the

acquisition of copyrighted music without permission.

Input 3 The heavy-metal band Metallica sued Napster and three universities for copyright

infringement and racketeering, seeking $10 million in damages.

Fusion Metallica sued Napster for copyright infringement

Table 2.3: An example of generic sentence fusion from the corpus described in §7.1.

Owing in part to the challenges in annotation, research in standalone sentence fusion

has been hampered by the lack of common datasets for the task. The crowdsourced fusion

datasets produced by McKeown et al. (2010) suffer from annotator errors while the Reuters

news dataset used for training the models of Elsner and Santhanam (2011) cannot be

distributed; moreover, both are limited to a few hundred instances and thus insufficient for

training models with rich sparse features. In §7.1, we outline the construction of a new

dataset of natural sentence fusions from summarization evaluation data, an example from

which is provided in Table 2.3.

2.2.1 Related work

Sentence fusion was introduced by Barzilay et al. (1999) and Barzilay and McKeown (2005)

in the context of multi-document summarization as a way to better capture the information

in a cluster of related sentences than just using the sentence closest to the centroid. This

approach to merging sentences follows human strategies for summarization as per the anal-

ysis of human-generated summaries presented in Jing and McKeown (2000). The definition

of fusion has since expanded to encompass other forms of sentence combination such as

the combination of two sentences—usually contiguous—from a single document (Daumé III

and Marcu, 2004; Elsner and Santhanam, 2011). In addition, although work on standalone
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sentence fusion problems has focused on a pairwise setting in which only two sentences

must be merged, research on combining sentence clusters has also been revisted under the

term multi-sentence compression (Filippova, 2010; Boudin and Morin, 2013; Tzouridis et

al., 2014). In addition, Cheung and Penn (2014) proposes a formulation for sentence en-

hancement problems in which information from dissimilar sentences is used to augment a

sentence using techniques similar to sentence fusion.

Other variations on the fusion task include the set-theoretic notions of intersection and

union (Marsi and Krahmer, 2005; McKeown et al., 2010), which forego the problem of

identifying relevance and are thus less dependent on context. Query-based versions of these

tasks have been studied by Krahmer et al. (2008) and have produced better human agree-

ment in annotation experiments than generic sentence fusion (Daumé III and Marcu, 2004).

McKeown et al. (2010) produced a crowdsourced corpus of intersections and unions which

we employed in preliminary experiments on inference for sentence intersection (Thadani

and McKeown, 2011b); however, the size and accuracy of this corpus was not sufficient for

supervised models studied here.

A popular strategy for fusion relies on merging the dependency trees of input sentences

to produce a tree-structured representation of the output sentence that must then be lin-

earized in a separate stage (Barzilay and McKeown, 2005; Filippova and Strube, 2008b;

Elsner and Santhanam, 2011; Cheung and Penn, 2014). In contrast, multi-sentence com-

pression techniques for sentence clusters generate output sentences as high-scoring paths in

a weighted bigram graph (Filippova, 2010; Boudin and Morin, 2013; Tzouridis et al., 2014).

As with sentence compression, we generalize over both n-gram and dependency-factored

output spaces in our inference strategy for sentence fusion.

2.3 Text Alignment

Textual alignment problems involve the identification of links between text fragments which

are effectively semantically equivalent in their respective sentences. Alignment tasks are

differentiated by the form of the text fragments that must be paired up: for instance, a

word alignment produces a matching over individual words whereas a phrase alignment
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Input 1 They discussed the aspects in detail and reached an extensive agreement.

Input 2 Both parties discussed the specific issues and arrived at a general consensus.

Alignment

They discussed the aspects in detail and reached an extensive agreement .

Both parties discussed the specific issues and arrived at a general consensus .

Figure 2.1: An example of phrase-based monolingual alignment drawn from the aligned paraphrase

corpus of Cohn et al. (2008). Solid lines indicate sure alignments while dashed lines indicate

possible alignments.

produces links between contiguous non-overlapping phrases in the input text as seen in

Figure 2.1. Although alignment problems are usually studied in the context of automated

machine translation (MT), monolingual alignment is useful in natural language problems

which involve pairs or groups of related sentences such as paraphrase and textual entailment

recognition.

Unlike compression and fusion, alignment is not a text-to-text generation problem but

often finds application in these tasks. For example, many techniques for fusion-like tasks

require word alignments to create dependency graphs (Barzilay and McKeown, 2005; Fil-

ippova and Strube, 2008b; Filippova, 2010; Boudin and Morin, 2013; Tzouridis et al.,

2014; Cheung and Penn, 2014) or generate them during inference (Elsner and Santhanam,

2011). Alignment approaches are also useful in automated corpus construction for text-

to-text tasks like sentence simplification (Bott and Saggion, 2011). Despite the utility of

monolingual alignment and the ubiquity of tools for the problem, little research has been

conducted into the tradeoffs between word or phrase-based alignment representations and

syntactic variants such as alignments of dependency edges—aspects that we aim to address

by developing a multi-structured inference strategy for text alignment which simultaneously

accounts for both these representations.
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2.3.1 Related work

Text alignment is a crucial component of machine translation (MT) systems (Vogel et al.,

1996; Och and Ney, 2003; Liang et al., 2006b; DeNero and Klein, 2008); however, the

general goal of multilingual aligners is the production of wide-coverage phrase tables for

translation. In contrast, monolingual alignment is often consumed directly in applications

like paraphrasing and textual entailment recognition; this task therefore involves substan-

tially different challenges and tradeoffs.1 Nevertheless, modern MT evaluation metrics have

recently been found to be remarkably effective for tasks requiring monolingual alignments

(Bouamor et al., 2011; Madnani et al., 2012; Heilman and Madnani, 2012)—even used

off-the-shelf with their default parameter settings.

Monolingual word alignment has been used for many natural language processing ap-

plications such as paraphrase generation (Barzilay and Lee, 2003; Quirk et al., 2004)

and variants of sentence fusion (Filippova and Strube, 2008b; Filippova, 2010; Boudin

and Morin, 2013; Tzouridis et al., 2014; Cheung and Penn, 2014). Token alignment ap-

proaches which are constrained by dependency structure have been used in tasks such as

sentence fusion (Barzilay and McKeown, 2005; Marsi and Krahmer, 2005) and redundancy

removal (Thadani and McKeown, 2008). Joint aligners that simultaneously account for the

similarity of tokens and dependency edges have also been explored (Chambers et al., 2007;

Chang et al., 2010; Sultan et al., 2014).

Monolingual phrase-based alignment was first tackled by the MANLI system of Mac-

Cartney et al. (2008) using simulated annealing for search. We subsequently expanded

upon this work in Thadani and McKeown (2011a) to enable exact inference and syntactic

constraints through integer programming, leading to the exploration of joint phrase-based

and dependency alignment presented in Chapter 8. Recent years have seen further advance-

ments in both word and phrase-based alignments using conditional random fields (Yao et

al., 2013a; Yao et al., 2013b) and in joint word and dependency alignment (Sultan et al.,

2014).

1An enumeration of these challenges in the context of textual entailment recognition is provided in

MacCartney et al. (2008).
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2.4 Other Related Tasks

Although this dissertation considers the application of multi-structured inference for com-

pression, fusion and alignment tasks, our techniques appear pertinent for various additional

text-to-text problems previously studied in the literature. A brief overview of the relevant

areas follows.

2.4.1 Paraphrase generation

Sentence-level paraphrasing is a task similar to sentence compression in which the constraint

of length reduction is replaced with one that mandates that the semantics of the original

sentence are preserved. Paraphrase construction generally relies on the application of lexical

or lexico-syntactic rules which are devised manually (McKeown, 1983) or harvested from

parallel or comparable corpora (Barzilay and McKeown, 2001; Bannard and Callison-Burch,

2005; Callison-Burch, 2008; Ganitkevitch et al., 2013). The application of these resources to

generate cohesive sentences has also been extensively studied (Barzilay and Lee, 2003; Pang

et al., 2003; Quirk et al., 2004; Zhao et al., 2009; Madnani and Dorr, 2010; Ganitkevitch et

al., 2011; Metzler et al., 2011).

Paraphrase generation techniques have application in natural language problems such as

question answering (McKeown, 1983) and machine translation (Madnani and Dorr, 2010)

and are useful in applications involving the preservation of author anonymity (Narayanan et

al., 2012). Although we do not address paraphrase generation directly in this dissertation,

all the inference techniques we investigate are capable of supporting simple lexical para-

phases while the approaches based on integer progamming can accommodate more complex

paraphrasing rules. In future work, we intend to adapt these techniques to standalone

paraphrase generation tasks and also incorporate paraphrase resources into compression

and fusion problems.

2.4.2 Sentence simplification

While sentence fusion addresses the problem of combining information from different sen-

tences, the goal of sentence simplification is to decompose complex sentences into simpler,
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single-predicate statements. Such transformations are used to improve content selection

tasks (Klebanov et al., 2004; Siddharthan et al., 2004) and also to tailor text according to

reading proficiency for the benefit of children and non-native speakers (Carroll et al., 1999).

Much work on simplification relies on manually devised lexico-syntactic rules (Sid-

dharthan, 2006; Siddharthan, 2010; Siddharthan, 2011). However, recent work in this

area has leveraged revision data from the Simple English Wikipedia2 in order to learn lex-

ical simplifications (Yatskar et al., 2010) or models for simplifying whole sentences using

MT systems (Zhu et al., 2010) and synchronous grammars (Woodsend and Lapata, 2011;

Angrosh and Siddharthan, 2014; Siddharthan and Angrosh, 2014).

2.4.3 Title generation

The title or headline generation task requires the production of a single sentence-length

summary (Banko et al., 2000; Zajic et al., 2002; Dorr et al., 2003; Soricut and Marcu,

2006; Woodsend et al., 2010) to characterize a document or serve as its title. This task

is closely related to sentence compression as evidenced by the use of document titles for

automatically generating compression targets in the construction of the corpus of Filippova

and Altun (2013). Although tasks that take an entire document as input and produce a

finite number of sentences as output necessarily put a greater emphasis on content selection

over the inference challenge of producing a fluent sentence, the techniques we propose are

generic enough to remain applicable in this setting.

Generic text-to-text generation has also been approached in the past with WIDL, a

symbolic formalism for phrase selection and reordering (Soricut and Marcu, 2005). This

has been successfully applied to MT decoding and headline generation (Soricut and Marcu,

2006) using a log-linear framework in which decoding involves the intersection of a prob-

abilistic finite state automaton with a language model (LM). Although our proposed ap-

proaches share the goals of this work in aiming to address generic text-to-text generation

tasks, they appear more flexible owing to their capability to incorporate rich structured

output including dependency trees and, in some cases, directed acyclic graphs for predicate-

argument structure as well as arbitrary global constraints on output text.

2Simple English Wikipedia: http://simple.wikipedia.org

http://simple.wikipedia.org
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2.4.4 Machine translation

Although text-to-text generation addresses strictly monolingual transformations, it shares

many challenges with automatic machine translation, one of the oldest and most studied

problems in the field of computational linguistics. MT tasks are generally formulated as the

problem of transforming a sentence in an input source language to a sentence in a different

target language that expresses the same meaning. Research in automated MT systems

encounters obstacles in phrase-based decoding and evaluation measures which are common

to text-to-text generation tasks such as paraphrase generation. The relative maturity of

MT tools has led to their use in monolingual tasks such as paraphrase generation (Quirk et

al., 2004; Madnani and Dorr, 2010) and sentence simplification (Zhu et al., 2010; Wubben

et al., 2012).

The techniques that we discuss in this work have connections with both traditional sta-

tistical MT approaches such as phrase-based MT (Koehn et al., 2003) and syntax-based

statistical MT techniques such as tree-to-string translation (Liu et al., 2006; Huang et al.,

2006; Huang and Mi, 2010). In particular, a number of approaches which have been pro-

posed to combine phrasal and syntactic models (Huang and Chiang, 2007; Rush and Collins,

2011) inter alia offer directions for future research into text-to-text generation. Recent work

on efficient graph transducers for semantics-based MT (Chiang et al., 2013) has prompted

an annotation effort for graph-structured semantic representations over entire sentences,

serving to motivate our initial exploration of semantic structures for multi-structured in-

ference in Chapter 6. Finally, automated evaluation of abstractive generation systems is

fraught with the same challenges as in MT and automated MT metrics such as BLEU (Pap-

ineni et al., 2002) and NIST (Doddington, 2002) are often used to quantify the performance

of text-to-text generation systems.

We now turn to the original research content of this dissertation, beginning with a supervised

approach for multi-structured sentence compression.
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Chapter 3

Multi-Structured Compression

Even though sentence compression is typically formulated as a token deletion task, it is

plainly evident that dropping tokens independently from an input sentence will likely not

result in fluent and meaningful compressive text. Tokens in well-formed sentences partici-

pate in a number of syntactic and semantic relationships with other tokens, so one might ex-

pect that accounting for heterogenous structural relationships between tokens will improve

the coherence of the output sentence. For this reason, compression systems often assemble

output sentences from larger units of text such as n-grams (McDonald, 2006; Clarke and

Lapata, 2008) or dependency relations (Filippova and Strube, 2008a; Galanis and Androut-

sopoulos, 2010). However, both these approaches depend on different structured output

spaces—a sequence of n-grams and a tree of dependency relations respectively—and there-

fore offer distinct advantages in generating fluent text.

In this chapter, we introduce a novel supervised framework for sentence compression

which employs a joint inference strategy to simultaneously generate sentences under both

structured perspectives—an n-gram sequence as well as a dependency tree.1 Sentence gen-

eration is treated as a discriminative structured prediction task in which rich linguistically-

motivated features can be used to predict the informativeness of specific tokens within the

input text as well as the fluency of n-grams and dependency relationships in the output

text. We then present a novel integer linear program that optimally solves the joint in-

1This is joint work with Kathleen McKeown. An early version of this research was presented in Thadani

and McKeown (2013a).
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ference problem by using the notion of commodity flow (Magnanti and Wolsey, 1994) to

ensure the production of acyclic trees and non-branching n-gram sequences that represent

an output sentence. The primary contributions in this chapter include:

• An inference formulation to recover the optimal compressed dependency tree in an

arbitrary directed graph.

• An inference formulation to recover the optimal n-gram-factored compression with

any n-gram size and arbitrary reordering of input tokens, unlike previous work which

is restricted to order-preserving bigrams and trigrams.

• A combination of the dependency-based and n-gram based inference techniques which

enables rich features for supervised compression that factor over both n-grams and

dependency relations.

These expressive models offer additional flexibility when compared to existing models that

compress via n-gram or dependency factorizations (McDonald, 2006; Clarke and Lapata,

2008; Filippova and Strube, 2008a; Galanis and Androutsopoulos, 2010), permitting both

arbitrary reordering as well as lexical substitution for paraphrasing. However, we do not

evaluate token reordering or paraphrasing here as the corpus described in the following

section features human-generated extractive compressions that preserve token ordering.

3.1 Compression Corpora

The first widely used corpus for research in sentence compression was constructed through

automated alignments of sentences within documents to corresponding abstracts in the Ziff-

Davis collection (Knight and Marcu, 2000; Knight and Marcu, 2002). However, some prop-

erties of this corpus have proved vexing for researchers interested in exploring compression—

most notably, the small size of the test set (32 compression instances), the lack of document

context for salience judgments in human evaluations and an aggressive compression rate

(47%) for the abstract sentences that fulfilled the criteria for inclusion in the corpus.

To address these limitations, Clarke and Lapata (2006b) employed human annotators to

produce compressions of all sentences within in a document. Annotators were restricted to

drop words when compressing text so the resulting sentences do not feature any reordering
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bn Input The White House says it was a bureaucratic mistake that occurred in 1993

when an Army staffer was detailed to the White House and he was updating

the list of people with clearance to enter the grounds here .

Compression 1 The White House says it occurred in 1993 when an Army staffer was detailed

to the White House updating the list of people with clearance to enter the

grounds .

Compression 2 The White House says it was a mistake that occurred in 1993 when an Army

staffer was updating the list of people with clearance to enter the grounds .

Compression 3 A mistake occurred in 1993 when an Army staffer was updating the list of

people with clearance to enter the grounds .

wn Input For the first time , archaeologists have been able to study in detail the tech-

niques used by post-medieval builders to construct the typical “ cob ” houses

for which the West Country is famous .

Compression For the first time , archaeologists have been able to study the techniques used

to construct “ cob ” houses .

Table 3.1: Examples of extractive sentence compression from the broadcast news (BN) corpus from

Clarke and Lapata (2006b) and the written news (WN) corpus from Clarke and Lapata (2007).

or paraphrasing of the words in the input, i.e., a compressed sentence is a subsequence of

its input sentence. Compressions were produced in this manner for the sentences in 50

broadcast news (BN) stories drawn from the HUB-4 1996 English Broadcast News Speech

corpus.2 In Clarke and Lapata (2007), this annotation effort was extended to 82 written

news (WN) stories from the British National Corpus3 and the LA Times and Washington

Post articles from the North American News Text Corpus.4 We use these datasets5 for all

compression experiments in this dissertation.

2HUB-4 1996 English Broadcast News Speech corpus: https://catalog.ldc.upenn.edu/LDC97S44

3British National Corpus: http://www.natcorp.ox.ac.uk/

4North American News Text Corpus: https://catalog.ldc.upenn.edu/LDC95T21

5The BN and WN compression datasets are hosted at http://jamesclarke.net/research/resources.

https://catalog.ldc.upenn.edu/LDC97S44
http://www.natcorp.ox.ac.uk/
https://catalog.ldc.upenn.edu/LDC95T21
http://jamesclarke.net/research/resources
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Each compression instance in these datasets consists of an input sentence from a doc-

ument accompanied by the human-authored compressions—three per instance for the BN

corpus and one each for the WN corpus. An example from each corpus is provided in

Table 3.1. We filtered both corpora to eliminate instances in which input sentences had

less than 2 tokens or more than 110 tokens6 in order to avoid parser failures. Using the

same training/development/test splits as the evaluations in Clarke and Lapata (2008), this

yields 880/78/404 compression instances respectively for the BN corpus and 953/63/603 for

the WN corpus. Finally, because syntactic structure is not annotated in this corpus, we

run the Stanford dependency parser7 over all sentences in the corpus and their reference

compressions as a surrogate for gold-standard dependency parse trees.

3.1.1 Corpus analysis

As a consequence of the variation between spoken and written language, the two corpora un-

der consideration pose distinct challenges for compression systems. The BN training dataset

features sentences containing 20.4 tokens on average, with short utterance fragments includ-

ing interruptions and greetings balanced by lengthy comma splices and run-on sentences.

In contrast, the WN corpus consists of formal, edited language but longer sentences—28.0

tokens on average—which are more liable to cause errors in statistical parsing as well as

data-driven compression. This motivates the use of separate compression models for these

two corpora.

Figure 3.1 shows the distribution of instances with respect to the number of tokens

dropped in the different reference compressions for the BN corpus and illustrates the varia-

tion in annotator decisions on compression over the same corpus. Nearly a quarter (23.6%)

of the longest references in each instance feature no compression at all,8 although two-thirds

of these instances were successfully compressed by at least one other annotator. We average

6These large sentences are rare and appear to originate from erroneous sentence segmentation in the

original datasets supplied to annotators.

7Stanford dependency parser: http://nlp.stanford.edu/software/

8Paraphrasing Knight and Marcu (2002), we retain these instances in the corpora for training and testing

in order that our systems learn not only what to compress but also when to compress.

http://nlp.stanford.edu/software/
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(c) Number of input tokens dropped by shortest reference (compression rate 66.3%)

Figure 3.1: Distribution of instances in the BN training dataset with respect to the number of

tokens dropped from the input sentence to produce (a) the longest reference compression, (b) the

reference compression of median length, and (c) the shortest reference compression.

our evaluation measures across all references provided by annotators in order to account for

the diversity of opinions regarding sentence compressibility.

Interestingly, the distribution of dropped tokens for the WN corpus in Figure 3.2 ap-

pears to follow that of the shortest reference from the BN corpus indicating that compression

over written news text is relatively aggressive. This is also indicated by the average number

of tokens dropped by reference compressions in the WN corpus (8.39) which is similar to

the number of tokens dropped by the shortest BN references (7.73). The average human

compression rate for a sentence is uncorrelated with the length of aggresively compressed
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Number of input tokens dropped by reference (compression rate 72.7%)

Figure 3.2: Distribution of instances in the WN training dataset with respect to the number of

tokens dropped from the input sentence to produce the reference compression.

sentences such as the WN references (Pearson’s r = 0.03) and the shortest BN references

(r = −0.02), mildly anticorrelated with the length of weaker compressions such as the

longest (r = −0.17) and median-length (r = −0.1) BN references, and moderately anticor-

related with the length of input sentences from both the BN corpus (r = −0.43) and the

WN corpus (r = −0.33).9

As the BN corpus has multiple references, we can also examine the agreement between

human-generated compressions. Table 3.2 enumerates the rate of preservation of content

words (nouns, verbs, adjectives, adverbs) and all words in reference compressions. We

observe that the majority of preserved words are shared across all reference sentences, with

more than 80% of nouns and verbs present in at least two. Annotators appeared to disagree

more frequently on adjectives and prepositions (60% present in at least two references)

and much more so with adverbs, which were dropped 40% of the time. Notably, at least

two references agree on their syntactic roots in 97% of cases, in part because head verbs

of the input sentence other than reporting verbs are typically preserved in compression.

This appears to indicate that the reference sentences of the BN corpus broadly agree on

the general information content to be preserved but also exhibit diversity when it comes to

preserving modifiers which encode finer-grained aspects of information.

Because the human-authored compressions in these corpora do not involve word reorder-

ing or paraphrasing, many prior compression techniques assume that the syntactic structure

9All correlations are reported at p < 0.05 where the null hypothesis assumes no correlation.
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bn
Words preserved in reference compressions %

Head verbs Verbs Nouns Adjectives Adverbs All

All 3 references 72.59 65.08 61.29 43.08 26.89 55.83

2/3 references 11.06 16.33 19.71 21.87 16.41 18.80

1/3 references 7.48 9.91 11.27 18.05 17.28 12.72

No references 8.88 8.68 7.72 17.00 39.42 12.66

Table 3.2: Percentage of content words and all words that are preserved in compressed sentences

by human annotators in the training portion of the BN corpus (Clarke and Lapata, 2006b).

of output compressions remains consistent with that of input sentences. For example, some

inference formulations draw the dependencies of output compressions from the dependency

tree of the input sentence (Martins and Smith, 2009; Filippova and Altun, 2013) while oth-

ers rely on a subtree-deletion model in which compressions are achieved solely by pruning

subtrees from a constituent parse tree of the input sentence (Berg-Kirkpatrick et al., 2011;

Qian and Liu, 2013).

To test this hypothesis, we compared the Stanford dependency parses of input sentences

to those of their human-authored compressions in the training portions of the Clarke and

Lapata (2006b) corpora. The results are enumerated in Table 3.3. For the WN corpus,

86.4% of all dependency edges from the dependency trees of reference compressions were

found to correspond to dependency edges in the input parse after normalizing for the length

of the compressed sentence. However, only 319/953 sentences had their reference depen-

dency trees wholly contained within the dependency tree of the input sentence, thereby

implying that only 33.5% of the instances were reachable under a subtree deletion model.

Similar results were seen for the BN corpus which has three human compressions—

often of different lengths—for every input sentence. 85.7% of dependency edges from the

Stanford dependency trees over reference compressions overlap with edges from the trees

over the corresponding input sentence after normalizing for sentence length. However, only

1270/2640 or 45.7% of the reference dependency trees were reachable using the edges in

input trees.10 When this measure is averaged over the three reference compressions for each

10These reachability statistics are commensurate with those reported by Qian and Liu (2014) who ran the
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Dep overlap % Reachability %

bn 85.65 30.00

wn 86.35 33.47

Table 3.3: Fraction of dependencies in Stanford parses of input sentences which are also present

in parses of reference compressions alongside the fraction of reachable instances—reference parses

contained entirely within input parses—from the BN and WN training datasets.

instance, only 30% of the reference dependency trees are reachable using the input trees.

These observations motivate a less restrictive approach to syntax in the compression

task. The multi-structured inference strategy presented in the following sections there-

fore considers all possible dependency relations for an output compression alongside other

structural representations of text.

3.2 Multi-Structured Compression

The text-to-text framework proposed here is motivated by the hypothesis that generating

fluent text involves a consideration of the diverse structural relationships between tokens

in both input and output sentences. Models for sentence compression often compose text

from units that are larger than individual tokens such as n-grams which must be assembled

into a valid factorization of a token sequence or dependency relations which are typically

organized as a tree. However, our investigation is motivated by the notion that both these

representations of a sentence—a sequence of tokens and a tree of dependency relations—may

be meaningful when considering its underlying fluency and integrity. In other words, an

approach for compressing a token sequence would benefit from simultaneously considering

the compression of its dependency representation and vice versa.

In this section, we discuss the problem of recovering an optimal compression from a

sentence as a linear optimization problem (cf. §3.2.1) over heterogenous structured outputs

(cf. §3.2.2) that can be assembled into a consistent representation of a sentence (cf. §3.3). In

non-projective MST parser (McDonald et al., 2005b) over the entire (Clarke and Lapata, 2006b) compression

corpus and noted that 47.6% the reference compressed sentences violated the subtree-deletion assumption.
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the following sections, we consider rich linguistically-motivated features over these substruc-

tures (cf. §3.4) for which parameters can be estimated via supervised structured prediction

(cf. §3.5). We then employ a widely-used dataset of sentence compressions to conduct an

experimental evaluation of this framework (cf. 3.6).

3.2.1 Compression as linear optimization

We begin with some notation. Consider a compression problem involving a source sentence

S from which compressions C can be constructed. The maximum a posteriori (MAP)

inference problem is the task11 of recovering the compressed sentence Ĉ which is the most

likely compression of S under some model parameters θ.

Ĉ , arg max
C

pθ(C|S) (3.1)

In a discriminative setting, the conditional probability above is replaced with a linear or

log-linear scoring function which is computed via features defined over S and C. Adopting

a linear scoring function denoted by ∆, we rewrite (3.1) as

Ĉ , arg max
C

∆(S,C)

= arg max
C

θ>φ(S,C) (3.2)

where we use φ(S,C) to denote some feature map over S and C, parameterized by a vector

of learned weights θ.

Let T , {ti : 1 ≤ i ≤ n} represent the set of tokens (including repetitions) in S and let

xi ∈ {0, 1} represent a token indicator variable whose value corresponds to whether token

ti is present in the output sentence C. Collectively, these indicator variables comprise the

incidence vector x , 〈x1, . . . , xn〉> which specifies an output token configuration equivalent

to some subset of T , i.e., the set of values of x ∈ {0, 1}n has a bijection with 2T .

Tractability in structured prediction problems involving text is generally achieved through

strong factorization assumptions. For instance, if we were to consider a simplistic bag-

of-tokens scenario in which sentences are viewed as collections of unordered tokens, we

11More generally, the goal of MAP inference—a form of Bayesian inference—is to identify the assignment

to every non-evidence random variable (given the evidence variables) that jointly maximizes the probability

defined by the model.
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can define a feature map φ—and consequently a compression score ∆—which factors over

the input tokens. The highest-scoring compression under (3.2) can therefore be expressed

as the token configuration that maximizes a linear combination of per-token scores, i.e.,∑
i xi ·∆tok(S, i) where ∆tok(S, i) , θ>tokφtok(S, i) denotes a feature-based scoring function

which measures the relative value of retaining token ti in a compression of S.

One consequence of these strong independence assumptions is efficient MAP inference.

An optimal token-factored compression can be trivially recovered in O(n) time by dropping

all input tokens ti which incur negative scores ∆tok(S, i). If output compressions are re-

quired to obey a predetermined compression rate,12 the highest-scoring compression can be

retrieved in O(n log n) time by sorting the input tokens by their scores. However, regardless

of efficiency, the strong independence assumption used in this scenario is clearly unrealistic:

a model that does not consider any relationship between output tokens cannot explicitly

account for the ordering of output tokens or ensure that the resulting sentence remains

grammatical.

3.2.2 Multi-structured objective

A natural solution to this problem is the inclusion of higher-order factorizations of linguistic

structures such as n-grams in the scoring objective from (3.2). For clarity of exposition, we

assume the use of trigrams without loss of generality. Let Y represent the set of all possible

trigrams that can be constructed from the tokens of S; in other words Y , {〈ti, tj , tk〉 : ti ∈

T ∪ {start}, tj ∈ T , tk ∈ T ∪ {end}, i 6= j 6= k} where the tokens in the output sentence

are preceded by the special token start and followed by the special token end. When the

order of tokens in the input must be preserved, the definition of Y can be revised to include

the constraint i < j < k for every potential trigram 〈ti, tj , tk〉.13 Following the notation

for token indicators, let yijk ∈ {0, 1} represent a trigram indicator variable for whether the

12The compression rate is the length of an output sentence normalized by the length of the input sentence,

generally expressed as a percentage. Fixed compression rates are often imposed in sentence compression

problems in order to avoid degenerate solutions (Clarke and Lapata, 2008) and have been shown to be

critical in fair evaluations of compression systems (Napoles et al., 2011b). See §3.3.3 for more details.

13This condition is imposed for all compression problems in this dissertation.
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sequence of tokens 〈ti, tj , tk〉 is contiguous in the output sentence. The incidence vector

y , 〈yijk〉〈ti,tj ,tk〉∈Y thus represents some subset of the trigrams in Y.

Similarly, let Z represent the set of all possible dependency edges that can be established

among the tokens of S, i.e., Z , {〈ti, tj〉 : ti ∈ T ∪ {root}, tj ∈ T } where the special

token root governs the head of the output dependency parse. As before, zij ∈ {0, 1}

represents a dependency indicator variable indicating whether tj is a direct dependent of ti

in the dependency structure of the output sentence, and the corresponding incidence vector

z , 〈zij〉〈ti,tj〉∈Z represents a subset of the edges from Z.

Using this notation, any output sentence C can now be expressed as a combination

of some token, trigram and dependency configurations 〈x,y, z〉. Defining ∆ngr and ∆dep

analogously to ∆tok for trigrams and dependency edges respectively, we rewrite (3.2) as

Ĉ = arg max
x,y,z

∑
i: ti∈T

xi ·∆tok(S, i)

+
∑
i,j,k:

〈ti,tj ,tk〉∈Y

yijk ·∆ngr(S, i, j, k)

+
∑
i,j:

〈ti,tj〉∈Z

zij ·∆dep(S, i, j)

= arg max
x,y,z

x>∆tok + y>∆ngr + z>∆dep (3.3)

where ∆tok , 〈∆tok(S, i)〉ti∈T is used to compactly denote the vector of token scores for all

tokens ti ∈ T and ∆ngr and ∆dep represent similar vectors of scores for all trigrams and

dependencies in Y and Z respectively.

The joint objective in (3.3) is an appealingly straightforward and yet fairly general

formulation for the compression task. An n-gram factorization y can be scored under prob-

abilistic n-gram LMs as in Clarke and Lapata (2008) while a compressed dependency tree

z can be scored using a rich set of syntactic features including dependency labels and part-

of-speech tags, similar to Filippova and Strube (2008a). However, unlike the bag-of-tokens

scenario described previously, optimal solutions for y and z cannot be recovered efficiently

due to their interdependence and the global nature of their underlying structures.14 Specifi-

14We discuss one particular constrained formulation for which efficient inference is possible in Chapter 5.
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cally, we need to enforce the following conditions in order to obtain a usable token sequence

from y:

• Trigram variables yijk must be non-zero if and only if their corresponding word vari-

ables xi, xj and xk are non-zero.

• The non-zero yijk must comprise a valid trigram factorization of a sentence in which

the underlying token ordering avoids disjoint, cyclic or branching structures.

Similarly, a well-formed dependency tree z will need to satisfy the following conditions:

• Dependency variables zij must be non-zero if and only if the corresponding word

variables xi and xj are.

• The non-zero zij must form a directed rooted tree with no cycles and all edges oriented

away from the root.15

Although we require that dependency variables z be consistent with trigram variables y, we

do not require constraints over both of them as long as they agree on the token configuration

in the output. The following section introduces our initial approach for recovering exact

solutions to this problem through the use of integer linear programming.

3.3 Compression via Integer Linear Programming

A linear program (LP) is an optimization problem of the form

max
x∈Rd

c>x

subject to Ax ≤ b

where x is a vector of real-valued decision variables of interest, c is a vector of corresponding

coefficients, and the matrix A and vector b impose arbitrary linear coefficients on the

15Such a structure is variously referred to as an out-tree, arborescence or branching in the graph theory

literature. However, the distinction between these directed structures and regular undirected trees is not

critical here owing to the rarity of the latter in natural language representations. We therefore follow the

terminology of the parsing community and simply use the more general term tree to refer to these directed

structures hereafter.
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permitted values of x. If the problem is feasible and bounded, the optimum is attained at

some vertex of the polyhedron that defines the constraint space. This property is exploited

by a number of well-known techniques to solve LPs including the simplex algorithm as

well as interior point methods which exhibit worst-case polynomial time complexity in the

number of variables and constraints.

If decision variables are restricted to integer values, i.e., x ∈ Zd, the problem is referred

to as an integer linear program (ILP).16 Solving an ILP is NP-complete in the general case

although there are some notable special cases: for instance, when the constraint matrix A is

totally unimodular17 and b is integer valued, the vertices of the constraining polyhedron are

all integral. In this case, the solution of the ILP is identical to that of its LP relaxation—the

LP formed by omitting the integer constraints on x—and this LP relaxation is said to be

tight.18

Despite their worst-case exponential time complexity, ILPs are extensively used in prac-

tice to model a wide range of real-world optimization problems. High-performance ILP

solvers—both free and commercial—are widely available and capable of recovering fast so-

lutions to large ILPs, generally by first solving an LP relaxation and then searching for

an integral solution using the branch-and-bound algorithm. Furthermore, the worst-case

complexity of ILPs is less prohibitive for sentence-level natural language problems in which

the number of variables and constraints is described by a low-order polynomial over the

length of a sentence. Consequently, recent years have seen ILPs used in many structured

natural language processing applications including dependency parsing (Riedel and Clarke,

2006; Martins et al., 2009), text alignment (DeNero and Klein, 2008; Chang et al., 2010;

Thadani and McKeown, 2011a), multi-document summarization (McDonald, 2007; Lin and

Bilmes, 2010) and a number of previous approaches to text-to-text generation including

16When some but not all of the decision variables are constrained to integer values, the problem is

sometimes referred to as a mixed integer linear program (MILP) in the optimization literature. We include

this class of problems in our usage of the term ILP.

17A matrix is said to be totally unimodular if the determinant of every square submatrix is in {−1, 0, 1}.
18Clarke and Lapata (2008) build on this notion by conjecturing that an ILP with a constraint matrices

with entries confined to {−1, 0, 1}—a necessary but not sufficient condition of total unimodularity—might

be more likely to yield integral solutions.
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paraphrasing (Dras, 1998), sentence compression (Clarke and Lapata, 2008; Filippova and

Strube, 2008a; Filippova and Altun, 2013), document compression (Martins and Smith,

2009; Clarke and Lapata, 2010; Berg-Kirkpatrick et al., 2011; Chali and Hasan, 2012;

Woodsend and Lapata, 2012), sentence fusion (Filippova and Strube, 2008b; Elsner and

Santhanam, 2011; Thadani and McKeown, 2011b), sentence simplification (Woodsend and

Lapata, 2011; Angrosh et al., 2014) and other similar tasks (Woodsend and Lapata, 2010;

Woodsend et al., 2010; Cheung and Penn, 2014).

3.3.1 Enforcing tree structure

We begin by considering the problem of defining constraints to ensure that the structure

specified by the dependency configuration z represents a valid tree and remains consistent

with the token configuration x. The following conditions must hold for any directed graph

structure to be a valid tree:

1. There is a single node at the root of the tree with no incoming edges.

2. Every non-root node must have exactly one incoming edge.

3. The structure has no cycles.

To satisfy the first condition and designate some token from T as the root of an output

tree, we include a special node—the root from the definition of Z in §3.2.2—which will

take it as a dependent. We address root as an auxiliary token t0 /∈ T in the constraints

below. Ensuring that the output dependency configuration z is rooted by a single token

from T can be accomplished with a simple constraint over all dependencies z0j governed by

root, restricting only one of them to be active19 in any solution to the ILP.

∑
j

z0j = 1 (3.4)

The second condition is similarly local to every token variable and its incoming dependency

edges. Each active token xj must be accompanied by exactly one active dependency zij

19A binary variable is active when assigned a value of 1 in the optimal solution to the ILP and inactive

when assigned a value of 0.
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while inactive tokens must have no active dependencies.

xj −
∑
i

zij = 0, ∀1 ≤ j ≤ n (3.5)

The above constraints do not preclude directed cycles in z. The final condition that output

structures be acyclic does not seem immediately enforceable due to its non-local nature,

i.e., the assignment of each dependency variable appears dependent on the remaining de-

pendency structure. This condition is equivalent to requiring that the structure be fully

connected, as noted by Magnanti and Wolsey (1994) who proposed LPs and ILPs which

recover optimal spanning trees in directed graphs by enforcing connected commodity flow

between all pairs of tokens. Martins et al. (2009) have exploited these flow formulations in

ILPs to recover non-projective and nearly-projective spanning trees for dependency parsing.

A similar intuition informs this work. Auxiliary variables γij are defined to carry some

real-valued dependency commodity between all pairs of tokens 〈ti, tj〉 where ti ∈ T ∪{root},

tj ∈ T and i 6= j. The flow network is made to correspond to the active dependency

configuration by constraining these variables to be zero whenever tj is not a dependent of

ti in the output sentence.

γij ≥ 0, ∀0 ≤ i ≤ n, (3.6)

1 ≤ j ≤ n, i 6= j

γij − Γmaxzij ≤ 0, ∀0 ≤ i ≤ n, (3.7)

1 ≤ j ≤ n, i 6= j

where Γmax is the maximum amount of flow that the γij variables may carry and serves

as an upper bound on the number of tokens in the output sentence. Because we use flow

to avoid cyclical structure and not to specify spanning trees, Γmax can simply be set to an

arbitrary large value.

In typical flow networks, nodes consume a fixed quantity of flow from their incoming

flow variables and transmit the remainder to their outgoing flow variables. Structural con-

nectivity can then be established by constraining flow to originate from a single source,

i.e., the root of the tree. However, unlike the spanning trees required in dependency pars-

ing (Martins et al., 2009), we cannot assume that all input tokens will participate in a

compression solution—indeed, such a scenario would imply a total absence of compression
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Production was closed down at Ford last night for the Christmas period .
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Figure 3.3: Dependency commodity values for a flow network accompanying a tree-based com-

pression solution. Dashed lines denote all non-zero flow variables γij .

in the output sentence. We therefore introduce per-token constraints to make only active

tokens consume flow from their incoming flow variables while ignoring inactive tokens.∑
i

γij −
∑
k

γjk = xj , ∀1 ≤ j ≤ n (3.8)

Figure 3.3 illustrates a flow network corresponding to a compression of the input sentence

“Production closed down at Ford last night for the Christmas period.” The seven active out-

put tokens must each consume a single unit of flow according to (3.8); therefore, seven units

of flow are drawn from root and routed to the active tokens through a connected structure.

Moreover, since (3.7) makes this flow structure isomorphic to the dependency configuration

z, the dependency constraints (3.4)–(3.5) preclude re-entrant edges and further constrain

the structure to be a directed tree. This is elaborated in the following propositions.

Proposition 3.3.1 A dependency variable zij is active iff the corresponding γij > 0.

Proof By (3.6) and (3.8), every active xj requires a positive total incoming flow
∑

i γij .

Because (3.7) ensures that each positive-valued γij is accompanied by an active

dependency variable zij and (3.5) requires an active token xj to have exactly one

active incoming dependency, it follows that zij is active iff γij > 0. �

Proposition 3.3.2 The token configuration represented by x is fully connected by z.

Proof For every flow variable γjk > 0, either tj ∈ T—in which case there exists some

incoming flow variables with flow
∑

i γij > γjk—or tj represents root which, by

definition, has no incoming flow. The auxiliary root is thus the only node in the

network with no constraint on outgoing flow (other than the Γmax limit). By (3.8),

active nodes reduce flow while inactive nodes don’t impact flow, so root is the only
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possible source of flow for the network. Active tokens in x must therefore draw a

directed path of positive flow from root.

Proposition 3.3.1 requires positive flow variables to be accompanied by active de-

pendencies so z must connect all active tokens in x to root. Moreover, since (3.4)

restricts root to have only one outgoing dependency, x remains connected by z

when root is disregarded. �

Proposition 3.3.3 The dependency structure specified by z contains no cycles.

Proof Assume that there exists an active cycle C composed of some subset of dependencies

which are active in z. We use TC ⊆ T ∪ {root} to represent the tokens which

participate in the cycle.

If C is a directed cycle (also known as a circuit) with all participating edges oriented

in the same direction, every token in TC has exactly one active incoming dependency

edge and thus root /∈ TC . By (3.5), these tokens cannot also have incoming depen-

dencies governed by tokens outside TC . The cycle thus remains disconnected from

root, violating Proposition 3.3.2.

If C is not a directed cycle, at least one token in TC would have more than one

incoming dependency and constraint (3.5) would be violated. Thus, C cannot exist

as a directed or undirected cycle and z is acyclic. �

Figure 3.4 represents this property visually. A cycle cannot be introduced through multiple

positive incoming flow variables on any token node because Proposition 3.3.1 ties those flow

variables to active dependencies and constraint (3.5) permits only one of these to be active

per token. Cycles that satisfy this constraint must be in violation of (3.8) which requires

all active tokens to consume flow. More generally, the following condition is sufficient

to prevent only directed cycles in flow networks regardless of whether multiple incoming

dependencies—and therefore undirected cycles—are permitted in the output.

Lemma 3.3.1 (Directed acyclicity) A flow network specified by constraints (3.6) and

(3.8) has no directed cycles if for all nodes 1 ≤ j ≤ n
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Figure 3.4: An illustrative flow network with edge weights indicating non-zero flow featuring (a)

consistent flow and no directed cycles, (b) a cycle that preserves flow but needs multiple incoming

edges (c) a cycle with one incoming edge for each node but consequently inconsistent flow.

min
i:γij>0

γij


≥ maxk γjk + xj , ∃i s.t. γij > 0

= 0, otherwise

(3.9)

Proof This condition holds trivially for inactive nodes because they have zero incoming

and outgoing flow according to (3.8). For any active node xj , the directed acyclicity

condition simply implies that every outgoing flow variable γjk will contain a smaller

amount of flow than any of its positive-valued incoming flow variables γij . In other

words, the amount of flow must strictly decrease as we traverse the flow variables

which a cycle, which is not possible for any cycle of finite length. �

Because (3.5) restricts every node to have only one incoming flow variable with positive

flow, the directed acyclicity condition in (3.9) is imposed on every token by constraint

(3.8). We exploit this property in Chapter 6 when extending the ILP to support semantic

parse structures which take the form of directed acyclic graphs.

In summary, the constraints (3.4)–(3.8) ensure that the dependency configuration z

specifies a rooted dependency tree. The resulting ILP remains fairly compact and re-

quires only O
(
n2
)

variables and constraints for an input sentence with n tokens. Ad-

ditional constraints can be introduced easily and enable various extensions ranging from

the linguistically-motivated rules of Clarke and Lapata (2008) to richer parameterizations,

e.g., §7.2.3 demonstrates that left and right attachments in the output can be parameter-
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ized separately without increasing the asymptotic size of the program. This ILP can also

straightforwardly be extended to produce labeled dependencies zbij where b ∈ B denotes a

dependency label by using O
(
n2|B|

)
variables and constraints.

3.3.2 Assembling valid n-gram factorizations

We now turn to the problem of enforcing structure in the n-gram configuration y. In the

first-order (bigram) scenario, this task reduces to ensuring that the output sentence forms

a directed path20 in an adjacency graph where each edge represents a bigram of adjacent

words in an output sentence. The following conditions would hold for any directed graph

structure to form a valid path.

1. There is a single start node with no incoming edges and one outgoing edge.

2. There is a single end node with one incoming edge and no outgoing edges.

3. Every non-terminal node must have exactly one incoming and outgoing edge.

4. The structure has no cycles.

Because a directed path can be viewed simply as a directed tree in which every node has

exactly one outgoing edge, we can employ flow variables and constraints similar to those

described previously in order to ensure that the output structure is acyclic. The remaining

conditions can then be generalized to n-gram variables of any order as long as all active

adjacent token nodes and the edges linking them form a path in the flow network. We

illustrate this approach with trigram variables yijk.

The first and second conditions above express the notion that a valid output sentence will

begin and terminate with exactly one token. We can enforce this through special nodes—

the start and end from the definition of Y in §3.2.2—that precede the first token and

follow the final token of a sentence respectively. In the constraints below, we treat start

as an auxiliary token t0 /∈ T 21 and end as an auxiliary token tn+1 /∈ T . The conditions

20We assume all paths are simple, i.e., they consist of an open walk in a graph with no repeated vertices

and edges.

21Although the root from §3.3.1 also uses the token index 0, it is of little consequence as start and root

never interact directly in constraints; they can be viewed as different names for the same node.
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can then be expressed by constraints that require exactly one active sentence-initial n-gram

variable y0jk and sentence-final n-gram variable yij(n+1) in the output.

∑
j,k

y0jk = 1 (3.10)

∑
i,j

yij(n+1) = 1 (3.11)

We generalize the third condition to n-grams of order µ by specifying that a token can

only be active in the solution when, for 1 ≤ p ≤ µ, there is exactly one active n-gram in

the solution which contains this token in position p. Note that this does not always hold

for n-grams of order µ > 2 due to the way terminal n-grams featuring start and end are

defined. For instance, in an output sentence “The cat sat on the mat.” the first word The

is in position 1 for the trigram The cat sat and in position 2 for the trigram start The cat

but does not appear in position 3 for any trigram. More generally, in a valid linear ordering

of tokens and ∀p ∈ 1 . . . µ − 2, there can be no n-grams that feature the last µ − p − 1

tokens in position p or the first µ − p − 1 tokens in position (µ − p + 1). However, this is

easily tackled computationally by assuming that the terminal n-gram replaces these missing

n-grams for near-terminal tokens, e.g., that the trigram start The cat features the word

The in both positions 2 and 3 for the example above. In the trigram case, this leads to the

following constraints for each token variable xj .

xj −
∑
i

yij(n+1) −
∑
k,l

yjkl = 0, ∀1 ≤ j ≤ n (3.12)

xj −
∑
i,k

yijk = 0, ∀1 ≤ j ≤ n (3.13)

xj −
∑
k

y0jk −
∑
h,i

yhij = 0, ∀1 ≤ j ≤ n (3.14)

The final condition which requires y to be acyclic can be enforced with a first-order flow

network identical to the one used to enforce a dependency tree for z. Auxiliary variables

γ′ij are defined to carry some real-valued adjacency commodity between all pairs of tokens

〈ti, tj〉 where ti ∈ T ∪ {start}, tj ∈ T ∪ {end} and i 6= j. The flow network is made to

correspond to active n-gram variables by constraining adjacency flow to be zero whenever
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Production was closed down at Ford last night for the Christmas period .
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Figure 3.5: Adjacency commodity values for a flow network accompanying a path-based compres-

sion solution. Dashed lines denote all non-zero flow variables γ′ij .

tj does not immediately follow ti in the output sentence.

γ′ij ≥ 0, ∀0 ≤ i ≤ n, (3.15)

1 ≤ j ≤ n+ 1, i 6= j

γ′ij − Γ′max

∑
k

yijk ≤ 0, ∀0 ≤ i ≤ n, (3.16)

1 ≤ j ≤ n, i 6= j

γ′jk − Γ′max

∑
i

yijk ≤ 0, ∀1 ≤ j ≤ n, (3.17)

1 ≤ k ≤ n+ 1, j 6= k

where Γ′max is an arbitrarily large limit on the flow that the γ′ij variables may carry. Finally,

active tokens consume adjacency flow in the same manner as they do dependency flow,

thereby ensuring that the n-gram solution y and the dependency solution z agree on the

tokens in the output compression.

∑
i

γ′ij −
∑
k

γ′jk = xj , ∀1 ≤ j ≤ n (3.18)

Figure 3.5 illustrates an adjacency flow network corresponding to the compression example

from the previous section. The flow constraints (3.15) and (3.18) produce a connected struc-

ture over x which is tied to the n-gram configuration y by (3.16)–(3.17) and consequently

coerced into a path by (3.10)–(3.14). This is demonstrated by the following propositions.

Proposition 3.3.4 An n-gram variable yijk is active iff the corresponding γ′ij > 0 and

γ′jk > 0.

Proof By (3.15) and (3.18), every active xj requires a positive total incoming flow
∑

i γ
′
ij .

Since (3.16) ensures that each positive-valued γ′ij is accompanied by an n-gram

variable yijk and (3.13) requires an active token xj to constitute the middle token in

exactly one active n-gram variable yijk, it follows that any yijk is active iff γ′ij > 0.



CHAPTER 3. MULTI-STRUCTURED COMPRESSION 44

The same reasoning can be employed for the final token xk of an active n-gram

variable yijk via (3.14) to complete the proof. �

Proposition 3.3.5 The n-gram configuration y forms a tree rooted at start.

Proof This follows via analogy to Proposition 3.3.3 which establishes that the dependency

configuration z forms an acyclic structure that is rooted at root using a similar flow

network. The constraints (3.13) and (3.14) are equivalent to (3.5) as they restrict

tokens to participate in only one incoming adjacency relationship. By substituting

start for root and n-grams y for dependencies z, Proposition 3.3.3 can be used

to establish that y forms an acyclic tree rooted at start. �

Proposition 3.3.6 The adjacency structure underlying y has no branches.

Proof Assume there is a branching structure in y and let xj denote the terminal node

in a branch off the main path (which terminates in end). By definition, there is

no active n-gram yij(n+1) such that xj is followed by end otherwise xj would be

part of the primary path and not a branch. Now, by (3.13), there must be some

active n-gram yijk in which xj occupies the central position. Therefore, xj cannot

be a terminal node in the branch and y must consist of a single non-branching path

terminating in end. �

The constraints (3.10)–(3.18) therefore ensure that the y represents a valid n-gram factor-

ization of a token sequence, or, more plainly, a sentence. For an input sentence with n

tokens, the resulting ILP requires O
(
n2
)

constraints over O
(
n3
)

variables—or more gener-

ally, O
(
nmax(2,µ)

)
variables when working with n-grams of order µ. We also note that the

notion of pairing a first-order flow network to higher-order n-gram variables can be extended

to support higher-order dependency variables in z as well.

3.3.3 Enforcing a compression rate

A crucial measure of automated compression approaches is the degree of aggressiveness

with which they reduce sentence content. Moreover, statistical approaches to the task often

admit explicit restrictions on the size of output sentences—a notion introduced in early
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efforts toward text-to-text generation (Dras, 1997; Dras, 1998). These restrictions can

sometimes be critical to compression systems; for instance, compression techniques based

on probabilistic language models rely on a lower-bound on output sentence size to avoid

producing empty compressed sentences (Clarke and Lapata, 2008).

The compression rate of an output compression is the ratio of the number of output

tokens or words to the number of input tokens,22 usually expressed as a percentage. Follow-

ing the variable notation above and using 1 to denote a vector of all ones, the compression

rate ω for an input sentence with n tokens is

ω ,
1>x

n
(3.19)

Until recently, it has been commonplace to simply report the intrinsic compression rates of

automated systems in task evaluations rather than explicitly restrict the length of output

sentences. However, a recent analysis of approaches to evaluating automated compression

systems (Napoles et al., 2011b) has shown a strong correlation between system-imposed

compression rates and human judgments of compression quality, thereby concluding that

comparisons of systems which compress at different rates are unreliable. Consequently, the

imposition of an extrinsic compression rate must be accounted for in any inference algorithm

for sentence compression.

In the ILP formulation described previously, the compression rate of a sentence can be

bounded to the range (ωmin, ωmax) via global constraints on the active token indicators.

∑
i

xi ≥ n · ωmin (3.20)

∑
i

xi ≤ n · ωmax (3.21)

The flow networks also implicitly impose an upper bound for output sentence lengths via

the coefficients Γmax and Γ′max which respectively limit the capacity of a dependency flow

variable in (3.7) and that of an adjacency flow variable in (3.16)–(3.17). Because only active

22This definition is equivalent to the reciprocal of the familiar compression ratio from the information

theory literature and is consequently an occasional source of confusion. It should be noted that systems

which compress text at a higher compression rate produce longer output sentences and thereby induce a

smaller degree of compression than otherwise.
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tokens consume flow and all terminal nodes—the leaves of z and end respectively—must

have zero outgoing flow, the assignments

Γmax = Γ′max − 1 , n · ωmax (3.22)

are equivalent to the constraint (3.21) above.

3.4 Features

As seen in §3.2.2, the scoring function that guides inference for compression is a linear

function over the feature map φ which is defined as a concatenation of feature maps for

each substructure, i.e., token features φtok, n-gram features φngr and dependency edge

features φdep. We expect that features in text-to-text generation problems will be broadly

similar and enumerate the potential categories that they might fall into below.

3.4.1 Feature categories

1. Salience: Good compressions might require specific words or relationships between

words to be preserved, highlighted, or perhaps explicitly rejected. This can be ex-

pressed through features on token variables or other substructures that indicate their

a priori salience for consideration in an output sentence. These can be composed

of external indicators of salience such as queries, contextual information such as the

tf*idf within a document collection or even syntactic information such as part-of-

speech (POS) tags or dependency labels; for example, the latter may help statistical

models determine whether head verbs are more relevant in compressions than relative

clause verbs or auxiliary verbs.

2. Fluency: Of paramount importance in any statistical generation task are features

that capture how the presence of a given substructure contributes to the overall fluency

of a sentence. Syntactic information such as POS context and dependency labels are

likely useful for such scenarios. Probabilities and log-likelihoods under LMs are also

reasonable candidates for fluency features.

3. Fidelity: One might expect that many substructures in the input sentence will appear

unchanged in the output sentence, e.g., §3.1.1 indicates that 85% of dependencies in
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reference compressions correspond to dependencies in the input sentence. This can be

leveraged by including binary features which indicate whether a substructure was seen

in the input. More generally, one might consider features that relate any substructure

to input substructures, e.g., whether a potential dependency edge links words which

were connected via a directed path in the input dependency tree.

4. Pseudo-normalization: A drawback of using linear models for generation problems

is an inability to normalize potential output structures by their size, as this would

lead to a non-linear objective function. However, we can invoke the MT strategy

of employing word penalty features for this purpose. These features take the form

of simple indicators for each substructure whose learned parameters are intended to

balance out the biases in output length which are induced by other features.

We now enumerate the specific feature templates used by the substructure feature maps

for the experiments in §3.6. These templates were tuned on the development portions

of the datasets described in §3.1 using the structured learning algorithm from §3.5.1. To

minimize training overhead and overfitting, we chose to avoid feature templates with a

high degree of conjugation and lexical features over open-class words;23 however, richer or

sparser templates may be preferable for different datasets or circumstances.24 Crucially, we

made an effort to ensure that the features over n-gram and dependency variables relied on

the same low-level signals (POS tags and Stanford dependency labels) and were roughly

commensurate in expressiveness so as to ensure a fair comparison between models based on

these features for the experiments described in §3.6.

In order to aid generalization, certain groups of fine-grained POS tags (nouns, verb,

adjectives, adverbs + particles, and wh-words) also induce coarse POS categories (N, V, J,

R and W respectively). Similarly, every dependency label also induces its ancestors in the

23We identify open-class word by their POS tags—expected to be members of the tag set for nouns (NN,

NNS, NNP, NNPS), verbs (VB, VBD, VBN, VBG, VBP, VBZ), adjectives (JJ, JJR, JJS), adverbs (RB, RBR,

RBS), cardinal numbers (CD) or interjections (UH).

24As an example, recent work by Qian and Liu (2014) employs rich lexical features with a reimplementation

of our multi-structured inference technique.
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hierarchy of Stanford dependency labels.25 Furthermore, the value of each scale-dependent

feature is recorded absolutely and also normalized by the length of the input sentence. This

is done in order to induce some robustness to sentence length variation in the models.

3.4.2 Token features

The feature templates used in the feature map φtok(S, i) for a token ti consist of the following

lexico-syntactic indicators:

• tj itself if tj is a function word (i.e., not an open-class word such as nouns, verbs,

adjectives and adverbs) for j ∈ i− 1, . . . , i+ 1.

• The POS of ti conjoined with the label of the dependency edge incident on ti in the

Stanford depedency parse of the input sentence.

• The POS tag of tj for j ∈ i− 2, . . . , i+ 2.

• The POS tag sequence of the segment 〈tj , tj+1〉 for j ∈ i− 2, . . . , i+ 1.

• The POS tag sequence of the segment 〈tj , tj+1, tj+2〉 for j ∈ i− 2, . . . , i.

as well as the following fidelity and morphological features:

• Whether ti appears in the input. This is always 1 for extractive compressions and

hence also serves as a token penalty feature for approximate length normalization.

• Whether ti is capitalized—a crude indication of whether it refers to a proper noun or

named entity.

• The relative position of ti in a sequence of capitalized words if it is capitalized.

• Whether ti lies within parentheses, a useful indicator of non-salience drawn from a

constraint by Clarke and Lapata (2008).

• Whether ti is a negation such as not or n’t.

Many compression systems (Clarke and Lapata, 2008; Filippova and Strube, 2008a) also use

a measure based on tf*idf which derives from the informativeness score of Hori and Furui

(2004), but we did not find this measure to be relevant in our development experiments.

25Stanford dependencies manual (de Marneffe and Manning, 2008): http://nlp.stanford.edu/

software/dependencies_manual.pdf

http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf
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3.4.3 n-gram features

We define feature templates that apply to n-grams of any order µ but illustrate them with

trigrams here. The feature templates used in the feature map φngr(S, i, j, k) for a trigram

〈ti, tj , tk〉 consist of the following lexico-syntactic indicators:

• tl if tl is a function word for l ∈ {i, j, k}.

• The POS tags of the tokens in the n-gram 〈ti, tj , tk〉.

• If the n-gram order µ > 2, the POS tags of all contiguous bigrams in the n-gram, e.g.,

〈ti, tj〉, . . ., 〈tj , tk〉.

• The labels of dependency edges incident on ti, tj and tk in the Stanford dependency

parse of the input sentence.

as well as the following fidelity and LM features:

• Whether the contiguous sequence 〈ti, tj , tk〉 appears in the input.

• If µ > 2, whether any of the bigrams 〈ti, tj〉, . . ., 〈tj , tk〉 appear in the input.

• The probability of 〈ti, tj , tk〉 under an LM.26

We did not observe improvement when using the log-likelihood of n-grams under an LM as a

feature—with or without normalization—despite this yielding the convenient interpretation

of scoring the output sentence under an LM.

3.4.4 Dependency features

The feature templates used in the feature map φdep(S, i, j) for a dependency edge 〈ti, tj〉

consist of the following lexico-syntactic and fidelity indicators for both participating tokens:

• tl if tl is a function word for l ∈ {i, j} conjoined with a binary indicator for the fidelity

of the dependency edge, i.e., whether the edge is present in the dependency tree of

the input sentence.

26We use an LM trained with Kneser-Ney smoothing over the Gigaword 3 corpus distributed by the LDC

at https://catalog.ldc.upenn.edu/LDC2007T07 using the SRILM toolkit (Stolcke, 2002) available from

http://www.speech.sri.com/projects/srilm/.

https://catalog.ldc.upenn.edu/LDC2007T07
http://www.speech.sri.com/projects/srilm/
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• The POS tag of ti conjoined with the POS tag of tj as well as the fidelity of the edge

and its orientation, i.e., sign(tj − ti).

• The POS tags of the input tokens lying between ti and tj conjoined with the POS tag

of the dependent token tj as well as its fidelity and orientation.

• If the dependency edge 〈ti, tj〉 is present in the parse of the input sentence, the label

of that edge.

as well as features to indicate the likelihood of the dependent tj appearing in the output:

• The POS tag of tj conjoined with the label of its incoming dependency in the input

dependency tree.

• The POS context of tj indicated by the POS tags of the tuples 〈tj−1, tj〉, 〈tj , tj+1〉

and 〈tj−1, tj+1〉.

Various additional features including indicators which considered chunk boundaries and

paths between tokens in the input dependency tree offered at best inconsistent improvements

and were disregarded in our final experiments.

3.5 Parameter Estimatation

We approach the problem of sentence compression as a supervised structured prediction

task, assuming the availability of a training dataset D consisting of tuples 〈S,Cref〉 repre-

senting an input sentence S and a reference output compression Cref for each compression

problem. Let Ĉθ indicate the best compression hypothesis recovered under the linear objec-

tive from (3.3) with some parameterization θ. The learning problem is the task of recovering

parameters θ∗ which minimize the expected loss over D given an appropriate loss function

L(S,Cref, Ĉθ). Assuming the loss function is meaningful in penalizing poor compressions

and our training sample adequately captures the true distribution of compression problems,

learned parameters which minimize this expected loss over the training dataset may also

be effective for recovering good compressions of new sentences.27

27These are naturally rather strong assumptions which rarely apply to real-world datasets. A wide variety

of statistical learning techniques have been developed with the sole aim of improving generalization when

training data is small or noisy, e.g., parameter regularization, max-margin techniques, etc.
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3.5.1 Structured perceptron

We rely on a variant of the structured perceptron of Collins (2002) for all experiments de-

scribed in this dissertation. A sketch of the training procedure is provided in Algorithm 1.

The perceptron algorithm of Rosenblatt (1958) was originally developed for binary classifi-

cation problems and recovers parameters that correctly classify all training examples in a

bounded number of iterations if the data is linearly separable in the feature space. Collins

(2002) generalizes the perceptron to the structured prediction setting—in which it targets

0/1 loss—and also proposes averaging the parameters from every iteration of perceptron

training as an approximation of the voted perceptron (Freund and Schapire, 1999) which

takes advantage of data that is linearly separable with large margins. Perceptron-based

approaches are relatively simple to implement, can be easily parallelized (McDonald et al.,

2010; Zhao and Huang, 2013), require no hyperparameters to be tuned and accommodate

convenient optimizations for approximate inference.28 Regardless, the inference techniques

we describe can also be used with other structured learners.29

In our implementation of the structured perceptron, training examples are grouped into

minibatches within which inference can be parallelized—this preserves the mistake bound

guarantee and often speeds up convergence (Zhao and Huang, 2013). For the experiments

in §3.6, we use minibatches of size 4 in a load-balancing approach, i.e., every minibatch is

assigned instances of similar size in order to minimize processor idle time. The learning

rate is kept constant and performance is monitored over held-out development corpora in

order to tune features and prevent overfitting on the training dataset.

3.5.2 Deriving features for reference compressions

The learning algorithm requires the computation of features φ(S,Cref) over one or more

reference compressions for parameter updates, which in turn requires the substructures—

28When inference takes the form of inexact search, early-update (Collins and Roark, 2004) and max-

violation (Huang and Feyong, 2012) strategies can be used to speed up convergence.

29Popular alternatives encountered in the text-to-text generation literature include max-margin techniques

such as the structured SVM (Tsochantaridis et al., 2004) and MIRA (Crammer and Singer, 2003; McDonald

et al., 2005a), which can also utilize the k-best inference hypotheses for each parameter update.
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Algorithm 1 Structured perceptron with parameter averaging (Collins, 2002)

Input: training dataset D, feature map φ, number of epochs e, learning rate

schedule η ∈ Re

Output: vector of learned parameters θ

1: θ(0) ← 0|φ|

2: k ← 0

3: for epoch i in 1, . . . , e do

4: for instance 〈S,Cref〉 ∈ D do

5: Ĉ ← arg maxC θ>(k)φ(S,C)

6: if Ĉ 6= Cref then

7: θ(k+1) ← θ(k) + ηi

(
φ(S,Cref)− φ(S, Ĉ)

)
8: k ← k + 1

9: if converged then break

return average weights 1
k

∑
j θ(j)

tokens, n-grams and dependencies—present in Cref to be resolved to the substructures

derived from S, i.e., those indicated by x, y and z variables. In other words, a unique

derivation of the reference compression is necessary in order for the training procedure

to determine the relative merit of every feature in reproducing this compression. However,

recovering such a derivation can be challenging because of the ambiguity inherent in relating

output tokens to input tokens.

In the general case when unique derivations are not easily recoverable for a reference

sentence, the learning algorithm can be revised to incorporate latent variables which indicate

the derivation (Liang et al., 2006a). However, in text-to-text generation tasks like sentence

compression, a unique derivation can simply be identified by inducing a monolingual token

alignment from the output text to the input text and inferring corresponding alignments for

larger substructures. Moreover, in an extractive compression setting with no paraphrasing

or reordering, we can forgo sophisticated alignment techniques such as those described in

§2.3.1 in favor of a simple multi-phase approach which progressively reduces the ambiguity

of a token mapping. We consider four phases:
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1. Lexical overlap: First, we iterate through the reference tokens in Cref and, for each,

identify all matching tokens in S. If any reference token has more than one match,

the derivation remains ambiguous and the following steps are considered.

2. Monotonicity: In the extractive compression scenario, we can assume that there is

no reordering of input tokens in the output sentence and can therefore filter out all

mappings which violate this assumption. This is accomplished by iterating over all

reference tokens and ensuring that each maps to an input token with an index greater

than at least one of the input tokens mapped to by the previous reference token.30

This step is skipped in text-to-text problems for which reordering is possible such as

the sentence fusion approach discussed in Chapter 7.

3. Syntactic overlap: We then iterate over the ambiguous tokens and consider their

syntactic governors in their respective dependency trees. If the governors of the refer-

ence token and one of its potential input matches are already aligned, the two tokens

are also paired up. If this does not resolve all remaining ambiguities, we proceed to

the following step.

4. Contextual overlap: The remaining ambiguous reference tokens are iterated over

once again. For each of these, let Mp ⊂ T indicate the set of input tokens which

are already matched unambiguously to reference tokens and appear within a context

window of size p around a potential match for some token tref from Cref. Of all

potential input matches for this reference token, the preferred match is the one with

the minimum total distance—measured in tokens—between input candidates that

match tref and all aligned tokens inMp. This step is repeated for increasing values of

context window size 1 ≤ p ≤ 15. Like monotonicity, contextual overlap is assumed to

be unreliable whenever input tokens may be reordered.

Ambiguous token mappings were rare after these steps. In the training partitions of the

Clarke and Lapata (2006b) datasets, the few remaining ambiguous mappings consist of un-

resolvable punctuation and determiners surrounding dropped phrases as shown in Table 3.4.

In these cases, we simply average the features of every possible reference derivation.

30If a particular token mapping is resolved in any step, the participating input token is removed from

other ambiguous mappings.
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Input Lawyers representing the nuns from the Our Lady of the Passion Monastery

, Daventry , Northamptonshire , were yesterday granted a judicial review

of the Ministry of Agriculture order to slaughter the chickens .

Compression Lawyers representing the nuns from Our Lady of the Passion Monastery ,

were granted a review of the Ministry of Agriculture order .

Table 3.4: An example of mapping ambiguity between the tokens in an input sentence and its

reference compression from the WN corpus of Clarke and Lapata (2006b). Faded tokens in the

input sentence indicate those dropped from the reference compression. The circled comma in the

reference compression may be resolved to any of three commas in the input sentence.

3.6 Experiments

In order to evaluate the performance of the multi-structured compression framework, we

ran compression experiments over the broadcast news (BN) transcriptions and written news

(WN) documents collected by Clarke and Lapata (2006b) and Clarke and Lapata (2007)

respectively. As described in §3.1, the BN corpus contains 880, 78 and 404 compression

instances for training, development and testing respectively, where each instance features 3

human-authored reference compressions of an input sentence after filtering out single-word

sentences and sentences longer than 110 words. Similarly, the WN corpus consists of 953,

63 and 603 compression instances respectively after the same filtering procedure, although

each of these instances have only one reference compression.

As these corpora do not include paraphrasing or word reordering, we follow evaluations

in machine translation as well as previous work in sentence compression (Unno et al., 2006;

Clarke and Lapata, 2008; Martins and Smith, 2009; Napoles et al., 2011b) in evaluating

system performance with automated measures against reference compressions, specifically

F1 measures over n-grams and of the unlabeled dependency edges in the output dependency

tree z. We also report F1 of dependency edges produced by parsing system output with the

Stanford parser as well as the Robust Accurate Statistical Parsing (RASP) toolkit (Briscoe

et al., 2006).

In particular, evaluations based on F1 over RASP grammatical relations are frequently
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used in sentence compression research following the observation by Clarke and Lapata

(2006b) that this measure correlates well with human judgments of compression quality.

Eliciting 20 judgments per compressed sentence, they report a correlation of 0.532 over a

60-compression sample from the BN corpus (20 instances × 3 compression techniques) and

a correlation of 0.575 on a similarly sized sample from the Ziff-Davis corpus. The result

with RASP F1 strongly outperforms simple string accuracy, an edit-distance measure pro-

posed as a baseline metric for natural language generation (Bangalore et al., 2000) and

is relatively close to the correlation between human raters elicited through leave-one-out

resampling: 0.746 on the BN corpus and 0.679 on the Ziff-Davis corpus. Clarke and Lap-

ata (2006b) recommend the RASP toolkit because of its ability to parse both full sentences

and sentence fragments as well as its robustness in analyzing semi-grammatical compression

outputs. Furthermore, unlike n-grams and Stanford dependencies, RASP structures are not

used to generate features and are not considered in our inference objectives. We therefore

view RASP F1 as the primary measure of system performance in these evaluations.

Without a priori compression rate restrictions, different techniques yield output sen-

tences of different lengths. For comparing different compression systems, the standard

practice in early compression literature has been to simply report the average intrinsic

compression rate of each system under study. However, in a survey of evaluation methods

for sentence compression, (Napoles et al., 2011b) identify a strong correlation between a

system compression rate and human judgments of compression quality and conclude that

comparisons between systems which compress with different degrees of aggressiveness are

not adequate to characterize their relative performance. Consequently, all our experiments

impose a restriction on the compression rate of an output sentence to ensure that observed

differences between the systems under study are meaningful. Rather than use a fixed com-

pression rate for the corpus, we choose to restrict output sentences to be the same length as

the reference compression accompanying each input sentence. For the BN corpus—which

contains 3 references per instance—the the median reference compression rate is usually

targeted for experiments, although we also examine the shortest and longest reference com-

pression rates in §3.6.4.

The following sections describe specific experiments over these corpora. All ILPs were
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solved with Gurobi 6.0,31 a high-performance commercial-grade solver under active develop-

ment. We follow Martins et al. (2009) in using LP relaxations of all ILPs for quick inference

during training, assuming algorithmic separability (Kulesza and Pereira, 2007) for these

compression problems.

3.6.1 Joint inference

The primary hypothesis we consider in this evaluation is whether the use of multiple struc-

tural perspectives and joint inference offers performance gains in the compression task. In

order to address this, we use the automated measures and experimental environment de-

scribed above to compare systems that rely on just n-gram or dependency structures as

well as joint models that incorporate both structures. We consider one examplar of each of

these categories as well as an unsupervised baseline as enumerated here.

• LM-3gr: A reimplementation of the mostly unsupervised32 ILP of Clarke and Lap-

ata (2008) which infers order-preserving trigram variables parameterized with log-

likelihood under an LM and a tf*idf -based significance score for token variables

inspired by Hori and Furui (2004). In addition, this model incorporates several

targeted syntactic constraints based on grammatical relations derived from RASP

parses (Briscoe et al., 2006) designed to encourage fluent output.

• DP-2gr: A reimplementation of the path-based dynamic program of McDonald (2006),

which is described in detail in §4.1.2.33 As an exact inference technique, this is equiv-

alent to the ILP described in §3.3.2 for bigram variables (µ = 2) albeit with a poly-

nomial runtime bound for inference.

31The Gurobi solver is available with restricted and academic licensing at http://www.gurobi.com.

32Although the main components of this system—the LM, a heuristic significance score and linguistically-

motivated constraints—are all produced without an annotated corpus, a single parameter is tuned to trade

off the LM score with the significance score.

33For consistent comparisons with the other systems, our reimplementation does not include the k-best

inference strategy presented in McDonald (2006) for learning with MIRA. We note, however, that ILP-based

inference can also be made to yield k-best solutions via cutting planes as described by Clarke and Lapata

(2008), albeit with runtime increased by a factor of k.

http://www.gurobi.com


CHAPTER 3. MULTI-STRUCTURED COMPRESSION 57

• ILP-dep: The ILP described in §3.3.1 for inference of edge-factored dependency struc-

ture along with constraints for imposing a compression rate from §3.3.3, excluding

n-gram variables and their corresponding features.

• ILP-2gr-dep: The joint inference approach which combines the constraints from

§3.3.1 to produce an edge-factored dependency tree with §3.3.2 to yield a bigram-

factored token ordering for the output sentence. We opt to use only bigrams for this

evaluation so that the ILP remains compact and scales quadratically with the size of

the input sentence.

Table 3.5 contains the results for these systems on the BN test dataset which contains 404

instances, each with three human-authored reference compressions. These reference com-

pressions may be identical or may vary in both length and content as shown by the example

in Table 3.1. In order to account for different perspectives on compression, we generate a

separate instance from each reference compression when training, i.e., our training dataset

consists of 3 x 880 compression instances.34 At test time, we average the per-instance eval-

uation measures with respect to reference sentences and restrict the output sentence to the

median reference sentence length, resulting in an average compression rate of 77.26% over

the BN test dataset.

We observe a significant gain for supervised systems under all measures of quality against

the mostly unsupervised LM-3gr approach of Clarke and Lapata (2008). The latter approach

relies on numerous linguistically-motivated constraints35 to enforce fluency in the output

34In our development tests, an alternative approach in which each original compression instance is consid-

ered once, output sentences are restricted to the median reference length and the features of every reference

compression are simply averaged for each input sentence during training—disregarding the difference in

compression rate across references—performs identically to the results above.

35These linguistically-motivated constraints are defined over the RASP parse of the input sentence and

summarized here: (i) an active verb in the solution activates its subject and object and vice versa, (ii)

an active non-clausal modifier or determiner activates its head, (iii) negations and possessive modifiers

activate their heads and vice versa, (iv) the sentence must contain at least one active verb if the input

sentence contains one, (v) the word introducing a prepositional phrase or subordinating clause must be

active if at least word within the syntactic constituent is active and vice versa, (vi) active head words which

are conjoined activate the coordinating conjunction, (vii) words in parentheses are always dropped, (viii)
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bn

Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

path
LM-3gr (CL08) 74.96 60.60 46.83 38.71 - 60.55 57.49

DP-2gr (McD06) 82.94 72.84 61.08 52.65 - 70.96 66.34

tree ILP-dep 82.70 70.05 56.81 47.94 75.76 70.88 65.25

path + tree ILP-2gr-dep 82.85 72.66 60.87 52.87 75.73 73.82 68.56

Table 3.5: Experimental results for the BN corpus averaged over 3 reference compressions per

instance. All systems were restricted to compress to the size of the median reference compression

yielding an average compression rate of 77.26%. Boldfaced entries are statistically undistinguished

from the best result within each column under Wilcoxon’s signed rank test and the paired t-test

(p < 0.05).

sentence. However, these hard constraints were responsible for infeasability in the ILP for

one instance from the BN test dataset and three from the WN test dataset. The significant

advantage of supervised approaches such as DP-2gr over LM-3gr when compression rates

are fixed has also been observed by Napoles et al. (2011b) in human evaluations over the

WN corpus.

Comparing supervised techniques, we find that the multi-structured ILP-2gr-dep sys-

tem equals or surpasses the single-perspective systems DP-2gr and ILP-dep in all evaluation

measures considered. Measures of n-gram F1 with respect to reference compressions are

statistically indistinguishable for DP-2gr and ILP-2gr-dep—the two supervised techniques

that parameterize an n-gram factorization of the output compression—under Wilcoxon’s

signed rank test and the paired t-test. Similarly, the difference between ILP-dep and

ILP-2gr-dep, in terms of F1 of edges in the system-generated tree with respect to the

Stanford dependency parses over reference compressions is also not significant. It there-

fore appears that the joint approach adopts the advantages of both single-perspective

techniques—namely, parameterizations of bigrams and dependency structures—under cor-

responding evaluation measures.

personal pronouns are always preserved.
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wn

Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

path
LM-3gr (CL08) 66.68 51.59 39.33 30.54 - 50.77 49.62

DP-2gr (McD06) 75.36† 63.40 52.15† 42.97 - 63.08 59.43

tree ILP-dep 75.74 60.07 46.84 37.48 69.08 64.33 58.49

path + tree ILP-2gr-dep 76.15 64.47 53.63 45.15 69.52 67.35 61.82

Table 3.6: Experimental results for the WN corpus with all systems compressing to the size of

the reference compression, yielding an average compression rate of 70.24%. Boldfaced entries are

statistically undistinguished from the best result within each column under Wilcoxon’s signed rank

test (p < 0.05) and † indicates entries with a different outcome under the paired t-test (p < 0.05).

This result may appear somewhat unsurprising since n-gram and dependency measures

are being directly or indirectly optimized in the inference procedure. However, the joint

inference strategy also exhibits advantages when output compressions are parsed by the

Stanford and RASP parsers and compared to the corresponding parses of reference sen-

tences. Under F1 measures over edges for both Stanford dependency trees and RASP gram-

matical relation graphs, ILP-2gr-dep significantly outperforms both DP-2gr and ILP-dep

despite including no additional features beyond the ones employed by these systems. Multi-

structured inference therefore appears to have a holistic effect on high-level measures of

compression quality.

Table 3.6 contains the results for these systems on the 603 compression instances of the

WN test dataset, which features longer sentences—27.7 words on average as opposed to 19.2

words for the BN test dataset—and a single reference compression per instance. We restrict

system-generated compressions to be the length of each reference sentence, resulting in an

average compression rate of 70.24%. Owing to the longer sentences and more aggressive

compression rate, the results on this corpus are noticeably lower across all systems when

compared to those on the BN corpus.

This evaluation largely echoes the performance trends observed in the previous experi-

ments over the BN corpus. Here, the multi-structured ILP-2gr-dep approach outperforms

all single-perspective systems and statistical significance is more readily observed under
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the signed rank test although less so under the paired t-test.36 Interestingly, ILP-2gr-dep

demonstrates a statistically significant improvement in terms of F1 over 4-grams over all

other systems under both our significance tests—a result that might be attributed to ei-

ther the diminished efficacy of DP-2gr on this corpus or the relative strength of ILP-dep

as indicated by its strong result for unigram F1. As with the BN corpus, ILP-2gr-dep

produces trees that are statistically similar to ILP-dep under dependency F1 and signifi-

cantly outperforms all other systems in F1 of syntactic relations generated by parsing the

system-generated compressions with the Stanford and RASP parsers.37

3.6.2 Content-bearing words

As n-gram measures do not distinguish between content-bearing words and function words,

we examine the precision and recall of open-class words—nouns, verbs, adjectives and

adverbs—as a proxy for the content in compressed output. The results for the BN cor-

pus are presented in Table 3.7. with similar results for the WN corpus in Table 3.8.

This analysis reveals notable disparities among different parts of speech with respect

to their accuracy in identification for supervised compression. While precision and recall

of nouns and verbs remains high (> 60%) over both corpora, the measures are fairly low

(< 40%) for adjectives and even lower (< 20%) for adverbs. Even though lexical features

are not used for any of these POS categories (cf. 3.4), it appears that salient nouns and verbs

are relatively easy to identify in the context of a sentence while modifiers like adjectives and

adverbs remain ambiguous. In our development experiments, introducing lexical features

for adjectives and adverbs did not noticeably affect results on these measures or the overall

performance measures, perhaps indicating the limited generalizability of such features when

36We defer to the non-parametric Wilcoxon’s signed rank test for which the differences between paired

samples of F1 measures need not be normally distributed—a requirement for the paired t-test—although

both tests assume these samples are drawn from a symmetric distribution. The non-parametric test therefore

offers a decreased sensitivity to outliers.

37Our RASP F1 results for Clarke and Lapata (2008) in Table 3.5 outperform their reported F1 results

by about 10% in absolute terms across both BN and WN corpora, even though their systems produce

compressions at a slightly favorable average compression rate. We suspect that this discrepancy might stem

from differences in our Gigaword-trained LM or improvements in recent versions of RASP.
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bn

Structures Inference
Nouns Verbs Adjectives Adverbs

P% R% P% R% P% R% P% R%

path
LM-3gr (CL08) 72.58 65.66 75.44 73.48 31.25 30.32 19.81 20.50

DP-2gr (McD06) 77.75 80.04 78.62 80.10 36.87 34.95 20.04 17.98

tree ILP-dep 76.32 81.45 77.51 83.77 34.39 32.55 18.21 16.43

path + tree ILP-2gr-dep 76.47 78.30 77.87 82.38 36.30 34.49 19.49 18.39

Table 3.7: Precision and recall of content-bearing words with respect to reference compressions for

the BN corpus. Boldfaced entries are statistically undistinguished from the best result within each

column under Wilcoxon’s signed rank test (p < 0.05).

wn

Structures Inference
Nouns Verbs Adjectives Adverbs

P% R% P% R% P% R% P% R%

path
LM-3gr (CL08) 68.83 60.08 79.55 71.54 30.60 30.07 13.26 13.82

DP-2gr (McD06) 74.71 76.18 81.09 86.97 30.66 27.16 13.63 13.35

tree ILP-dep 75.19 78.75 81.93 91.26 24.31 19.98 13.82 12.77

path + tree ILP-2gr-dep 75.51 74.78 82.28 90.61 32.41 29.11 14.94 14.07

Table 3.8: Precision and recall of content-bearing words with respect to reference compressions for

the WN corpus. Boldfaced entries are statistically undistinguished from the best result within each

column under Wilcoxon’s signed rank test (p < 0.05).

training models over fewer than a thousand instances.

Turning to the nouns and verbs, we observe that precision generally remains fairly

consistent across systems with DP-2gr yielding a significant advantage for the BN corpus

and ILP-2gr-dep producing an insignificant gain for the WN corpus. In both corpora,

however, ILP-dep exhibits a significant lead in the recall of nouns and verbs. Most notably,

verb recall for ILP-dep improves by 3–5% over DP-2gr, leading us to conjecture that one of

the primary contributions of dependency structures in the multi-structured ILP-2gr-dep

is in enhancing the recall of verbs in the output compression.
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3.6.3 Example output

Tables 3.9 and 3.10 contain examples of system output from the four systems described

thus far over the BN test dataset and WN test dataset respectively. We chose examples for

which all systems produced different—and usually erroneous—outputs in order to examine

the practical effect of different structural approaches to sentence compression. This is

therefore not intended to be a representative sample with respect to system performance

over the test datasets.

Examining the data, we observe that LM-3gr tends to prefer deeply-nested noun phrases

and chains of frequently-occurring function words to the exclusion of named entities—rare

under an LM—an meaningful syntactic structure despite the imposition of linguistically-

motivated constraints. We conjecture that these constraints may be too restrictive when

compression is required to be aggressive, e.g., the constraint that a subject and object must

accompany their governing verb occasionally results in all three being dropped rather than

preserved.

The supervised bigram approach DP-2gr performs well in practice but is often observed

making errors characteristic of a system with no parameterization of long-range dependen-

cies. For instance, predicates and constituent heads are often dropped unexpectedly and

clauses are often terminated abruptly so that the model can preserve the fidelity of high-

scoring fragments of text while satisfying the compression budget—a phenomenon which

can be seen in examples (a) and (b) from Table 3.9. Nevertheless, this often results in

readable compressions as seen in example (c) from Table 3.10.

The dependency-based approach ILP-dep unsurprisingly favors the removal of modifiers

and whole clauses and consequently often produces output sentences that differ from DP-2gr.

Since this approach relies on an edge-factored representation, modifier removal introduces

errors such as aggressive dropping of determiners and punctuation as in example (b) from

Table 3.9 and examples (a) and (b) from Table 3.10. Another source of error is the removal

of deeply-nested dependents such as prepositional phrases despite retaining the preposition.

The combination of these two perspectives in the joint inference approach of ILP-2gr-dep

often results in compressions with improved readability. Although this system is prone to

the same errors as DP-2gr and ILP-dep—especially when the compression rate is low—
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bn
(a) Input Now, Panetta says that the White House has taken steps to make sure that

something like this never happens again .

Reference (i) Panetta says that the White House has taken steps to make sure that this never

happens again .

Reference (ii) Panetta says that the White House has taken steps to make sure that something

like this never happens again .

Reference (iii) the White House has taken steps to make sure this never happens again .

LM-3gr , that the House has taken steps to make sure that something like this never

happens .

DP-2gr Panetta says that the White House has taken steps to make sure something like

this never .

ILP-dep Panetta says that the White House has taken steps to make sure something like

never happens .

ILP-2gr-dep Panetta says that the White House has taken steps to make sure something

never happens again .

(b) Input He makes a living on the downside of physical fitness , but like most medical

experts , Dr. Thomas Branch , of Emory University , firmly believes that the

benefits of exercise far outweigh the risk of getting hurt .

Reference (i) He makes a living on the downside of physical fitness , but Dr. Thomas Branch

, of Emory University , believes that the benefits of exercise outweigh the risk .

Reference (ii) like most medical experts , Dr. Thomas Branch , of Emory University , believes

that the benefits of exercise outweigh the risk of getting hurt .

Reference (iii) He makes a living on the downside of physical fitness , but like most medical

experts , Dr. Thomas Branch , of Emory University , firmly believes that the

benefits of exercise far outweigh the risk of getting hurt .

LM-3gr He makes a living on the downside of physical fitness , like most medical experts

, , , that the benefits of exercise far outweigh the risk of getting hurt .

DP-2gr physical fitness , but like most medical experts , Dr. Thomas Branch , of Emory

University , believes that the benefits of exercise outweigh the risk of getting

hurt .

ILP-dep He makes a living on downside of fitness , but Dr. Thomas Branch , of Emory

University believes that the benefits of exercise outweigh the risk of getting

hurt .

ILP-2gr-dep He makes a living on the downside , but Dr. Thomas Branch , of Emory

University , believes that the benefits of exercise outweigh the risk of getting

hurt .

Table 3.9: Examples of system compressions for instances from the BN test dataset.
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(a) Input He died last Thursday at his home from complications following a fall , said his

wife , author Margo Kurtz .

Reference He died at his home following a fall , said his wife , author Margo Kurtz .

LM-3gr He died last Thursday at his home from complications a fall , said his wife , .

DP-2gr He died his home from complications following a fall , said his wife , Margo

Kurtz .

ILP-dep He died Thursday at from complications following a fall , said his wife author

Margo Kurtz .

ILP-2gr-dep He died last Thursday at his home from complications following a fall , said his

wife .

(b) Input Sir Cyril Taylor , the Government ’s adviser on CTCs , who had earlier been

succesful in persuading Mr Baker to commit more government funds to the 20

schools , had been hoping to get more money for a new round of schools .

Reference Sir Cyril Taylor , Government adviser on CTCs , had been hoping to get more

money for a new round of schools .

LM-3gr , on , had been in to more government to the 20 schools , to get money for a

new of schools .

DP-2gr Sir Cyril Taylor , the Government ’s adviser on CTCs been succesful in per-

suading Mr Baker had been hoping to get schools .

ILP-dep Sir Cyril Taylor the Government ’s adviser on CTCs succesful in persuading Mr

Baker to commit funds had hoping to get money .

ILP-2gr-dep Sir Cyril Taylor , the Government ’s adviser on CTCs had been hoping to get

more money for a round of schools .

(c) Input Tens of thousands of traditional mud-built cob buildings are still in use through-

out Devon and Cornwall .

Reference thousands of cob buildings are still in use throughout Devon and Cornwall .

LM-3gr Tens of thousands of traditional cob buildings are in use throughout and .

DP-2gr Tens of mud-built cob buildings are in use throughout Devon and Cornwall .

ILP-dep Tens of thousands of mud-built cob buildings are in throughout Devon Cornwall .

ILP-2gr-dep Tens of thousands of mud-built cob buildings are in use throughout Devon .

Table 3.10: Examples of system compressions for instances from the WN test dataset.
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Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

path
LM-3gr (CL08) 69.65 52.01 37.36 29.77 - 51.62 49.62

DP-2gr (McD06) 78.92 66.45 53.03 44.02 - 63.58 58.88

tree ILP-dep 78.49 61.81 46.96 38.06 71.02 66.44 57.76

path + tree ILP-2gr-dep 79.00 66.54 53.73 45.47 71.48 69.47 62.30

Table 3.11: Experimental results for the BN corpus with all systems restricted to compress to the

size of the shortest reference compression, yielding an average compression rate of 66.81%. Boldfaced

entries are statistically undistinguished from the best result within each column under Wilcoxon’s

signed rank test (p < 0.05).

supervised training produces a system that appears robust to some of the challenges faced

by either of the component systems in isolation. Even when outputs are inaccurate or in-

complete, the resulting sentence remains often relatively interpretable as seen in example

(b) from Table 3.9 and (c) from 3.10.

3.6.4 Varying the compression rate

An issue of particular interest in sentence compression problems is the variation of the

quality of a solution under different compression rates. While the evaluations described thus

far do not account for model performance outside the reference compression rates chosen

by human annotators, performance is known to deteriorate as systems are constrained

to compress aggressively. We therefore conduct additional experiments with a range of

compression rates in order to examine their effect on output sentence quality. The BN corpus

is most appropriate for these experiments as it features three human-authored compressions

per instance with varying compression rates (cf. §3.1.1) and thus accommodates diverse

interpretations of salient content. System-generated compressions were previously evaluated

under the median reference compression rate in Table 3.5; here, we revisit the evaluation

using other compression rates for reference compressions.

Table 3.11 contains evaluation results for the BN test dataset when each instance is

restricted to compress to the minimum reference compression rate while Table 3.12. contains
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Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

path
LM-3gr (CL08) 78.38 66.85 54.07 45.63 - 66.83 63.87

DP-2gr (McD06) 83.93 76.54 65.90 58.00 - 75.67 71.45

tree ILP-dep 83.93 75.20 63.85 55.33 77.34 75.27 70.38

path + tree ILP-2gr-dep 83.99 76.70 65.97 58.14 77.44 76.74 72.40

Table 3.12: Experimental results for the BN corpus with all systems restricted to compress to the

size of the longest reference compression, yielding an average compression rate of 86.01%. Boldfaced

entries are statistically undistinguished from the best result within each column under Wilcoxon’s

signed rank test (p < 0.05).

results under the maximum reference compression rate. No new models are trained for

these experiments; we simply reuse the models from §3.6.1 which were trained over all

reference sentences in the training dataset. For consistency, the evaluation measures in

these tables are always averaged over all three reference compressions—regardless of whether

the reference sentence abides by the imposed compression rate—and then macro-averaged

over the test dataset. Comparing these results alongside Table 3.5 which presents the same

evaluation using the median reference compression rate, we see a clear trend of improvement

for automated metrics as the output compression rate increases. This echoes the observation

by Napoles et al. (2011b) that evaluation measures are correlated fairly strongly with output

compression rate, thereby motivating the requirement for fixed compression rates when

comparing different systems.

These different evaluation scenarios appear fairly consistent in their appraisal of the

compression systems under consideration. All supervised techniques continue to outper-

form LM-3gr which relies largely on a trigram LM and a heuristic significance score. The

joint inference approach of ILP-2gr-dep appears to produce compressions that are statis-

tically equivalent or better than those produced by single perspective systems under the

corresponding evaluation measures, i.e., similar to the bigram-based DP-2gr under n-gram

F1 with respect to the reference compressions and to the dependency edge-based ILP-dep

under dependency edge F1 with respect to the reference parses.
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Figure 3.6: Variation in RASP F1 with imposed compression rate for the BN corpus. All datapoints

plotted at average output compression rates after rounding down to token counts.

When considering high-level automated measures involving parsing the system-generated

compressions, however, we observe that the results for all systems appear to converge as

the average compression rate increases. When considering F1 of grammatical relations pro-

duced by the RASP parser, ILP-2gr-dep exhibits a strong absolute improvement of 3.5%

over DP-2gr when restricted to the minimum compression rate. This advantage shrinks to

2.5% when imposing the median reference compression rate and further to a statistically-

insignificant 1% when imposing the maximum reference compression rate. A similar trend is

visible when using F1 over dependencies from the Stanford parser: a strong 6% improvement

over DP-2gr when using the minimum reference compression rate shrinks to an insignificant

1% improvement when using the maximum rate.

In order to explore this further, we conducted additional evaluations on the same dataset

with fixed compression rates ranging from 10% to 90% in decile increments. This differs from

the previous evaluations in that we can no longer assume that at least one reference sentence

is the same length as the output compression; consequently, these evaluation measures

may be considered less reliable. However, we assume that averaging over three reference

compressions provides a useful approximation of performance and a meaningful relative

comparison despite the absence of length-matched references. We focus on RASP F1 for
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this test owing to its widespread use in the literature and the robustness of RASP in the

presence of disfluent text (Clarke and Lapata, 2006b).

The results in Figure 3.6 show a fairly consistent trend across compression rates.38 The

performance of all systems appears similar at very low output compression rates, diverges

noticeably as the rate increases to 20% and begins to converge once again when the rate

increases to 80%. This echoes our observations from experiments with reference compression

rates and implies that a comparison of sentence compression systems would benefit from

datasets produced under an aggressive compression rate.

The advantage of the supervised systems over LM-3gr appears to persist even at output

compression rates of 90%. Among the supervised systems, the performance of DP-2gr

and ILP-dep is similar in all tests with the latter having a small but sustained advantage,

likely due in part to the similarity between RASP grammatical relations and the Stanford

dependencies considered in its inference objective. Finally, the joint approach ILP-2gr-dep

exhibits a clear advantage over the other systems, peaking with an absolute margin of about

5% at an output compression rate of 40%.

3.6.5 Higher-order n-grams

A useful aspect of the inference approach described in §3.2 is the ability to introduce n-

gram variables of any size as opposed to just order-preserving bigrams (McDonald, 2006)

and trigrams (Clarke and Lapata, 2008). In the models presented thus far, we have used a

bigram factorization in order to keep the size of the resulting program quadratic in the size

of the input sentence. Here, we examine the performance of trigram variables in supervised

compression systems through the following additional models:

• ILP-3gr: The ILP described in §3.3.2 for trigram variables (µ = 3) using the addi-

tional trigram features described in §3.4.3.

• ILP-3gr-dep: The corresponding joint inference approach which combines the con-

straints from §3.3.1 to produce an edge-factored dependency tree with §3.3.2 to yield

38Since output sentence lengths are chosen by rounding down the imposed compression rate to the nearest

token, the observed compression rate across the test dataset is lower than the rate imposed. The former

rate is used to plot the data in the chart above.
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Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

path
DP-2gr 82.94 72.84 61.08 52.65 - 70.96 66.34

ILP-3gr 82.76 73.06 61.88 53.98 - 71.86 67.58

path + tree
ILP-2gr-dep 82.85 72.66 60.87 52.87 75.73 73.82 68.56

ILP-3gr-dep 83.21 73.67 62.54 54.46 76.40 75.21 69.48

Table 3.13: Performance variation with n-gram size for the BN corpus with all systems restricted

to compress to the size of the median reference compression. Boldfaced entries are statistically

undistinguished from the best result within each column under Wilcoxon’s signed rank test (p <

0.05).

a trigram-factored token ordering for the output sentence.

Evaluation results over the BN corpus are in Table 3.13. We observe a significant improve-

ment for both ILP-3gr and ILP-3gr-dep over their bigram counterparts under trigram and

4-gram F1 with respect to reference sentences. While the two trigram-based systems are

not statistically distinct under n-gram or RASP F1, ILP-3gr-dep improves significantly

over ILP-2gr-dep in F1 over dependency edges—both in its output tree as well as when

output compressions are parsed—thereby reinforcing the marginal utility of edge-factored

dependency structures even when paired with higher-order n-grams.

Evaluation results over the WN corpus are presented in Table 3.14. In contrast to the

BN results, the joint ILP-3gr-dep improves significantly over the trigram-only ILP-3gr

in all measures other than unigram F1. It also demonstrates significant improvement in

bigram, trigram and 4-gram F1 over the bigram-based ILP-2gr-dep although both joint

models perform similarly under F1 measures over syntactic relations. When considered

alongside the results from content word analysis in §3.6.2, this reinforces the notion that

models over the WN corpus are more dependent on dependencies while those over the BN

corpus are more dependent on n-grams, perhaps because of the longer sentences involved

or the more robust reference parses for the written news domain.

More broadly, these results yield a somewhat surprising conclusion: trigram models

don’t offer a dramatic advantage over bigram models on the compression task. While sta-
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Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

path
DP-2gr 75.36 63.40 52.15 42.97 - 63.08 59.43

ILP-3gr 75.07 63.65 52.75 43.88 - 63.11 59.45

path + tree
ILP-2gr-dep 76.15 64.47 53.63 45.15 69.52 67.35 61.82

ILP-3gr-dep 76.04 64.99 54.47 46.10 69.66 67.82 62.44

Table 3.14: Performance variation with n-gram size for the WN corpus with all systems restricted to

compress to the size of the reference compression. Boldfaced entries are statistically undistinguished

from the best result within each column under Wilcoxon’s signed rank test (p < 0.05).

tistically significant gains are achieved in some measures, unigram and RASP F1 for the

joint models remain similar in both corpora. We conjecture that this is largely due to the

relatively small size of the compression datasets under study which leads to sparsity in fea-

tures for high-order variables and consequently encourages the use of lower-capacity models

that avoid overfitting on the training data. Larger compression datasets such as the one

proposed by Filippova and Altun (2013) would likely show stronger gains for higher-order

models, perhaps making them a worthwhile consideration for applications in environments

when output quality takes precedence over computational efficiency and runtime.

3.6.6 Subtree deletion

Finally, we consider the subtree-deletion model that has previously been used in tasks

involving joint sentence compression and summarization (Martins and Smith, 2009; Berg-

Kirkpatrick et al., 2011; Qian and Liu, 2013). As indicated in §3.1.1, the assumptions made

by this model are not supported by the compression datasets but we seek to examine the

impact of unreachable output structures on measures of compression performance. For this

purpose, we introduce two additional models:

• ILP-sub: A variant of the ILP described in §3.3.1 for dependency edges in which all

dependencies in the compressed sentence are drawn only from the set of dependency

edges in the input sentence. In other words, we replace Z in §3.2.2 with Z ′ , {〈ti, tj〉 :
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Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

tree
ILP-sub 79.39 65.90 52.02 43.28 72.06 68.68 62.41

ILP-dep 82.70 70.05 56.81 47.94 75.76 70.88 65.25

path + tree
ILP-2gr-sub 79.20 67.58 54.76 46.39 72.08 69.42 63.60

ILP-2gr-dep 82.85 72.66 60.87 52.87 75.73 73.82 68.56

Table 3.15: Evaluation against subtree deletion over the BN corpus with all systems restricted

to compress to the size of the median reference compression. Boldfaced entries are statistically

undistinguished from the best result within each column under Wilcoxon’s signed rank test (p <

0.05).

tj ∈ T is a dependent of ti ∈ T ∪ {root} in S} and proceed as before.

• ILP-2gr-sub: The corresponding joint inference approach which combines the subtree-

deletion variant of §3.3.1 with §3.3.2 to yield a bigram-factored token ordering for the

output sentence.

The experimental results for the BN corpus and the WN corpus are presented in Tables 3.15

and 3.16 respectively. In both sets of results, the subtree deletion assumption leads to a

dramatic decrease in performance across all evaluation measures. Most relevant among

these is dependency F1 for the output tree, which decreases by 2.7% for the BN corpus

and 4.8% for the WN corpus. Similar differences are seen in dependency F1 after parsing

system-generated compressions with the Stanford parser and the results correlate with those

using the RASP parser.

The losses incurred by the joint model ILP-2gr-sub are similar to those of the standalone

subtree-deletion model ILP-sub and reinforce the unsuitability of the subtree-deletion as-

sumption for compression tasks. Comparing the joint model to DP-2gr from previous eval-

uations, this demonstrates that combining a subtree-deletion compression technique with

a bigram-based approach is significantly worse than just using the bigram-based approach

by itself.39 The poor performance of this approach might be consigned to parse errors by

39Naturally, this conclusion is conditioned on the assumption that our dependency features are appropriate

for the subtree-deletion task. For instance, different parsers with different dependency label lexicons might
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Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

tree
ILP-sub 72.17 56.36 43.29 34.13 64.23 59.41 55.10

ILP-dep 75.74 60.07 46.84 37.48 69.08 64.33 58.49

path + tree
ILP-2gr-sub 72.27 59.95 48.72 39.85 64.77 61.78 57.62

ILP-2gr-dep 76.15 64.47 53.63 45.15 69.52 67.35 61.82

Table 3.16: Evaluation against subtree deletion over the WN corpus with all systems restricted to

compress to the size of the reference compression. Boldfaced entries are statistically undistinguished

from the best result within each column under Wilcoxon’s signed rank test (p < 0.05).

the Stanford parser; however, Qian and Liu (2014) has also examined the subtree-deletion

assumption over the BN and WN datasets with the MST parser (McDonald et al., 2005b)

and similarly do not find support.

3.7 Remarks

The key contribution of this work is an ILP-based inference approach for sentence compres-

sion which jointly considers two structured output spaces—an n-gram factorization and a

corresponding dependency tree. This approach unifies many prior techniques in the litera-

ture that adopt either bigram, trigram or subtree-deletion formulations of the compression

objective. Our flow-based approach imposes no hard limit on factorization and therefore

supports higher order n-grams as well as dependencies, while the use of a general-purpose

linear programming solver for inference accommodates linguistically-motivated rules and

templates as needed for practical applications.

In our evaluation, we find that the joint perspective which pairs syntax and dependency

structure offers statistically significant gains over either individual structural perspective.

These improvements persist as the compression rate of output sentences is varied although

the systems studied converge in performance at very high compression rates. In examining

the output, we observe that the output sentences of the joint system avoids the pitfalls of

yield improved results.
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bigram-only and dependency-only compression techniques and is often clearly more readable

and accurate.

The proposed inference technique enables n-grams of any size to be used in compression

problems. In our evaluation, we find that further gains are possible when using trigrams

instead of bigrams at the cost of memory and runtime for storing and solving larger ILPs.

Here as well, including inference over compressed edge-factored dependency structures offers

significant advantages over a trigram-only model although solving these larger ILPs entails a

greater computational overhead. Higher-order dependency structures are also feasible in this

model but we did not study them with ILP inference; instead, second-order dependencies

ae investigated in a dynamic program for the joint compression formulation presented in

Chapter 5.

The flexibility of linear programs offers many opportunities for building on this work. It

is straightforward to extend this inference approach to incorporate paraphrasing and token

reordering—we do not evaluate the former in this work but the latter permits us to extend

our approach to multiple input sentences (i.e., sentences fusion) in Chapter 7. In addition,

Lemma 3.3.1 indicates that other forms of acyclic graph structures can be inferred in a

generalization of this formulation; we address this further in Chapter 6 where we consider

the inference of structures for high-level relations which specify shallow semantics. Finally,

this technique remains compatible with many techniques for document-level abstractive

summarization, which remains one of our goals for future research.
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Chapter 4

Approximation Strategies for

Compression

We have thus far discussed a flexible ILP formulation for text-to-text generation which ad-

mits a number of useful extensions, some of which are explored in later chapters. However,

it is well-established that the utility of ILP for optimal inference in structured problems

is often outweighed by the worst-case performance of ILP solvers on large problems with-

out unique integral solutions. Furthermore, approximate solutions can often be adequate

for real-world generation systems, particularly in the presence of restrictions on output

text, e.g., linguistically-motivated constraints such as those described by Clarke and Lap-

ata (2008) or pruning strategies such as the use of domain-specific sentence templates.

In this chapter, we develop approximate inference strategies to the joint approach from

Chapter 3 which trade the optimality guarantees of exact ILP for faster inference by sep-

arately solving the n-gram and dependency subproblems and using Lagrange multipliers

to enforce consistency between their solutions.1 However, while the n-gram problem—

restricted to order-preserving bigrams—can be solved efficiently using the dynamic program-

ming approach of McDonald (2006), there are no efficient algorithms to recover maximum

weighted non-projective subtrees in a general directed graph.2 Maximum spanning tree al-

1An earlier version of this research was presented in Thadani (2014).

2In contrast to order-preserving projective trees, for which efficient algorithms are provided in Chapter 5.
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gorithms, commonly used in non-projective dependency parsing (McDonald et al., 2005b),

are not easily adaptable to this task since the maximum-weight subtree is not necessarily a

part of the maximum spanning tree.

We therefore consider methods to recover approximate solutions for the subproblem

of finding the maximum weighted subtree in a graph, common among which is the use

of a linear programming relaxation. This linear program (LP) appears empirically tight

for compression problems and our experiments indicate that simply using the non-integral

solutions of this LP in Lagrangian relaxation can empirically lead to reasonable compres-

sions. In addition, we can recover approximate solutions to this problem by using the

Chu-Liu Edmonds algorithm for recovering maximum spanning trees (Chu and Liu, 1965;

Edmonds, 1967) over the relatively sparse subgraph defined by a solution to the relaxed

LP. Our proposed approximation strategies are evaluated using automated metrics in order

to address the question: under what conditions should a real-world sentence compression

system implementation consider exact inference with an ILP or approximate inference? The

contributions of this chapter include:

• An empirically useful technique for approximating the maximum-weight subtree in a

weighted graph using LP-relaxed inference.

• Multiple approaches to generate good approximate solutions for multi-structured com-

pression, based on Lagrangian relaxation to enforce equality between the path and

tree inference subproblems.

• An analysis of the performance tradeoffs incurred by approximate and exact ap-

proaches with respect to runtime as well as performance under automated evaluation

measures.

4.1 Compression via Lagrangian Relaxation

Dual decomposition (Komodakis et al., 2007) and Lagrangian relaxation in general are

often used for solving joint inference problems which are decomposable into individual

subproblems linked by equality constraints (Koo et al., 2010; Rush et al., 2010; Rush

and Collins, 2011; DeNero and Macherey, 2011; Martins et al., 2011; Das et al., 2012;
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Almeida and Martins, 2013). This approach permits sub-problems to be solved separately

using problem-specific efficient algorithms while consistency over the solutions produced

is enforced through Lagrange multipliers via iterative optimization. Exact solutions are

guaranteed when the algorithm converges on a consistent primal solution, although this

convergence itself is not guaranteed and depends on the tightness of the underlying LP

relaxation (cf. §3.3). The primary advantage of this technique is the ability to leverage

the underlying structure of the problems in inference rather than relying on a generic ILP

formulation while still often producing exact solutions.

The multi-structured inference problem described in the previous section seems in many

ways to be a natural fit to such an approach because output scores factor over different types

of structure that comprise the output compression. Even if ILP-based approaches perform

reasonably at the scale of single-sentence compression problems, the exponential worst-case

complexity of general-purpose ILPs will inevitably pose challenges when scaling up to (a)

handle larger inputs, (b) use higher-order structural fragments, or (c) incorporate additional

models. In the following section, we propose an alternative formulation that exploits the

modularity of the multi-structured objective.

4.1.1 Decomposing the inference task

We begin by revisiting the optimization problem characterized by (3.3) in Chapter 3. Given

an input sentence S with n tokens, we seek to recover the highest-scoring compression Ĉ

which maximizes a multi-structured linear objective

Ĉ = arg max
x,y,z

x>∆tok + y>∆ngr + z>∆dep

where x, y and z refer to incidence vectors respectively representing a token configuration,

an n-gram factorization and a dependency tree while ∆tok, ∆ngr and ∆dep respectively

denote vectors of feature-based scores for each corresponding substructure.

The two structural problems that need to be solved in this formulation are the extraction

of a maximum-weight n-gram factorization y of an acyclic path from a lattice of potential

adjacency relationships in S and the recovery of a maximum-weight directed subtree z. Let

α(y) ∈ {0, 1}n denote the incidence vector of tokens contained in the n-gram path y and
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β(z) ∈ {0, 1}n denote the incidence vector of words contained in the dependency tree z.

We can now rewrite the objective from (3.3) while enforcing the constraint that the words

contained in the path y are the same as the words contained in the tree z, i.e., α(y) = β(z),

by introducing a vector of Lagrange multipliers λ ∈ Rn. In addition, the token configuration

x can be rewritten in the form of a weighted combination of α(y) and β(z) to ensure its

consistency with y and z. This results in the following Lagrangian:

L(λ,y, z) = y>∆ngr + z>∆dep

+ ∆>tok (ψ ·α(y) + (1− ψ) · β(z))

+ λ> (α(y)− β(z)) (4.1)

Finding the y and z that maximize this Lagrangian above yields a dual objective, and

the dual problem corresponding to the primal objective specified in (3.3) is therefore the

minimization of this objective over the Lagrange multipliers λ.

min
λ

max
y,z

L(λ,y, z)

= min
λ

max
y

y>∆ngr + (λ + ψ ·∆tok)>α(y)

+ max
z

z>∆dep − (λ + (ψ − 1) ·∆tok)> β(z)

= min
λ

max
y

f(y,∆,λ, ψ)

+ max
z

g(z,∆,λ, ψ) (4.2)

This can now be solved with the iterative subgradient algorithm illustrated in Algorithm 2.

In each iteration i, the algorithm solves for y(i) and z(i) under λ(i), then generates λ(i+1) to

penalize inconsistencies between α(y(i)) and β(z(i)). When α(y(i)) = β(z(i)), the resulting

primal solution is exact, i.e., y(i) and z(i) represent the optimal structures under (3.3).3

Otherwise, if the algorithm starts oscillating between a few primal solutions, the under-

lying LP must have a non-integral solution. In this case, we opt to identify the solution

from the set of oscillating solutions that maximizes the joint score from (3.3) (cf. §4.1.4),

although a variety of other techniques can also be employed to recover optimal or near-

3A proof is available in Rush and Collins (2011).
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Algorithm 2 Subgradient-based joint inference

Input: scores ∆, hyperparameter ψ, iteration limit imax, repetition limit max,

learning rate schedule η ∈ Rimax

Output: token configuration x

1: initialize solutions J ← ∅, repeated solutions Jrep ← ∅

2: λ(0) ← 0n

3: for iteration i in 0 . . . imax do

4: ŷ← arg maxy f(y,∆,λ(i), ψ)

5: ẑ ← arg maxz g(z,∆,λ(i), ψ)

6: if α(ŷ) = β(ẑ) then return α(ŷ) // optimal solution

7: if α(ŷ) ∈ J then Jrep ← Jrep ∪ {α(ŷ)}

8: if β(ẑ) ∈ J then Jrep ← Jrep ∪ {β(ẑ)}

9: if |Jrep| ≥ max then break // oscillating solutions

10: J ← J ∪ {α(ŷ), β(ẑ)}

11: λ(i+1) ← λ(i) − ηi (α(ŷ)− β(ẑ))

12: if |Jrep| = 0 then Jrep ← J

return arg maxx∈Jrep x>∆tok + α−1(x)>∆ngr + β−1(x)>∆dep // approximation

optimal solutions.4 The application of this Lagrangian relaxation strategy is contingent

upon the existence of algorithms to solve the maximization subproblems for f(y,∆,λ, ψ)

and g(z,∆,λ, ψ). The following sections discuss our approach to these problems.

4.1.2 Bigram paths

While the ILP approach presented in Chapter 3 permitted the recovery of n-grams of any

order, we observe that the use of trigrams does not offer significant advantages over bigrams.

For this reason, we confine ourselves to the use of bigrams in y in this chapter as well as

the remainder of this dissertation. Similarly, although the ILP permits the reordering of

4Heuristic approaches (Komodakis et al., 2007; Rush et al., 2010), tightening (Rush and Collins, 2011)

or branch and bound (Das et al., 2012) can still be used to retrieve optimal solutions, but we did not explore

these strategies here.
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input tokens, the compression dataset described in §3.1 does not involve reordering. If we

were to assume a total ordering over output tokens, we can employ an efficient approach to

finding optimal bigram paths.

McDonald (2006) provides a Viterbi-like dynamic programming algorithm to recover

the highest-scoring path of order-preserving bigrams from a lattice, either in unconstrained

form or with a specific length constraint. The latter requires a dynamic programming table

Q[i][r] which represents the best score for a compression of length r ending at token i. The

table can be populated using the following recurrence:

Q[i][1] = ∆′ngr(S, start, i)

Q[i][r] = max
j<i

Q[j][r − 1] + ∆′ngr(S, i, j)

Q[i][m+ 1] = Q[i][m] + ∆′ngr(S, i,end)

where m , bn · ωc is the number of output tokens required to satisfy a compression rate ω

and the scoring function ∆′ngr is defined as

∆′ngr(S, i, j) , ∆ngr(S, i, j) + λj + ψ ·∆tok(S, j) (4.3)

so as to solve f(y,∆,λ, ψ) from (4.2). This approach requires O
(
n2m

)
time and O(nm)

space in order to identify the highest scoring path y and corresponding token configuration

α(y). When no specific compression rate is imposed on the output sentence, the table Q

can be reduced to a vector whose entries Q[i] represent the best score for a compression of

any length ending with token i, reducing runtime to O
(
n2
)

and space to O(n).

4.1.3 Dependency subtrees

The maximum-weight non-projective subtree problem over general graphs is not as easily

solved. Although the maximum spanning tree in any directed graph can be recovered

efficiently, Figure 4.1 illustrates that the maximum-scoring subtree is not necessarily found

within it. The problem of recovering a length-constrained maximum-weight subtree in a

graph has been shown to be NP-hard even with undirected graphs (Lau et al., 2006).

In order to produce a solution to this subproblem, we consider an LP relaxation of the

ILP from §3.3.1 by omitting integer constraints over the token and dependency variables in
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Figure 4.1: An example of a weighted directed graph (a) whose maximum spanning tree (b) does

not contain the maximum-weight subtree (c). Missing edges in (a) have weight −∞.

x and z respectively. The objective for this LP is given by

max
x,z

x>∆′tok + z>∆dep (4.4)

where the vector of token scores is redefined as

∆′tok , (1− ψ) ·∆tok − λ (4.5)

in order to solve g(z,∆,λ, ψ) from (4.2). In the LP relaxation, xi and zij are redefined as

real-valued variables whose values lie in [0, 1], thereby potentially accommodating fractional

values for dependency and token indicators. As a result, the flow network is able to establish

connectivity but cannot guarantee a tree structure in the output. For instance, directed

acyclic structures are possible and token indicators xi may be partially be assigned to the

solution structure. This poses a challenge in implementing β(z) which is needed to recover

a token configuration from the solution of this subproblem.

We propose two alternative solutions to address this issue in the context of the joint

inference strategy. The first is to simply use the fractional token configuration identified

by the LP in Algorithm 2, i.e., to set β(z̃) = x̃ where x̃ and z̃ represent the real-valued

counterparts of the incidence vectors x and z. As the bigram subproblem is guaranteed to

return a well-formed integral solution which obeys the imposed compression rate, we are

assured of a source of valid—if suboptimal—solutions in line 10 of Algorithm 2.

We also consider another strategy that attempts to approximate a valid integral solution

to the dependency subproblem. In order to do this, we first include an additional constraint

in the relaxed LP which restricts the number of tokens in the output to m , bn · ωc
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where ω is the required compression rate. This serves to ensure that the resulting token

configuration x̃ has more than m non-zero components, i.e., there are at least as many

tokens activated5 in a relaxed solution as are required in a valid compression.6 We then

construct a subgraph G(z̃) consisting of all dependency edges that were assigned non-zero

values in the solution, assigning to each edge a score equal to the score of that edge in the

LP as well as the score of its dependent word, i.e., each zij in G(z̃) is assigned a score of

∆dep(S, i, j)− λj + (1−ψ) ·∆tok(S, j). Because the flow constraints in (3.6)–(3.7) ensure a

connected z̃, it is therefore possible to recover a maximum-weight spanning tree from G(z̃)

using the Chu-Liu Edmonds algorithm (Chu and Liu, 1965; Edmonds, 1967).7 Although

the runtime of this algorithm is cubic in the size of the input graph, it is fairly speedy when

applied on relatively sparse graphs such as G(z̃).

The resulting spanning tree is a useful integral approximation of z̃ but, as indicated

previously, may contain more nodes than m due to fractional values in x̃. We therefore

prune leaves with the lowest incoming edge weight in the current tree until precisely m

nodes remain. The resulting tree is then assumed to be a reasonable approximation of the

optimal integral solution to this LP.

4.1.4 Scoring approximate solutions

The Chu-Liu Edmonds algorithm is also employed for another purpose. When the under-

lying LP for the joint inference problem is not tight—a frequent occurrence in our com-

pression experiments—Algorithm 2 will not converge on a single primal solution and will

instead oscillate between primal solutions that are close to the dual optimum. We identify

this phenomenon by counting repeated solutions in Jrep and, if they exceed some threshold

max with at least one repeated solution from either subproblem, we terminate the update

5In the context of non-binary variables in an LP relaxation, an activated variable is one that is assigned

a value other than 0.

6However, our experiments in §4.2.1 show that this constraint also significantly decreases the proportion

of tight relaxations, i.e., LPs which produce integral—and therefore optimal—compression solutions.

7A detailed description of the Chu-Liu Edmonds algorithm for recovering optimal maximum spanning

trees is available in McDonald et al. (2005b).
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procedure for Lagrange multipliers and instead attempt to identify a good solution from

the repeating ones by scoring them under the joint score from (3.3). This requires the

retrieval of bigram and dependency structures for every potential solution, represented by

the functions α−1 and β−1 respectively in the final return statement of Algorithm 2.

Specifically, when considering a dependency solution z produced by the techniques from

§4.1.3, we need to score the token configuration x = β(z) as well as a corresponding bigram

path α−1(x). Since we assume that the input ordering of tokens is not altered in the

output sentence, the latter term is straightforward to recover from the active tokens in x.8

Similarly, scoring a bigram solution y produced by the dynamic program from §4.1.2 also

requires us to score its token configuration x = α(y) and a corresponding parse tree β−1(x).

This can be recovered by constructing a dependency subgraph across only the active tokens

in x and then identifying the maximum spanning tree for this subgraph using the Chu-Liu

Edmonds algorithm.

4.2 Experiments

We attempt to characterize the performance and runtime characteristics of compression

systems based on approximate solutions to the dependency compression problem through

experiments over the BN and WN compression datasets (Clarke and Lapata, 2006b; Clarke

and Lapata, 2007) which are described in §3.1. Our experimental environment follows the

setup described in §3.6.

4.2.1 Tightness of approximations

We first examine the approximations of the dependency subproblem in isolation before

turning to joint models and comparisons with exact systems. Specifically, we consider the

following systems:

• LP-dep: An LP relaxation of ILP-dep, the ILP for inference of optimal edge-factored

8Ambiguity in assigning bigrams which involve repeated words in the input is rare. Moreover, since the

process of mapping output tokens from reference solutions to input tokens suffers from the same ambiguity,

it is of little consequence to the broader learning problem as long as resolution is consistent.
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dependency trees described in §3.3.1. While this cannot generate integral compression

solutions on its own, it is used in the following systems which can.

• LP-dep→MST: The approximate inference approach for the maximum-weight sub-

tree problem presented in §4.1.3. A maximum spanning tree is recovered from the

potentially-fractional solutions of LP-dep and greedily pruned in order to generate a

valid integral solution while observing the imposed compression rate.

When working with these approximate inference approaches, we avoid retraining models and

instead reuse the model produced for the evaluation of ILP-dep in Chapter 3.9 Although

reusing models makes comparison between systems more straightforward, it remains possible

that new models trained with the same approximate inference strategy used during testing

could compensate for search errors to some degree.

To begin, we are naturally interested in the tightness of the LP relaxation LP-dep

which underpins the approximate inference techniques considered in this chapter. Table 4.1

enumerates the rate of integral solutions from these LPs over the BN and WN development

corpora. When no compression rate is imposed, we find that the LPs are largely tight and

on average only 1–2% of the non-zero components of x and z are fractional. However, when

imposing the reference compression rate on the output compressions, the rate of fractional

variables increases to 14–16% and overall LP tightness is lowered significantly. We also note

an interesting discrepancy between the two corpora: the WN corpus features more tight

LPs (92.1%) when the compression rate is absent and less tight LPs (17.5%) when it is

imposed as opposed to the BN corpus (78.2% and 39.7% respectively).

As LP-dep cannot be used in isolation for compression evaluations, especially without

imposing a compression rate, we rely on LP-dep→MST for recovering valid compressions

from fractional LP solutions. Table 4.2 examines the compression solutions produced by

LP-dep→MST and compares them to the optimal solutions produced by ILP-dep over the

development corpora. These results indicate that the MST-based approximation strategy

recovers optimal token solutions in over 60% of the instances considered despite starting

with fewer integral solutions from the LP relaxation—39.7% of BN instances and 17.5% of

9However, since we follow Martins et al. (2009) in employing LP relaxations during training in §3.6, the

actual inference approach used to generate the model is equivalent to LP-dep.
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Imposed ω Tight LPs % Integral tokens % Integral deps %

bn
- 78.2 99.1 97.8

reference 39.7 86.7 83.9

wn
- 92.1 99.8 98.8

reference 17.5 85.1 84.6

Table 4.1: Empirical tightness of LP-dep and proportion of integral variables among all non-zero

variables in each instance averaged over the BN and WN development corpora.

Optimal x % Optimal z % Correct tokens % Correct deps %

bn 64.1 62.8 94.0 89.6

wn 60.3 49.2 95.7 93.7

Table 4.2: Optimality of output compressions from LP-dep→MST and proportion of correct non-zero

variables when compared to ILP-dep for each instance, averaged over the BN and WN development

corpora.

WN instances. However, the lower empirical tightness of the WN dataset manifests in a

lower rate of optimal compressed dependency trees—an absolute decrease of 13% from the

BN dataset. This difference between the two corpora also appears to influence compression

quality in the evaluations covered in 4.2.3.

Furthermore, although about 86% of the non-zero token variables are integral on aver-

age in Table 4.1 when a compression rate is imposed, the MST-pruning approach correctly

recovers about 94–95% of the output tokens. The same is true for dependencies: about

84% of non-zero dependency variables are integral in Table 4.1 but LP-dep→MST correctly

identifies 90-94% of the output dependencies. The high rate of component recovery but

relatively low rate of optimal solutions paints a picture of a reasonable though imperfect

approximation to dependency-based compressions, prompting the question of whether per-

formance can be improved by pairing it with an exact bigram-based compression technique

via Lagrangian relaxation as described in §4.1.1. We now turn to evaluating these joint

approaches, starting with a consideration of the tradeoff between bigram and dependency

solutions when producing token solutions.
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4.2.2 Tradeoff between structural solutions

Lagrangian relaxation allows us to pair the approximation techniques for edge-factored

dependency compression with the dynamic program for bigram-factored compressions de-

scribed in §4.1.2, yielding the following multi-structured inference techniques:

• DP-2gr+LP-dep→MST: An approximate joint inference approach based on dual decom-

position that uses DP-2gr for the maximum weight path problem and pairs it with

LP-dep→MST for the maximum weight subtree problem.

• DP-2gr+LP-dep: Another dual decomposition approach that pairs DP-2gr directly

with potentially-fractional solutions from LP-dep. When dependency solutions are

fractional, the MST algorithm can simply be run over token solutions from the bigram

solution in order to recover the optimal accompanying dependency tree for evaluation.

As with the approximate dependency-based compression techniques, both these approaches

use the model trained for ILP-2gr-dep in §3.6. The learning rate schedule for the subgra-

dient descent approach in Algorithm 2 is obtained by ηi , τ/(τ+ i) for each iteration i with

the hyperparameter τ set to 100 for aggressive subgradient updates. The repetition limit

max is set to 20 after which we assume non-convergent oscillation between solutions. We set

the iteration limit imax to 30 since most solutions are observed to converge or oscillate within

20 iterations. These hyperparameters were not tuned extensively and we acknowledge that

better results may be achieved here with additional attention on the dual decomposition

formulation.

The decomposition of the multi-structured objective function described in §4.1.1 sep-

arates the bigram and dependency-factored subproblems while distributing token scores

∆tok over bigram variables and dependency variables. As one of the subproblems is not

exact, we include a hyperparameter ψ to trade off the influence of each structural solution

on the token configuration x of the output compression. Here, we examine the effect of ψ

on output compressions over the development partitions of the BN and WN corpora.

Figure 4.2 shows the variation in RASP F1 over the BN and WN development datasets

as ψ is varied from 0—meaning the token solution x is produced entirely from the depen-

dency solution z—to 1—implying x is drawn from the bigram solution y. Although the
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Figure 4.2: Variation in RASP F1 with ψ on the BN and WN development datasets. As defined

in (4.1), high values of ψ amplify the influence of the exact bigram solution y on the token solution

x while low values of ψ attenuate it in favor of the approximate dependency solution z. Highlighted

datapoints indicate maxima and selected ψ values for later experiments.

RASP measure appears less sensitive to ψ over the BN corpus than the WN corpus,10 we

note some common trends. Low values of ψ lead to diminished performance for all systems,

likely reflecting the impact of approximation errors within the dependency-based subprob-

lem. This is echoed in the observation that performance increases predictably with ψ for

DP-2gr+LP-dep and peaks at ψ = 1 when the LP-relaxed tree solutions have no influence

on the token solution.

10We attribute the higher volatility observed over the WN dataset to fact that BN corpus results are

averaged over 3 reference compressions.
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Performance for DP-2gr+LP-dep→MST shows a marked difference between the two datasets.

RASP F1 peaks around ψ = 0.3 on the BN dataset, possibly implying that the feasible tree

approximations produced by the MST pruning strategy are sufficiently accurate so as to

balance the exact solutions produced by DP-2gr. For the WN dataset, the best performance

is again achieved at ψ = 1, perhaps because the approximation strategy produces fewer op-

timal tree solutions as seen in Table 4.2. With their best hyper values, the two systems

produce similar RASP F1 numbers on both datasets with DP-2gr+LP-dep outperforming

DP-2gr+LP-dep→MST by one percentage point.

In all cases above, we set ψ to values that produce the best RASP F1 for their respective

system and corpus in the remaining experiments. Specifically, DP-2gr+LP-dep uses ψ = 1

for both corpora and DP-2gr+LP-dep→MST uses ψbn = 0.3 and ψwn = 1.

4.2.3 Compression quality

In this section, we compare the approximate inference techniques for dependency-based and

multi-structured compression against the following systems from 3.6.1:

• LM-3gr: A reimplementation of the mostly unsupervised ILP of Clarke and Lapata

(2008) which infers order-preserving trigrams parameterized with log-likelihood under

an LM and a token significance score.

• DP-2gr: The dynamic program of McDonald (2006) described in §4.1.2 for inference

of bigram-factored compressions under a compression rate.

• ILP-dep: The ILP described in §3.3.1 for inference of edge-factored compressed de-

pendency trees along with constraints from §3.3.3 for imposing a compression rate.

• ILP-2gr-dep: The joint inference approach which combines the constraints from

§3.3.1 to produce an edge-factored dependency tree with §3.3.2 to yield a bigram-

factored token ordering for the output sentence.

We do not include LP-dep in the roster of systems evaluated under measures of compres-

sion quality since feasible output sentences cannot be recovered directly from its fractional

solutions. The remaining approximate inference approaches use the models generated by
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bn

Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

path
LM-3gr (CL08) 74.96 60.60 46.83 38.71 - 60.55 57.49

DP-2gr (McD06) 82.94 72.84 61.08 52.65 - 70.96 66.34

tree
LP-dep→MST 81.81 67.74 53.95 45.05 73.22 68.02 62.91

ILP-dep 82.70 70.05 56.81 47.94 75.76 70.88 65.25

path + tree

DP-2gr+LP-dep→MST 82.47 71.00 58.53 50.45 75.23 71.93 67.42

DP-2gr+LP-dep 82.35 72.33 60.61 52.57 73.35 72.14 67.94

ILP-2gr-dep 82.85 72.66 60.87 52.87 75.73 73.82 68.56

Table 4.3: Experimental results for the BN corpus averaged over 3 reference compressions per

instance. All systems were restricted to compress to the size of the median reference compression

yielding an average compression rate of 77.26%. Boldfaced entries are statistically undistinguished

from the best result within each column under Wilcoxon’s signed rank test (p < 0.05).

the equivalent exact inference approach from the list above.11

Table 4.3 contains the results over the BN corpus. We see that approximating dependency-

based compression with LP-dep→MST results in a significant 2–3% absolute decrease in

n-gram F1 (excluding unigrams) as well as dependency F1 for both generated trees and

output sentence parses with respect to the optimal ILP-dep solutions. This gap is nar-

rowed slightly by the influence of exact bigram-based compression on the equivalent joint

approach DP-2gr+LP-dep→MST when compared to ILP-2gr-dep. In particular, F1 over the

dependency edges from the output tree z is especially improved and approaches—though

remains signficantly lower than—that of the exact ILP-2gr-dep approach.

Dropping the greedy MST pruning following the LP relaxation in DP-2gr+LP-dep results

in a system which more closely follows DP-2gr with no statistical difference in n-gram F1

between these two systems as well as ILP-2gr-dep. In terms of F1 measures over trees

produced by parsing output sentences, both approximate joint inference methods improve

significantly over DP-2gr although they remain significantly lower than ILP-2gr-dep when

the Stanford parser is used to identify syntactic relations.

11Albeit with LP-relaxed inference for training as in §3.6.
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wn

Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

path
LM-3gr (CL08) 66.68 51.59 39.33 30.54 - 50.77 49.62

DP-2gr (McD06) 75.36 63.40 52.15 42.97 - 63.08 59.43

tree
LP-dep→MST 75.05 57.70 43.75 34.35 67.39 61.41 56.39

ILP-dep 75.74 60.07 46.84 37.48 69.08 64.33 58.49

path + tree

DP-2gr+LP-dep→MST 75.03 61.33 49.32 40.32 68.09 64.35 59.19

DP-2gr+LP-dep 74.95 63.44 52.66 44.09 66.69 64.89 60.40

ILP-2gr-dep 76.15 64.47 53.63 45.15 69.52 67.35 61.82

Table 4.4: Experimental results for the WN corpus with all systems compressing to the size of

the reference compression, yielding an average compression rate of 70.24%. Boldfaced entries are

statistically undistinguished from the best result within each column under Wilcoxon’s signed rank

test (p < 0.05).

Table 4.4 contains the results over the WN corpus, which appear largely consistent with

those over the BN corpus. LP-dep→MST yields compressions that score 2–3% lower than

ILP-dep on all F1 measures, performance improves when pairing this with the exact bigram

compression approach through dual decomposition in DP-2gr+LP-dep→MST and, further-

more, avoiding the greedy MST pruning strategy for dependency trees in DP-2gr+LP-dep

yields a system that produces results similar to DP-2gr under n-gram F1 but with significant

gains in dependency F1 that nevertheless do not match the performance of the exact joint

approach ILP-2gr-dep. We attribute the weaker performance of approximate inference

over the WN dataset to two factors: the greater reliance on dependencies for this corpus

that was noted in §3.6.5 and the relatively poor approximation tightness observed for this

corpus in Table 4.2.1.

In summary, while compressions drawn from approximate inference appear clearly in-

ferior to those from exact inference, the performance gap remains relatively small for

DP-2gr+LP-dep. The advantage of these approximate inference strategies, however, is in

improving practical runtime for compression tasks when ILP is not usable. We examine

this further in the following section.
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Structures Inference
Average time (sec) Median time (sec)

bn wn bn wn

path
LM-3gr (CL08) 0.86 1.95 0.16 0.73

DP-2gr (McD06) 0.01 0.01 0.01 0.01

tree
LP-dep→MST 0.07 0.13 0.03 0.06

ILP-dep 0.18 0.30 0.04 0.11

path + tree

DP-2gr+LP-dep→MST 0.24 0.50 0.08 0.22

DP-2gr+LP-dep 0.28 0.70 0.08 0.27

ILP-2gr-dep 0.48 0.93 0.10 0.26

Table 4.5: Time in seconds for inference over the BN and WN test datasets, excluding the time

required for initializing and scoring features.

4.2.4 Timing

In order to obtain comparable running times for each of the systems studied, we ran exper-

iments for each corpus on a single machine. The specifications for these machines include

24GB of memory and two quad-core Intelr Xeonr X5550 CPUs clocked at 2.67GHz with

hyper-threading enabled, exposing 16 processors in total.12 Timing results were observed

to be largely consistent on repeated runs.

The Gurobi ILP solver that we use in these experiments is explicitly designed to ex-

ploit multi-core CPUs for speeding up the recovery of ILP solutions and the verification of

their optimality. However, our implementation of subgradient-based dual decomposition is

single-processed—except for LP relaxation components which also rely on Gurobi—without

significant effort toward runtime optimization. A fair timing evaluation would thus consist

of restricting Gurobi to use only a single processor in execution rather than the available 16,

as is standard in other timing experiments on compression (Qian and Liu, 2014). However,

our chief interest in this evaluation is in characterizing real-world performance: multi-core

systems are widespread in both industrial and personal computing settings and it stands

to reason that practical implementations of compression ILPs would leverage all available

12Hyper-threading permits two threads to execute concurrently on a single CPU core.
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Structures Inference
Convergence % Num. iterations

bn wn bn wn

path + tree
DP-2gr+LP-dep→MST 27.97 21.23 2.11 5.98

DP-2gr+LP-dep 24.26 12.94 1.65 4.59

Table 4.6: Fraction of instances which converge under dual decomposition and the average number

of iterations to convergence for them in the BN and WN test datasets.

resources for faster solutions. We therefore opt to let Gurobi use all 16 processors in these

timing experiments while acknowledging that this obscures the potential runtime benefits

of our approximate alternatives in resource-constrained environments.

Table 4.5 summarizes the timing results on the BN and WN test corpora respectively

for the systems evaluated in the previous section. Starting with the n-gram approaches, it is

not surprising to observe that the high-order LM-3gr ILP is the slowest among the systems

tested and the DP-2gr dynamic program is the speediest. In particular, DP-2gr appears

to be a particularly appropriate choice for real-time compression tasks despite its mediocre

performance on quality metrics. A further evaluation with dynamic programming variants

of multi-structured inference is presented in Chapter 5.

Turning to the dependency-based techniques, although the asymptotic ILP size of the

dependency-only ILP-dep is similar to the multi-structured ILP-2gr-dep, we observe that

the former takes a third of the time required by the latter for inference across both corpora.

The proposed approximation technique LP-dep→MST further halves the average runtime of

this approach albeit with a significant drop in compression quality as shown in the previous

section. Using this approximation with dual decomposition in DP-2gr+LP-dep→MST im-

proves significantly over ILP-dep but the iterative dual decomposition procedure naturally

increases inference time.

We record largely similar runtime performance for the two multi-structured approxima-

tion techniques DP-2gr+LP-dep→MST and DP-2gr+LP-dep with both approaches reducing

average inference time by 30–50% when compared to the equivalent exact inference approach

ILP-2gr-dep. These relatively modest runtime gains may be attributed to the power of

a highly-optimized multi-core solver when compared to our relatively näıve Python imple-
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Figure 4.3: Average difference between ILP-2gr-dep and DP-2gr+LP-dep in terms of inference

time (above) and RASP F1 (below) plotted against input sentence length over the BN test dataset.

mentation of subgradient-based dual decomposition. We were also surprised to observe

that the average runtime of DP-2gr+LP-dep→MST—which introduces an overhead by run-

ning the Chu-Liu Edmonds algorithm at every dual update—was noticeably lower than

DP-2gr+LP-dep; however, this can be explained by examining the convergence rates of the

two approaches listed in Table 4.6. DP-2gr+LP-dep→MST exhibits a higher empirical conver-

gence rate than DP-2gr+LP-dep without significantly increasing the number of iterations to

convergence; its average runtime is therefore lowered as it more readily avoids the minimum

1
2max iterations of dual updates needed to identify oscillating solutions.

In all ILP and LP-based results, median inference time is significantly lower than average

inference time, indicating that the latter measure is dominated by the largest instances

with the slowest inference. We examine this in more detail by analyzing the difference

between ILP-2gr-dep and DP-2gr+LP-dep, the more performant of the two multi-structured

inference techniques, as the length of the input sentence n varies. Figure 4.3 compares the
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Figure 4.4: Average difference between ILP-2gr-dep and DP-2gr+LP-dep in terms of inference

time (above) and RASP F1 (below) plotted against input sentence length over the WN test dataset.

absolute difference in inference time and compression quality—measured as RASP F1—

between these systems on the BN test dataset. For sentences with less than 50 tokens,

DP-2gr+LP-dep appears occasionally faster while ILP-2gr-dep gains more frequently on

RASP F1. Longer sentences,13 however, are often much faster under DP-2gr+LP-dep with

inconsistent results on RASP F1. Similar results are seen over the WN corpus in Figure 4.4

with a more pronounced gain in RASP F1 for ILP-2gr-dep balanced out by dramatic

improvements in DP-2gr+LP-dep inference time for longer instances—in one case, saving 38

seconds over ILP-2gr-dep.

This suggests that a practical multi-structured compression system may be able to

exploit the advantages of both approaches by using ILP-2gr-dep for short sentences and

DP-2gr+LP-dep for long sentences with little deterioration in overall compression quality as

13In some cases, these longer inputs are not single sentences but a result of errors in sentence segmentation

in the original corpora.
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long as the latter is rare. We also note that the runtime and performance of the approximate

techniques remains variables and is highly dependent on the hyperparameters and strategies

used to limit dual updates, thereby making it amenable to situations in which compressions

must be produced under a strict time budget.

4.3 Remarks

The central contribution of this chapter is a natural dual decomposition variant of our

approach to multi-structured compression from Chapter 3. We propose fast LP relaxations

alongside an efficient maximum spanning tree algorithm to quickly recover approximate

solutions for dependency-based compression with a minimal loss in performance. When

pairing this with efficient bigram-based compression, we find that we can largely emulate

the performance of the ILP approach with a decrease in average runtime. Although the

advantages of this particular compression system are surpassed in the following chapter,

the proposed template of dual decomposition with relaxation-based approximations for

hard subproblems remains viable for other tasks, including the sentence fusion task from

Chapter 7 and the phrase-based alignment problem from Chapter 8.

Despite the relatively low rate of optimal solutions produced by an LP relaxation and

approximation technique for recovering compressed dependency trees, their use in dual

decomposition approaches to multi-structured compression yields significant improvements

over bigram and dependency-based compression techniques and come close to matching the

performance of the exact ILP approach described in Chapter 3. This improvement comes

with reduced average inference time over both datasets when compared to the ILP, even

though the latter relies on a state-of-the-art solver and exploits multiple CPU cores while

our implementation of the approximate techniques is relatively unoptimized.

Our analysis reveals further opportunities for improving the runtime of practical com-

pression techniques through a hybrid approach which only triggers approximate inference

for long input sentences. Furthermore, this approach remains compatible with scenarios

in which inference runtime is bounded, since iterative dual decomposition can simply be

used to opportunistically improve over bigram-based compression within the available time
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budget for each instance.

Although the dynamic program for bigram-based compression relies on the assumption

that the ordering of output tokens is fixed beforehand, it remains feasible—and a potential

area of future research—to replace this with alternative exact or approximate approaches

to n-gram-based compression. Furthermore, when the assumption is appropriate—as in

the extractive compression scenarios explored here—we can extend it to the dependency

compression approach and develop efficient techniques for recovering projective compressed

dependency trees under a multi-structured objective as described in the following chapter.
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Chapter 5

Efficient Compression via Dynamic

Programming

We have thus far considered techniques for multi-structured compression that, while prac-

tically useful, offer exponential worst-case time complexity. Chapter 3 considered a for-

mulation of the problem with no restrictions on the token ordering, n-gram factorization

and dependency tree of the output sentence but consequently required the use of an ILP

solver for inferring optimal compressions. In Chapter 4, this formulation was decomposed

into separate subproblems for recovering output n-grams and dependency trees. However,

while the former could be made efficient by restricting output compressions to paths over

order-preserving bigrams, an approximate approach was necessary for the latter and con-

sequently for the joint problem—thereby sacrificing the guarantee of optimal solutions in

order to achieve a practical runtime improvement.

In this chapter, we investigate a formulation for multi-structured compression that per-

mits both efficient and exact inference.1 We present polynomial-time algorithms for com-

pressive parsing which generate optimal dependency trees over compressions of an input

sentence, extending the well-known Eisner algorithm for projective parsing (Eisner, 1996) in

order to drop a fixed or variable number of tokens in the output parse tree. Our formulation

1This is joint work with Alexander Rush. A similar approach to this problem was independently developed

by Qian and Liu (2014) albeit with higher runtime complexity than the techniques we present here. Both

approaches can be seen as specializations of the lattice parsing techniques in Eisner and Smith (2010).
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also scores a bigram factorization of the compressed sentence with no asymptotic overhead.

Finally, this dynamic program can easily be extended to richer second-order compressive

parsing (Eisner, 1996; McDonald and Pereira, 2006) which permits scores to be defined over

consecutive parsing decisions without any further increase in runtime.

The contributions of this chapter include:

• An O
(
n3
)

time dynamic programming algorithm to jointly recover the optimal com-

pressed dependency tree and bigram factorization over an input sentence of length n

when no compression rate is specified.

• A variant of this technique which permits the parameterization of second-order de-

pendencies with no overhead in asymptotic complexity.

• An O
(
n3m2

)
time algorithm to recover the optimal compressed tree and bigram path

covering exactly m < n output tokens.

• A bisection-based approximate approach which relaxes the length constraint in order

to trade off exact solutions for better runtime performance.

5.1 Compressive Parsing

In Chapter 4, the inference problem for dependency structure is cast as the NP-hard problem

of finding the maximum-weight subtree in an arbitrary directed graph, with no relationship

to the ordering of tokens in the solution. However, both the compression dataset in §3.1 and

the dynamic program for bigram paths in §4.1.2 abide by the assumption that the order of

tokens in the input determines the ordering of output tokens. Extending this assumption to

the dependency subproblem permits the design of polynomial-time algorithms that recover

optimal projective dependency trees over the output compression.

Projective trees are only defined over nodes that comprise a linearly ordered set2 such

as the words in a sentence. Formally, a tree is said to be projective if every subtree covers

nodes which are contiguous in the linear ordering. In the context of dependency parsing, a

projective dependency tree is one in which a token and all its syntactic descendents form a

2Specifically, assuming the presence of an ordering relation to map nodes into positions, the set of nodes

must abide by a strict total order which rules out nodes that share the same position.
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(a) root John saw a dog yesterday which was a Yorkshire terrier

(b) root John saw a Yorkshire terrier yesterday

Figure 5.1: Examples of unlabeled dependency analyses with (a) a non-projective parse drawn

from McDonald et al. (2005b), and (b) a projective parse with no crossing edges.

contiguous substring in the sentence, or, equivalently, a tree which can be drawn over the

sentence tokens with no crossing edges, as shown in Figure 5.1.

Most sentences in languages with treebank resources—including English—can be ana-

lyzed with projective trees (Buchholz and Marsi, 2006), and even canonical non-projective

languages such as Czech, Danish and Turkish have a low rate (1-2%) of non-projective

edges in their respective treebanks (Nivre and Nilsson, 2005). Even though non-projective

dependency parsing is tractable using MST algorithms (McDonald et al., 2005b), imposing

near-projectivity is often beneficial in parsing evaluations (Martins et al., 2009). Restricting

compressed dependency trees to be projective is therefore a compelling tradeoff for efficient

multi-structured inference in extractive compression scenarios.

In this section, we modify a well-known dynamic programming approach to projective

dependency parsing (Eisner, 1996) in order to recover a compressed tree structure over a

subset of input tokens as well as a bigram path which is consistent with the tree. This

yields an optimal solution to the multi-structured compression formulation from §3.2 under

the assumptions that

1. There exists a linear ordering over all possible output tokens in x.

2. The n-gram factorization in y is restricted to bigrams.

3. The dependency tree in z is projective.

In §5.1.3, we extend this to second-order dependency variables with no further increase in

asymptotic runtime complexity. However, imposing a compression rate does introduce a

runtime penalty; we explore options to minimize this in §5.1.4.
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5.1.1 Edge-factored parsing

We begin by assuming that all possible output tokens in T form a linear ordering t1, . . . , tn.

As in §3.2, the start of the output bigram path y and root of the output tree z are

both denoted by the auxiliary token t0 which precedes the tokens from the input sentence.

Similarly, the end of the path defined by y is denoted by tn+1 which follows the input

tokens.

The standard algorithm for projective dependency parsing is known as Eisner’s algo-

rithm (Eisner, 1996) and is specified through a set of deductive rules acting on items in a

dynamic programming chart. Each item consists of a tuple (σ, i, j) where σ is a symbol in

{ , , , } and 〈i, j〉 represents a span over the ordered tokens where 0 ≤ i ≤ j ≤ n.

Items in the chart indicate partial structures which can be combined with logical rules: for

instance, an item ( , i, j) indicates a subtree rooted at ti and covering its right dependents

up to tj and ( , i, j) indicates a subtree rooted at tj and covering its left dependents start-

ing from ti. The chart is initialized with left and right subtree items for each of the n tokens

as well as the root at t0. 3

Premises ( , i, i), ( , i, i) ∀i ∈ {0 . . . n} (5.1)

In edge-factored projective parsing, dependency attachments are established through two

sets of deductive rules in order to ensure that the resulting dependency structure forms a

valid tree. The first set of rules creates new dependency attachments by combining the

heads of adjacent left and right subtrees, i.e., items of the form ( , i, k) and ( , k + 1, j).

A right attachment zij (which makes tj a dependent of ti) entails the combination of these

items to produce a new partial structure ( , i, j) and is written as

( , i, k) ( , k + 1, j)

( , i, j)
∆dep(S, i, j)

∀ i ≤ k < j (5.2)

where the symbol to the right of the rule indicates the consequence of applying the rule—in

this case, the addition of the corresponding dependency score ∆dep(S, i, j) to the total cost

3Note that the left subtree ( , 0, 0) of the root and the right subtree ( , n, n) of the final token are

unnecessary. We omit this detail in the rules for brevity.
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of the output structure. Similarly, a left attachment zji combines the same items to produce

a different partial structure ( , i, j) over the same span.

( , i, k) ( , k + 1, j)

( , i, j)
∆dep(S, j, i)

∀ i ≤ k < j (5.3)

The result ( , i, j) of a right attachment from (5.2) indicates a partial subtree that must be

completed by consuming the remaining right subtree of the dependent tj , thereby ensuring

that tj cannot also make a left attachment in the output structure. Similarly, the result

( , i, j) of a left attachment from (5.3) is completed by the left subtree of the dependent

ti. These steps are accomplished through the following completion rules which do not affect

the structure score.

( , i, k) ( , k, j)

( , i, j) ∀ i < k ≤ j (5.4)

( , i, k) ( , k, j)

( , i, j) ∀ i ≤ k < j (5.5)

Finally, a valid solution for the dynamic program must take the form of a right tree rooted

at t0 and spanning all tokens in the input sentence.

Goal ( , 0, n) (5.6)

This specifies a dynamic program for recovering an uncompressed projective parse tree

of the input sentence—optimal under the objective z>∆dep—in O
(
n3
)

running time with

O
(
n2
)

space.4

5.1.2 Bigram-factored compressions

In order to target the multi-structured objective from (3.3) in the edge-factored dependency

parsing algorithm above, we introduce scores ∆′′ngr over bigrams where we define

∆′′ngr(S, i, j) , ∆ngr(S, i, j) + ∆tok(S, j) (5.7)

to fold the scores for individual output tokens into those for output bigrams. These bi-

gram scores can now be incorporated directly into the dependency attachment rules of the

4Chart items have two free variables ranging over n and rules involve at most three.
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dynamic program, e.g., (5.2) could be updated as shown

( , i, k) ( , k + 1, j)

( , i, j)
(∆dep(S, i, j) +

∀ i ≤ k < j (5.8)
∆′′ngr(S, k, k + 1))

to introduce bigrams yk(k+1) alongside right attachments zij while (5.3) could be similarly

modified for left attachments. However, these updated scores would have no effect without

permitting compression in the output structure.

For compressive parsing, the dynamic program must be able to account for gaps, i.e.,

dropped tokens that are not descendants of either input subtree. To accomplish this, we

could modify the attachment rules to skip words by combining non-adjacent subtrees.

( , i, k) ( , l, j)

( , i, j)
(∆dep(S, i, j) +

∀ i ≤ k < l < j (5.9)
∆′′ngr(S, k, l))

This rule produces a right attachment zij with a bigram ykl and drops tokens tk+1, . . . , tl−1

in the output sentence. With a similar modification to the left attachment rule (5.3), the

dynamic program generates the desired output for multi-structured compression. However,

the modification also introduces an additional free variable l in the rules and consequently

yields an algorithm which requires O
(
n4
)

time.5

Observe, though, that it is not necessary to produce dependencies and bigrams with

the same rule. Instead, we can specify rules to first predict if there will be a gap from

tk+1, . . . , tl−1 and then assume that these tokens are dependents of tk and therefore included

in the right subtree rooted at ti when applying the standard attachment rules (5.2)–(5.3).

This optimization is known as the “hook trick” (Eisner and Satta, 1999) and can be im-

plemented by replacing initial right subtree items ( , i, i) with special items ( , i, i) which

are only allowed to skip words to their right before becoming standard items.6

5Qian and Liu (2014) have recently presented a similar approach for efficient multi-structured compression

in O
(
n4
)

time and O
(
n3
)

space without a compression rate restriction. However, the dynamic program

described here—independently developed by Alexander Rush and the author—improves over these bounds

by a factor of n and introduces a variant for second-order compressive parsing.

6We are grateful to Ryan McDonald for the initial suggestion to consider the hook trick in this setting.
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3 9
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0 3

Goal

Figure 5.2: An example derivation for edge-factored compressive parsing. Dependencies are in-

dicated by solid lines and established by and items while bigrams are indicated by dashed

lines and defined whenever items are converted to items.
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The full dynamic program for multi-structured compression therefore initializes the chart

with the following items for each token in lieu of (5.1)

Premises ( , i, i), ( , i, i) ∀i ∈ {0 . . . n} (5.10)

where a special item ( , i, i) can consume any number of tokens to its right

( , i, i)

( , i, j) ∀ i < j (5.11)

prior to becoming a regular right subtree item and in the process activating the bigram

yi(j+1) which straddles the dropped tokens ti+1, . . . , tj .

( , i, j)

( , i, j)
∆′′ngr(S, i, j + 1)

∀ i ≤ j (5.12)

The standard dependency parsing rules (5.2)–(5.5) can then be used to target the goal state

(5.6) and thereby find an optimal compressed path and projective tree that maximizes

the full multi-structured objective from (3.3). As no rule involves more than two free

variables and there are at most n dependency attachments for a solution, this dynamic

program retains the O
(
n3
)

runtime complexity of Eisner’s algorithm. A full compressive

parse derivation for the example from §3.2 is provided in Figure 5.2.

5.1.3 Second-order parsing

The straightforward adaption of first-order parsing to the multi-structured compression

task introduces the possibility of incorporating higher-order dependency structure from

the parsing literature in our formulation. We describe here an approach to compression

inspired by second-order extensions to Eisner’s algorithm (Eisner, 1996; McDonald and

Pereira, 2006) and note that higher-order dependency factorizations (Carreras, 2007; Koo

and Collins, 2010; Pitler, 2014) also appear tractable albeit with an inevitable increase in

time complexity.

In second-order dependency parsing, we want to score not only single dependency edges

like ti → tj but to also take into account the previous token modifying ti in the same

direction, known as a sibling. For instance, with a right attachment ti → tj where i < j, the
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sibling of tj is the token tk with the largest index k ∈ {i+1, . . . , j−1} such that ti → tk or ε

if no such index exists. Similarly, for a left attachment tj → ti where i < j, the sibling of ti

is the token tk with the smallest index k ∈ {i+1, . . . , j−1} such that tj → tk or ε if no such

index exists. We denote second-order dependencies with variables zikj where the middle

index k refers to the sibling and score them with revised scoring functions ∆dep(S, i, k, j),

leaving the remainder of our compression formulation unchanged.

The dynamic program for second-order parsing requires a new type of item ( , i, j)

which is created by combining adjacent right and left subtrees headed by ti and tj respec-

tively. This item indicates that ti and tj will eventually be attached to some common head

which is currently unknown.

( , i, k) ( , k + 1, j)

( , i, j) ∀i ≤ k < j (5.13)

The first right or left dependency attachment to any token has no siblings and therefore

follows the attachment rules from first-order parsing.

( , i, i) ( , i+ 1, j)

( , i, j)
∆dep(S, i, ε, j)

∀i < j (5.14)

( , i, j − 1) ( , j, j)

( , i, j)
∆dep(S, j, ε, i)

∀i < j (5.15)

Subsequent right or left dependencies for these tokens consume adjacent items. As seen

in (5.13), these rules simultaneously complete the previous right or left attachment—by

consuming its remaining or subtree respectively—and establish a sibling relationship

for the new attachment.

( , i, k) ( , k, j)

( , i, j)
∆dep(S, i, k, j)

∀i ≤ k < j (5.16)

( , i, k) ( , k, j)

( , i, j)
∆dep(S, j, k, i)

∀i ≤ k < j (5.17)

The final right or left dependency of any token will not be completed by items, so we

also require the completion rules (5.4)–(5.5) from edge-factored parsing. This set of rules

can now be combined with the original parsing premises (5.1) and goal state (5.6) to yield

a dynamic program for second-order dependency parsing in O
(
n3
)

time.
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Goal

Figure 5.3: An example derivation for second-order compressive parsing. Dependencies are indi-

cated by solid lines and established by and items while bigrams are indicated by dashed

lines and defined whenever items are converted to or items.
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Just as before, we can extend this approach to second-order compressive parsing with

the modifications from §5.1.2, i.e., by introducing revised premises (5.10) and token-skipping

bigram rules (5.11)–(5.12). However, a further modification is necessary for the second-order

scenario. Recall that the hook trick in §5.1.2 relies on introducing special items ( , i, j) that

skip tokens ti+1, . . . , tj and are then converted to regular right subtrees ( , i, j) that can

participate in regular attachment rules. While this approach remains compatible with most

second-order attachment rules, the rule for initial right attachments in (5.14) is necessarily

restricted to the single-token item ( , i, i) which by definition cannot accommodate a gap.

Therefore, the dynamic program described thus far does not permit gaps between any token

and its first right dependent.

To rectify this limitation, we include an additional rule that permits initial right at-

tachments directly for the special items which may contain gaps. An application of this

rule would preclude the conversion of items to items via (5.12) and therefore the

consequence for this rule must incorporate the score of the corresponding bigram.

( , i, k) ( , k + 1, j)

( , i, j)
(∆dep(S, i, ε, j) +

∀i ≤ k < j (5.18)
∆′′ngr(S, i, k + 1))

The dynamic program specified by premises (5.10), the goal state (5.6) and the rules (5.4)–

(5.5) and (5.11)–(5.18) can now recover optimal multi-structured compressions under the

joint objective (3.3) using a second-order projective dependency factorization in O
(
n3
)

time.

A second-order derivation for the example from §3.2 is shown in Figure 5.3.

5.1.4 Enforcing compression rates

The efficient inference techniques described thus far rely on the absence of a compression

rate ω for the output. Imposing a restriction on the length of an output sentence 1>x to

equal a particular value m , bn · ωc entails a runtime overhead. We discuss two strategies

for this problem here.

5.1.4.1 Tracking subtree size

The most straightforward approach to enforcing the length constraint is to explicitly keep

track of the size of the substructure represented by every item. Observe from Figures 5.2
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and 5.3 that every token retained in the final compression corresponds to exactly one in

the initialization of the respective dynamic programs. Keeping track of the total number of

items encountered in the derivation of each item allows the size of the output sentence

to be controlled.

Specifically, we redefine the items to be larger tuples (σ, i, j, q) where, as before, σ ∈

{ , , , , , }, 0 ≤ i ≤ j ≤ n and q ≤ m is the size of the partial structure

represented by the item. On initialization, every token can be associated with its item.

Premises ( , i, i, 0), ( , i, i, 1) ∀i ∈ {0 . . . n} (5.19)

The deductive rules can simply be revised to combine the sizes of the structures in their

premise. Bigram rules (5.11)–(5.12) are updated to propagate the size of the item in their

premise without modification7

( , i, i, q)

( , i, j, q) ∀ i < j (5.20)

( , i, j, q)

( , i, j, q)
∆′′ngr(S, i, j + 1)

∀ i ≤ j (5.21)

while edge-factored parsing rules (5.2)–(5.5) are updated to add together the sizes of sub-

structures in their premises.

( , i, k, ql) ( , k + 1, j, qr)

( , i, j, ql + qr)
∆dep(S, i, j)

∀ i ≤ k < j, (5.22)
ql + qr ≤ m

( , i, k, ql) ( , k + 1, j, qr)

( , i, j, ql + qr)
∆dep(S, j, i)

∀ i ≤ k < j, (5.23)
ql + qr ≤ m

( , i, k, ql) ( , k, j, qr)

( , i, j, ql + qr) ∀ i < k ≤ j (5.24)
ql + qr ≤ m

( , i, k, ql) ( , k, j, qr)

( , i, j, ql + qr) ∀ i ≤ k < j (5.25)
ql + qr ≤ m

7Moreover, no item appearing in the bigram rules can have encountered items yet so q must be 0 in

the revised bigram rules (5.20)–(5.21).
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Algorithm 3 Subgradient descent for approximate length constraint

Input: scores ∆, iteration limit imax, learning rate schedule η ∈ Rimax

Output: token configuration x

1: λ(0) ← 0

2: for iteration i in 0 . . . imax do

3: x(i) ← arg maxx h(x,y, z,∆, λ(i))

4: if 1>x(i) = m then return x(i) // optimal solution

5: if oscillating then break

6: λ(i+1) ← λ(i) + ηi
(
m− 1>x(i)

)
return arg minx(j): j≤i |m− 1>x(j)| // approximation

A similar modification can be introduced to the deductive rules for second-order parsing

(5.13)–(5.18). Finally, a valid solution for either dynamic program must cover a tree with

m tokens.8

Goal ( , 0, n,m) (5.26)

Because every chart item has three input-dependent variables and the updated rules (5.22)–

(5.23) involve at most five free variables, these dynamic programs for length-constrained

compressive parsing require O
(
n2m

)
space and O

(
n3m2

)
running time.

5.1.4.2 Lagrangian relaxation

We would naturally prefer to avoid the O
(
m2
)

runtime penalty for strict adherence to

the compression rate ω. One practical alternative is Lagrangian relaxation of the length

constraint 1>x = m in order to find approximate solutions with compression rates which

approach ω but do not always equal it. A Lagrange multiplier λ can incorporate the length

8The goal state must be correspondingly revised in order for the dynamic program to satisfy a minimum

and/or maximum compression rate. Note that the attachment rules (5.22)–(5.23) must range over all

ql, qr ≤ n when only a minimum rate is specified.
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Algorithm 4 Bisection for approximate length constraint

Input: scores ∆, initial bounds λmin and λmax, tolerance ±ε

Output: token configuration x

1: imax ←
⌈
log2

1
ε (λmax − λmin)

⌉
2: for iteration i in 0 . . . imax do

3: λ(i) ← 1
2 (λmin + λmax)

4: x(i) ← arg maxx h(x,y, z,∆, λ(i))

5: if 1>x(i) = m then return x(i) // optimal solution

6: else if 1>x(i) < m then λmin ← λ(i)

7: else if 1>x(i) > m then λmax ← λ(i)

return arg minx(j): j≤i |m− 1>x(j)| // approximation

restriction in the objective from (3.3), resulting in the following Lagrangian:

L(λ,x,y, z) = x>∆tok + y>∆ngr + z>∆dep

+ λ
(

1>x−m
)

(5.27)

The corresponding dual problem is a relaxation of the problem of finding a solution to (3.3)

with exactly m output tokens.

min
λ

max
x,y,z

L(λ,x,y, z)

= min
λ

max
x,y,z

x> (∆tok + λ · 1) + y>∆ngr + z>∆dep − λ ·m

= min
λ

max
x,y,z

h(x,y, z,∆, λ)− λ ·m (5.28)

where h(x,y, z,∆, λ) can be solved in O
(
n3
)

time by running one of the dynamic programs

for unconstrained compressive parsing and adding λ to the bigram scores ∆′′ngr(S, i, j) de-

fined in (5.7). The outer minimization in (5.28) can be solved using subgradient descent

by iteratively finding arg maxx h(x,y, z,∆, λ(i)) and then updating λ(i+1) as shown in

Algorithm 3. Alternatively, since we only have a single Lagrange multiplier to contend

with, the solution can also be found by bisection as shown in Algorithm 4. Starting with

some λmin and λmax and some tolerance for convergence ε, bisection will converge within

log2
1
ε (λmax − λmin) iterations. In either approach, the solution is optimal if 1>x(i) = m at
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any iteration i. In these instances, the tightness of the length constraint (5.28) allows us to

sidestep the O
(
m2
)

computational overhead of the exact approach from §5.1.4.1.

Absent convergence, an approximate solution with k 6= m tokens can be retrieved. If

a solution with exactly m tokens is needed, we can select an approximate solution with

k > m and use it to initialize a second-pass of inference with the exact dynamic program

while optionally pruning the problem to minimize computational overhead. For instance, if

we can assume that compression solutions vary somewhat smoothly with compression rate,

the intermediate solutions from the bisection procedure can be used to eliminate unlikely

output tokens from the input to a length-constrained dynamic program. Furthermore, if

we assume the size of the reduced input sentence k > m � k − m, we can update the

dynamic program from §5.1.4.1 to count tokens dropped rather than tokens retained with

the following revisions to the premises (5.19), bigram rules (5.20) and goal state (5.26).9

Premises ( , i, i, 0), ( , i, i, 0) ∀i ∈ {0 . . . n} (5.29)

( , i, i, 0)

( , i, j, j − i) ∀ i < j (5.30)

Goal ( , 0, n, n−m) (5.31)

Thus we can use Lagrangian relaxation and dynamic programming in a coarse-to-fine strat-

egy with the former used to solve a problem if its relaxation is tight and otherwise prune

it—identifying k > m likely tokens from the input—and then use the dynamic program

from §5.1.4.1 with the revisions from (5.29)–(5.31) to retrieve a length m output sentence

in O
(
k3(k −m)2

)
time with O

(
k2(k −m)

)
space.

5.2 Features

We reuse the features and trained models from Chapter 3 in order to evaluate the dynamic

program for edge-factored multi-structured inference described in §5.1.1. However, we in-

troduce additional features for the second-order dependency variables described in §5.1.3,

enumerated below.

9This modification is also useful for exact length-constrained compressive parsing with compression rates

under 50%, thereby reducing its runtime complexity to O
(
n3 min(m,n−m)2

)
.
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5.2.1 Second-order dependency features

The following lexico-syntactic indicators comprise feature templates for a second-order de-

pendency edge 〈ti, tk, tj〉 where tk represents the sibling of the dependency edge ti → tj

with tk set to ti iff k = ε, i.e., when no sibling exists.

• A conjunction of the POS tags of ti, tj and tk as well as the orientation of the edge,

i.e., sign(tj − ti).

• The POS tags of ti and tj and the edge orientation conjoined with binary indicators

of whether |tk − ti| ∈ {0, 1} and |tk − tj | = 1.

• The POS tags of tk and tj and the edge orientation conjoined with binary indicators

of whether |tk − ti| ∈ {0, 1} and |tk − tj | = 1.

We also experimented with various additional features over the POS tags, distances and in-

tervening tokens covered by second-order dependencies but were not able to identify features

that offered a consistent gain over these indicators in development tests.

5.3 Experiments

We now endeavor to characterize the runtime performance and compression quality of dy-

namic programs for multi-structured compression through additional experiments over the

BN and WN compression datasets (Clarke and Lapata, 2006b; Clarke and Lapata, 2007)

described in §3.1. Our experimental environment is configured as described in §3.6.

5.3.1 Compression quality

In this section, we consider the performance of the following dynamic programs10 for com-

pression inference:

• DP-dep: A dynamic program based on the edge-factored compressive parsing approach

that recovers projective dependency trees over a subset of tokens in the input.

10These dynamic programs were implemented using the pydecode toolkit maintained by Alexander Rush, a

collaborator for this work. This C++/Python library is freely available at http://www.github.com/srush/

pydecode with documentation at http://www.pydecode.org.

http://www.github.com/srush/pydecode
http://www.github.com/srush/pydecode
http://www.pydecode.org
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• DP-2gr-dep: The full dynamic program of §5.1.2 which produces an edge-factored

projective dependency tree alongside a bigram-factored token ordering for the output

sentence.

These approaches are compared on measures of output compression quality against the

following systems previously described in §3.6.1:

• DP-2gr: The dynamic program of McDonald (2006) described in §4.1.2 for inference

of bigram-factored compressions under a compression rate.

• ILP-dep: The ILP described in §3.3.1 for inferring edge-factored compressed depen-

dency trees which are not necessarily projective.

• ILP-2gr-dep: The full ILP for multi-structured inference which combines the con-

straints from §3.3.1 to produce an edge-factored dependency tree with §3.3.2 to yield

a bigram-factored token ordering for the output sentence.

For evaluation purposes, the new dynamic programming approaches use the models gen-

erated by the equivalent ILP inference approach from the list above.11 The effect of non-

projective solutions is expected to be negligible as the dependency trees for reference sen-

tences are generated by the Stanford parser and do not feature non-projective edges.

Table 5.1 contains the results of an evaluation for these systems under the usual measures

of compression quality described in §3.6. It is clear from these results that the restriction

to projective trees for DP-dep and DP-2gr-dep has little practical consequence. The per-

formance gap between these dynamic programming approaches and the equivalent ILPs is

statistically insignificant under all measures considered.

We note similar trends in Table 5.2 which contains results for the same systems over

the WN corpus. An even smaller difference is observed between the dynamic programming

approaches and their ILP equivalents than the BN corpus. This is explained by the higher

rate of projective trees recovered by ILPs over the WN corpus as seen in Table 5.3. We

assume this disparity between the owes to the more formal language present in written news

documents as opposed to the more conversational speech in broadcast news transcripts.

11Albeit with LP-relaxed inference for training as in §3.6.
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bn

Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

path DP-2gr (McD06) 82.94 72.84 61.08 52.65 - 70.96 66.34

tree
DP-dep 82.69 70.04 56.80 47.92 75.74 70.83 65.25

ILP-dep 82.70 70.05 56.81 47.94 75.76 70.88 65.25

path + tree
DP-2gr-dep 82.82 72.58 60.74 52.69 75.80 73.79 68.53

ILP-2gr-dep 82.85 72.66 60.87 52.87 75.73 73.82 68.56

Table 5.1: Experimental results for the BN corpus averaged over 3 reference compressions per

instance. All systems were restricted to compress to the size of the median reference compression

yielding an average compression rate of 77.26%. Boldfaced entries are statistically undistinguished

from the best result within each column under Wilcoxon’s signed rank test (p < 0.05).

5.3.2 Timing

Since output quality remains largely identical to the ILP-based approaches from Chapter 3,

the chief advantage of the dynamic programming techniques is in runtime performance. We

evaluate these aspects in this section using the same experimental environment from §4.2.4.

In addition to the systems described previously, we also consider the runtime performance of

the following techniques which attempt to avoid the O
(
m2
)

penalty for counting tokens by

constraining the length of the output sentence to m tokens through Lagrangian relaxation

and bisection as described in §5.1.4.2.

• DP-dep+m: A variation of the dynamic program for compressed dependency tree in-

ference which uses Lagrangian relaxation to impose the output sentence length as a

first pass and falls back to DP-dep if it does not converge.

• DP-2gr-dep+m: A similar variation of the full dynamic program for multi-structured

compression inference which first uses Lagrangian relaxation to impose the output

length and then resorts to DP-2gr-dep if no convergence is achieved.

For the bisection procedure, we recover the value of the sole Lagrange multiplier following

Algorithm 4 by binary search within [−1000, 0] with the maximum number of iterations

imax set to 16, leading to an effective error tolerance of ε = 0.015. If bisection does not
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wn

Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

path DP-2gr (McD06) 75.36 63.40 52.15 42.97 - 63.08 59.43

tree
DP-dep 75.74 60.07 46.84 37.48 69.08 64.33 58.49

ILP-dep 75.74 60.07 46.84 37.48 69.08 64.33 58.49

path + tree
DP-2gr-dep 76.14 64.47 53.62 45.15 69.51 67.34 61.78

ILP-2gr-dep 76.15 64.47 53.63 45.15 69.52 67.35 61.82

Table 5.2: Experimental results for the WN corpus with all systems compressing to the size of

the reference compression, yielding an average compression rate of 70.24%. Boldfaced entries are

statistically undistinguished from the best result within each column under Wilcoxon’s signed rank

test (p < 0.05).

Structures Inference
Projective z %

bn wn

tree ILP-dep 98.02 99.83

path + tree ILP-2gr-dep 97.03 99.83

Table 5.3: Fraction of system-generated dependency tree solutions z which are projective over the

BN and WN test datasets.

converge on the optimal solution, we then run the full O
(
n3m2

)
dynamic program. We

did not experiment with further optimizations such as seeding the second pass dynamic

program with a solution from the bisection approach as suggested in §5.1.4.2; however, this

remains an area of interest for future implementations of this compression approach.

Table 5.4 lists the average and median inference time for the techniques studied over the

BN and WN test datasets. Unsurprisingly, we observe that the use of dynamic programming

for inference as opposed to ILP results in a significant decrease in runtime over both corpora.

Average runtime is decreased by 20–40% for dependency-based compression and by 60–

80% for multi-structured compression over the equivalent ILP techniques. Median runtime

remains significantly lower than average runtime for these systems, indicating that slow

inference over large instances dominates the timing measures. Finally, while the O
(
n2m

)
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Structures Inference
Average time (sec) Median time (sec)

bn wn bn wn

path DP-2gr (McD06) 0.01 0.01 0.01 0.01

tree

DP-dep 0.12 0.18 0.01 0.04

DP-dep+m 0.10 0.14 0.01 0.04

ILP-dep 0.18 0.30 0.04 0.11

path + tree

DP-2gr-dep 0.18 0.19 0.01 0.04

DP-2gr-dep+m 0.11 0.19 0.01 0.04

ILP-2gr-dep 0.48 0.93 0.10 0.26

Table 5.4: Time in seconds for inference over the BN and WN test datasets, excluding the time

required for initializing and scoring features.

algorithm for DP-2gr prevails in terms of average time over the O
(
n3m2

)
approach used

for DP-dep and DP-2gr-dep, the median runtime of all dynamic programming approaches

remains broadly similar.

Using Lagrangian relaxation and the iterative bisection procedure as a first pass for

recovering compressions of the required length results in further runtime improvements

with no change in system-generated compressions. Average convergence rates and the

number of iterations to convergence for this procedure are reported in Table 5.5. We observe

that convergence is more frequent over the smaller sentences of the BN corpus and note a

drastic decrease in covergence rates when bigram scores are introduced to the algorithm.

With our hyperparameter configuration, the use of bisection does not result in consistent

runtime improvements due to the overhead of the two-pass approach which is incurred by

non-converging instances; this may be ameliorated if resources are available for the two

procedures to be run in parallel. Furthermore, since runtime advantages are dominated by

the convergence of large instances—a phenomenon observed in these experiments as well—a

practical implementation of multi-structured compression could obtain equivalent or further

runtime improvements by confining bisection to these instances.
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Structures Inference
Convergence % Num. iterations

bn wn bn wn

tree DP-dep+m 75.99 67.33 5.75 6.96

path + tree DP-2gr-dep+m 46.53 35.82 4.32 5.93

Table 5.5: Fraction of instances which converge under bisection and the average number of itera-

tions to convergence for them in the BN and WN test datasets.

5.3.3 Second-order dependencies

In addition to edge-factored dependencies, the proposed dynamic programs for multi-

structured compression admit second-order dependencies with no asymptotic increase in

runtime complexity.12 We evaluate the effect of the second-order parameterization on mea-

sures of compression quality through the following systems.

• DP-dep2: A dynamic program based on the second-order compressive parsing ap-

proach that recovers projective dependency trees over a subset of tokens in the input.

• DP-2gr-dep2: The full dynamic program of §5.1.3 which produces a second-order

projective dependency tree alongside a bigram-factored token ordering for the output

sentence.

New models are trained for these techniques using the minibatched structured perceptron

as described in §3.5.

Table 5.6 contains the results over the BN corpus. We observe that second-order de-

pendency factorizations offer dramatic improvements to the performance of dependency-

only compression models but only moderate improvements over multi-structured compres-

sion models. The improvement by DP-dep2 over DP-dep is reflected largely in n-gram

F1 measures—a gain of nearly 5% for trigrams and 4-grams—but not in dependency F1,

although the n-gram improvements translate to significant gains for the re-parsed Stan-

ford and RASP F1 measures as well. In contrast, DP-2gr-dep2 appears largely similar to

DP-2gr-dep and the statistically significant differences—improved trigram F1 and, some-

12However, feature generation for higher-order dependencies invariably introduces an additional overhead.
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bn

Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

tree
DP-dep 82.69 70.04 56.80 47.92 75.74 70.83 65.25

DP-dep2 82.86 73.23 61.53 53.02 75.58 74.56 69.13

path + tree
DP-2gr-dep 82.82 72.58 60.74 52.69 75.80 73.79 68.53

DP-2gr-dep2 82.30 73.05 61.86 53.28 74.50 74.13 68.57

Table 5.6: Experimental results for the BN corpus averaged over 3 reference compressions per

instance. All systems were restricted to compress to the size of the median reference compression

yielding an average compression rate of 77.26%. Boldfaced entries are statistically undistinguished

from the best result within each column under Wilcoxon’s signed rank test (p < 0.05).

what surprisingly, lower dependency F1—suggest that the benefit of second order depen-

dencies is primarily in capturing local ordering information.

Similar patterns are observed in Table 5.7 over the WN corpus, although the typically

stronger performance of the joint models on written news data is also visible here. The

improvement for DP-dep2 over DP-dep is more noticeable here with an increase of more

than 7% in 4-gram F1, while the joint variant DP-2gr-dep2 does not display a statistically

significant gain over DP-2gr-dep in any measure other than F1 over Stanford dependencies

after parsing system outputs. This appears to align with our conjecture that second-order

dependencies are useful surrogates for n-gram structure.

Why are second-order dependency models not more helpful in identifying output depen-

dencies? We hypothesize that the small size of the Edinburgh compression corpus limits

the effectiveness of our more powerful representations including second-order dependencies

and the supervised trigram models from §3.6.5, which offer similar boosts in compression

quality. When tuning features on the respective development corpora, we observed that

these higher-order models would overfit more readily and that a broadly effective set of

features was challenging to identify. It is likely that the use of larger compression corpora

such as the dataset proposed by Filippova and Altun (2013) will result in clearer advan-

tages of these techniques, similar to the gains offered by second-order dependency models

in dependency parsing.
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wn

Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

tree
DP-dep 75.74 60.07 46.84 37.48 69.08 64.33 58.49

DP-dep2 76.09 63.91 52.58 44.00 69.42 67.17 61.77

path + tree
DP-2gr-dep 76.14 64.47 53.62 45.15 69.51 67.34 61.78

DP-2gr-dep2 76.07 64.53 53.72 45.42 69.18 68.03 62.45

Table 5.7: Experimental results for the WN corpus with all systems compressing to the size of

the reference compression, yielding an average compression rate of 70.24%. Boldfaced entries are

statistically undistinguished from the best result within each column under Wilcoxon’s signed rank

test (p < 0.05).

5.4 Remarks

The contributions of this work include efficient dynamic programs for multi-structured

sentence compression when assuming a fixed token ordering and projective parse trees over

the compressed sentence. This results in a large improvement in runtime for inference

with no meaningful variation in output quality when compared to the ILP from Chapter 3.

We also show how these models can be extended to second-order dependencies to further

improve output quality and paired with bisection to further minimize the runtime cost of

imposing a compression rate. These algorithms therefore appear to be especially well-suited

for practical implementations of multi-structured sentence compression.

We observe that the dependency trees produced under multi-structured ILP inference

are largely projective and that a restriction to projectivity has no practical effect on the gen-

erated compressions—likely attributable to the projective Stanford parses used for reference

compressions. For extractive compression in largely projective languages like English, these

dynamic programs therefore offer no disadvantages while yielding an order-of-magnitude

improvement in median runtime over equivalent ILPs and improved robustness on compres-

sion performance over McDonald (2006).

The proposed extension to second-order dependencies while preserving runtime complex-

ity also appears promising, although we believe that evaluations in this setting are hampered
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by the small size of the compression evaluation corpus. Although the improvements seen in

our evaluations are similar to those produced by the ILP for multi-structured inference with

trigrams (cf. §3.6.5), the runtime difference makes the second-order dependency approach

far more usable in practice.

Although all the multi-structured approaches discussed thus far produce parse trees for

compressed text, the extension of a well-known parsing algorithm for this task raises the

question of whether treebanks can be employed in estimating parameters for dependency

edge features directly rather than using potentially noisy parse structures over input sen-

tences and reference compressions. We are actively exploring potential synergies between

parsing and compression tasks, both of which may benefit from large-scale extractive com-

pression datasets that can be acquired with relatively little cost following Filippova and

Altun (2013).
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Chapter 6

Compression over

Predicate-Argument Structures

We have previously examined distinct algorithms for multi-structured sentence compression

and found that practical speedups and even asymptotic efficiency are available through

relaxations and restrictions over the output structures. However, a particularly appealing

attribute of the original ILP approach to compression from Chapter 3 is its flexibility :

additional linear variables and constraints can easily be included to accommodate the needs

of different tasks and domains. For instance, when working in a domain with a shortage of

training data, we can impose linguistically-motivated restrictions such as those proposed by

Clarke and Lapata (2008) or even restrict outputs to follow specific templates, a common

strategy in practical text generation systems. Alternatively, we might adapt this approach to

similar text-to-text tasks such as text simplification and sentence fusion, the latter of which

is considered in Chapter 7. And finally, we can expand beyond n-gram and dependency

structure to new forms of structured abstraction, which is the topic of this chapter.

Although most statistical sentence compression techniques are based on either syntactic

parses or n-gram factorizations, numerous other forms of structured text representation

are studied in natural language analysis research. We turn our attention now to structures

which aim to capture semantic relationships that lie beyond the surface syntax of a sentence.

For example, in the sentences “John closed the door.” and “The door was closed.”, the door
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is the object and subject of the predicate closed respectively but their relationship clearly

remains constant and should be recognized as such in a sufficiently high-level representation

of text meaning.

We are particularly interested in structured representations of semantics that can con-

tribute to high-level problems such as text generation. Among the wide variety of diverse

semantic resources that have received attention over the years, some of most well-known

are the data-driven Propbank (Palmer et al., 2005) built around verb senses and their ar-

guments,1 as well as the FrameNet lexicon (Fillmore et al., 2003), built around the theory

of frame semantics (Fillmore, 1982). A recent entrant to this landscape is the Abstract

Meaning Representation (Banarescu et al., 2013) which combines Propbank-style argument

annotations with entity coreference to build a full-sentence semantic representation.

In the most general case, these structured semantic representations can be viewed as

directed acyclic graphs defined over tokens as well as non-token nodes representing cate-

gories such as predicate labels. We therefore first address the general problem of recovering

the highest-scoring directed acyclic graph over predicate labels from an input sentence by

further extending the flow formulation from §3.2. We then consider a specialization of this

approach for sentence compression, in which we aim to recover the semantic structure of

the output sentence in the form of FrameNet frame-semantic relationships as generated by

the SEMAFOR tool (Das et al., 2013).2 We target Framenet because of its relative ma-

turity as a semantic formalism (as opposed to AMR) as well as its relative orthogonality

to dependency syntax (as opposed to Propbank); however, our ILP framework can support

both of these as well as combinations thereof.

The contributions of this chapter are:

• An extension of the ILP formulation in §3.2 to the joint inference of directed acyclic

graphs in addition to paths and trees.

• A practical application of this approach to recovering FrameNet predicate-argument

relations for output compressions.

1The NomBank project extends Propbank-style arguments to nouns (Meyers et al., 2004).

2A demo of SEMAFOR 2.1 is available at http://demo.ark.cs.cmu.edu/parse.

http://demo.ark.cs.cmu.edu/parse
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Figure 6.1: A frame-semantic parse of an example sentence using frames from the FrameNet

lexicon (Fillmore et al., 2003). Boldfaced words evoke frames through dotted lines. Frame elements

(FEs) are denoted with labeled arrows to head words of the corresponding text spans.

6.1 Structured Semantic Graphs

Semantic formalisms have generated much interest and polarization within the field of natu-

ral language processing. Indeed, it is a challenging task to even specify a lexicon of predicate

categories that offers broad coverage across domains as well as sufficient generalization for

ease of annotation and statistical learning. Different projects approach the notion of seman-

tics in many different ways ranging from formalisms based on propositional or first-order

logic to lexical embeddings in Euclidean space. Here, we are particularly interested in struc-

tured representations of semantics that can contribute to high-level problems such as text

generation.

The Propbank project (Palmer et al., 2005) eschews hand-crafted predicate lexicons by

treating verb occurrences as lexicalized predicates. The arguments of a particular verb are

identified according to their canonical positions in text featuring that sense of the verb

and verb-argument relationships correspond closely to their syntactic modifiers. Broad

coverage was achieved by annotating arguments for all verbs in a large corpus—specifically

the Wall Street Journal section of the Penn Treebank—which has driven the development

of statistical approaches to the problem of semantic role labeling (Carreras and Màrquez,

2004; Carreras and Màrquez, 2005).

In contrast, the FrameNet project (Baker et al., 1998; Fillmore et al., 2001; Fillmore et

al., 2003) takes a hands-on approach in defining a frame taxonomy as well as argument labels

semantics for frames and patterns of instantiation. Coverage is limited since the annotation
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process was not driven by a corpus—indeed, early approaches to frame-semantic labeling

relied only on the exemplar sentences in the FrameNet project, each of which was only

annotated for a single frame and its arguments as opposed to all the frames present in the

sentence. However, the richness of these representations and the eventual release of corpora

with full frame-semantic annotations (Baker et al., 2007) resulted in steady research progress

on the task of frame-semantic parsing. One such approach is SEMAFOR (Das et al., 2010;

Das and Smith, 2011; Das et al., 2012; Das et al., 2013) which we employ to approximate

gold-standard semantic parses in §6.1.4. An example of a SEMAFOR parse for our running

example is provided in Figure 6.3.

The Abstract Meaning Representation (AMR) project (Banarescu et al., 2013) is a recent

effort toward a full-sentence semantic specification and represents a sentence as a rooted

DAG of concepts where the relations between concepts generalize Propbank-style argu-

ments and incorporate coreference. AMR development is ongoing and we hope to apply the

inference techniques described here on text-to-text generation experiments with AMR rep-

resentations in the future. However, despite initial progress on parsing into AMR (Flanigan

et al., 2014), we opt to use the relatively more mature Framenet resources for experiments

in this chapter.

In addition to AMR, predicate-argument structures representing Propbank or Framenet

parses can also be cast as DAGs over non-token labels—verb senses, frames, concepts, etc—

and a subset of tokens representing the syntactic heads of arguments in an input sentence.

DAG structures defined over all tokens are also of interest from a syntactic perspective:

for instance, Kromann (2001) has proposed an expressive dependency formalism for Danish

with explicit multi-headed constructions such as verb coordination, inspiring techniques

for the task of maximum spanning DAG parsing (McDonald and Pereira, 2006; Sagae and

Tsujii, 2008) which is known to be NP-hard (Schluter, 2014). The induction of richer

syntactic representations and predicate-argument structure appears valuable for statistical

approaches to text generation and serves to motivate an extension to our compression

framework to support DAG structures in addition to paths and trees.

In this section, we first describe an ILP approach to recover the maximum-weight edge-

factored DAG within a graph, thereby yielding a formulation which can be used for a variety
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of semantic formalisms. We then empirically explore the question of whether semantic

structures can be useful in sentence compression by extending our ILP formulation from

§3.2 to recover a frame-semantic parse for the output sentence using the frames identified

in the SEMAFOR parse of an input sentence.

6.1.1 Multi-structured objective

We begin by augmenting the ILP formulation from §3.2 to permit non-token nodes that

can represent verb senses from Propbank or frames in the Framenet lexicon or concepts

in AMR, etc. Without loss of generality, we define an expanded set of token-like nodes

T + , T ∪ F to include the n tokens from T as well as ` abstract concept labels from

F , {ti : ti is an abstract concept labeled in S, n + 1 ≤ i ≤ n + `}. We also define an

expanded set of binary variables x+
i and an incidence vector x+ which corresponds to the

tokens and concepts in T + that appear in an output compression C.

The set of possible directed semantic relationships in S is denoted by U , {〈i, j〉 :

ti, tj ∈ T +, tj is an argument of ti in S}. Note that this is a very general formulation of the

problem in which semantic relations are permitted between tokens (e.g., coreference links),

between concepts (as in AMR), from tokens to concepts (e.g., frame-evoking relations) as

well as from concepts to tokens (for arguments). Although different formalisms and tasks

will entail different subsets of these relations, we simply address the general problem of

recovering the maximum-weight DAG connecting a subset of tokens from T +.

We use uij ∈ {0, 1} to represent a binary indicator variable indicating whether tj is a

direct argument of ti in the semantic structure of the output sentence, and the corresponding

incidence vector u , 〈uij〉〈ti,tj〉∈U represents a subset of the semantic relations from U . We

can now update the objective from (3.3) to account for semantic features in the output

compression Ĉ.

Ĉ = arg max
x,y,z,u

x>∆tok + y>∆ngr + z>∆dep + u>∆sem (6.1)

where ∆sem is a vector where each component corresponding to the indicator uij represents

the feature-based score ∆sem(s, i, j) for a semantic relation between ti and tj . Concept-

specific scores can also be included in (6.1) by replacing x with x+ and redefining the
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corresponding scoring vector ∆tok to account for concept nodes. We omit this aspect here

for conciseness of notation although concept-specific features described in §6.2 are employed

in our experiments.

6.1.2 Enforcing DAG structure

Assuming the n-gram configuration y and dependency configuration z are either omitted

or appropriately addressed by the constraints from §3.3.2 and §3.3.1 respectively, we now

attend to the problem of defining constraints to ensure that the directed graph structure

specified by the semantic configuration u represents a valid DAG and remains consistent

with the token/concept configuration x+. The following general conditions describe a DAG:

1. Every active node can have zero or more incoming and outgoing edges.

2. The structure has no directed cycles.

Even though the first condition implies that multiple roots can exist with no incoming edges,

we can still opt to define an auxiliary root ∈ T + with outgoing edges to all nodes as this

allows us to control the appearance of disconnected substructures like isolated concepts.

However, there is no requirement for a constraint equivalent to (3.4) unless the semantic

structure is required to have a single concept or token as the root of the DAG.

Although the semantic relations are relatively unconstrained, we must still ensure that

they are consistent with the active tokens and concepts in x+. This is accomplished by

ensuring that a variable x+
j is active if any of its incoming or outgoing semantic relations

are active. ∑
i

uij −Υmax · x+
j ≤ 0, ∀1 ≤ j ≤ n+ ` (6.2)

∑
k

ujk −Υmax · x+
j ≤ 0, ∀1 ≤ j ≤ n+ ` (6.3)

where Υmax serves as an upper bound on the number of active incoming or outgoing semantic

relationships3 for any token or concept in T +. If no limit on branching is required, we can

simply set Υmax = |T +| = n+ `.

3We use a single constant Υmax here for notational convenience but separate upper bounds can be imposed

for incoming semantic relations in (6.2) and outgoing semantic relations in (6.3) if needed.
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Figure 6.2: An illustrative flow network with edge weights indicating non-zero flow (a) permitting

an undesired cycle when imposing the §3.2 constraint
∑

i γ
′′
ij −

∑
k γ

′′
jk = x+j for all nodes, (b) & (c)

constrained to acyclic structures when using revised constraints (6.6)–(6.7).

The above constraints do not address the prevention of directed cycles in u. For this, we

revisit the constrained flow network from §3.3.1 in conjunction with the directed acyclicity

property from Lemma 3.3.1. New auxiliary variables γ′′ij are defined to carry some real-

valued relational commodity between all pairs of tokens 〈ti, tj〉 where ti, tj ∈ T + and i 6=

j. The flow network is made to correspond to the active semantic configuration u by

constraining the uij variables to be zero whenever tj is not an argument of ti in the output

sentence.

γ′′ij ≥ 0, ∀1 ≤ i ≤ n+ `, (6.4)

1 ≤ j ≤ n+ `, i 6= j

γ′′ij − Γ′′maxuij ≤ 0, ∀1 ≤ i ≤ n+ `, (6.5)

1 ≤ j ≤ n+ `, i 6= j

where Γ′′max is the maximum amount of flow that the γ′′ij variables may carry and, as before,

can be set to an arbitrary high value.4

In prior flow networks described in §3.3.1 and §3.3.2, active nodes consume a single unit

of flow from their incoming flow variables and transmit the remainder to their outgoing

flow variables, thereby establishing structural connectivity. As illustrated in Figure 6.2(a),

this is not sufficient to prevent cycles when nodes can have multiple incoming inputs with

corresponding positive flow. However, Lemma 3.3.1 shows that the output structure is

4Note that this value should generally be much higher than |T +| unlike the limits on flow variables

previously suggested in (3.22) because active tokens can consume a variable amount of flow due to the

constraint in (6.6).
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x+
j uij Imposed constraint (6.6) Effect

1 1 γ′′ij −
∑

k γ
′′
jk ≥ 1 Flow must be consumed

1 0 Υmax · Γ′′max −
∑

k γ
′′
jk ≥ 1 Always satisfied

0 1 — Forbidden by (6.2)

0 0 Υmax · Γ′′max ≥ 0 Always satisfied

Table 6.1: Effective variant of constraint (6.6) imposed on the ILP for different binary states of a

token/concept variable x+j and its incoming semantic relation uij . The constraint on output flow is

only imposed by active incoming semantic relations.

guaranteed to be acyclic if every input flow variable is larger than every output flow variable,

i.e., flow always decreases when crossing an active node. This can be accomplished by

replacing the usual per-token equality constraints for flow consumption with n+` inequality

constraints for each token or concept variable.

γ′′ij + Υmax · Γ′′max (1− uij)−
∑
k

γ′′jk ≥ x+
j , ∀1 ≤ i ≤ n+ `, (6.6)

1 ≤ j ≤ n+ `,

i 6= j

The effect of these constraints on the ILP is explored in Table 6.1. When x+
j is active, they

ensure that every incoming flow variable γ′′ij—and hence the minimum—corresponding to

an active incoming relation uij remains larger than the total outgoing flow—and hence the

maximum—from that node. If an inactive incoming relation is present (i.e., uij = 0), it has

no corresponding flow γ′′ij due to (6.5) but is nevertheless prevented from affecting output

flow by the Υmax ·Γ′′max (1− uij) term, thereby ensuring that the constraint is not violated.

This latter scenario introduces a side effect: active nodes with no incoming active

relations—and consequently zero incoming flow—have no restriction on output flow. In

other words, any active node can become a root in the output DAG. This can be unde-

sirable in some scenarios, e.g., an AMR parse is generally interpreted as a rooted DAG of

concepts. In order to restrict potential roots in the output structure, we can reintroduce the

notion that flow should only be created by special nodes and must simply be transmitted
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by the remaining nodes. ∑
i

γ′′ij −
∑
k

γ′′jk ≥ 0, ∀1 ≤ j ≤ n+ ` (6.7)

where the constraint is not applied to designated root nodes, represented here without loss

of generality by a solitary root denoted by t0. Note that specifying a single root also

guarantees that u will be connected.

The ILP can also be made compatible with an interpretation of a semantic parse as a

maximum spanning DAG over x+. This is accomplished by replacing the right hand side

of constraint (6.7) with x+
j which ensures that active tokens in the output have positive

incoming flow and consequently active incoming semantic relations. Furthermore, when

` = 0 and a single root node is specified, the ILP yields dependency DAGs—of interest

for both syntactic and semantic representations (McDonald and Pereira, 2006; Sagae and

Tsujii, 2008; Schluter, 2014).5

By Lemma 3.3.1, an ILP featuring the constraints (6.2)–(6.7) or the extensions described

above will produce an optimal DAG over the relations in u and the tokens/concepts in x+.

These programs require at most O
(
(n+ `)2

)
variables and constraints for an input sentence

with n tokens and ` potential concepts. While this may appear relatively compact, note

that a large concept lexicon (` � n) would significantly increase the size of the program

and consequently the running time for feature generation and inference with an ILP solver.

6.1.3 Constraining concept lexicons

The primary complication with maintaining a full-fledged semantic parser within an ILP for

sentence compression is the relatively large lexicon of concept labels that must be accounted

for. The Framenet lexicon, for instance, contains over 1,000 semantic frames and a näıve

approach that includes each of these in compression problem would introduce a substantial

5Schluter (2014) suggests that edge-factored spanning DAGs over tokens—generalized by the ILP dis-

cussed here—may counter linguistic intuitions of semantics owing to two reasons: (i) edges do not constrain

each other (ii) edge-factored maximization tends to encourage unwanted edges in a solution. However, this

can be easily addressed in the ILP through constraints on the arguments of non-token concepts or higher-

order hyperedges which are consistent with the edge-factored DAG. Although intractable in general, ILPs

appear appropriate in this setting because the edge-factored problem is APX-hard (Schluter, 2014).
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overhead for feature generation and inference. However, a number of simple pruning strate-

gies can be used to limit the number of potential concepts that can be evoked in an output

sentence.

As the sentence compression task explicitly mandates that the output sentence accu-

rately reflect a portion—if not the totality—of the semantic information in the input sen-

tence, one such strategy is the straightforward approach of merely restricting the potential

concepts in the output to a subset of those in the input. The primary disadvantage of such

an approach is an inherent sensitivity to errors in the semantic parser used to parse the

input sentence. However, we might expect that concept identification errors are more local

and less likely to propagate than errors in a syntactic parse.6 Moreover, in the absence of

gold-standard semantic parses for compressions, the same parser would likely be used to

generate semantic parses for reference compressions. Consequently, consistency in semantic

parses across the input and compressed sentences is a crucial assumption for this task and

one might expect that consistency in concept identification is relatively easy to achieve in

an extractive compression context when output tokens are a subset of input tokens.

6.1.4 Preserving frame semantics in compression

Owing to the relative recency of AMR development and the observation that Propbank

relations largely overlap with syntactic dependencies, we adopt the Framenet representa-

tion for initial experimentation with these ideas. We use the SEMAFOR parser (Das et

al., 2013) to generate frame-semantic parses over both the input sentences and reference

compressions, assuming that the latter approximates gold-standard compressed semantic

structures. Following frame-semantic terminology, we hereby refer to concepts as frames

and their arguments as frame elements or FEs which are realized in text via text spans

termed lexical units. To examine the consistency of SEMAFOR on our extractive com-

pression data, we examined how many frames and FEs that occur in the input sentence

6Although inter-predicate interactions can be considered by semantic parsers, concepts are closely related

to their evoking words and phrases. Furthermore, since semantic parses are not restricted to cover all tokens

in the sentence like syntactic parses, it appears less likely that an error in one concept label will propagate

to the remaining output concepts.
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Frame overlap % Frame reachability % FE overlap % FE reachability %

bn 97.54 77.73 84.86 35.91

wn 96.65 81.74 77.84 31.27

Table 6.2: Percentage of SEMAFOR frames and FEs from reference compressions which are present

in input sentences alongside the percentage of reachable cases—references with frames or FEs entirely

drawn from the input—over the BN and WN training corpora.

were also seen in reference compressions. Table 6.2 lists the results of this analysis on the

training partitions of the BN and WN compression corpora described previously in §3.1.

Across both corpora, we observe that about 97% of the frames identified in reference

compressions overlap with those identified in corresponding input sentences, thereby sup-

porting our hypothesis that frame-semantic parsers like SEMAFOR are largely consistent

in extractive compression scenarios. New frames were present in references of 196/880 BN

instances, leading to relatively high reachability rates for frame configurations of 77.7% and

81.7% respectively. This analysis appears to support an approach in which the only frames

considered for output compressions are those identified by SEMAFOR in the input sentence,

with unseen frames ignored during training.

However, this consistency does not appear to extend to frame elements, even without

considering their role labels. We see lower FE overlap rates of 77–85% on the two datasets

with only 31–36% of reference compressions featuring FEs drawn entirely from input sen-

tences. These numbers are partially affected by the equivalent rates for frames—all FEs of

an unseen frame are naturally also considered unseen—but the presence of new FEs even in

compressions with minor deletions is somewhat surprising. For this reason, we do not con-

strain output FEs by those in the input and instead consider all possible relations between

frames and tokens in trying to recover an output frame-semantic parse.

As a motivating example for this approach, consider the SEMAFOR (Das et al., 2013)

parses in Figure 6.3. Although the frame for the head verb in the input sentence is incorrect

when contrasted with Figure 6.1, all relevant frames remain consistent in the SEMAFOR

parse of a plausible compression. Note however that the FE vary from those in the input

parse when the token configuration is altered, e.g., the frame element Goal is not present
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Figure 6.3: Frame-semantic relations produced by the SEMAFOR semantic parser (Das et al.,

2013) over an example sentence and a possible compression. Dotted edges indicate the lexical units

which evoke each frame while frame elements (FEs) are denoted by labeled edges to head words of

the corresponding lexical units.

in the input sentence.

With an absence of coreference links and inter-frame relations, Framenet parses form a

substantially simpler structure than AMR parses—they can be viewed as a bipartite graph

of frames and tokens with edges representing potential argument relationships oriented in

the same direction. Because this interpretation of a frame-semantic parse does not include

directed cycles, compression over such structures merely requires the constraints (6.2)–(6.3)

without a flow network to prevent cycles.

More specifically, x+
i now represents a token ti in the sentence when 1 ≤ i ≤ n and

a frame when n < i ≤ n + `, which we denote henceforth by fi.7 The semantic relation

uij , 1 ≤ i ≤ n < j ≤ n + ` represents a frame element 〈fi, tj〉, i.e., a core, peripheral or

extra-thematic argument of the frame fi realized as a lexical unit in the sentence for which

the rightmost head word is token tj . The constraints defined in (6.2)–(6.3) thus ensure

that an active FE indicator uij will activate indicators x+
i representing a frame fi and x+

j

7We abuse notation in keeping the subscripted index of a frame symbol fi consistent with its indicator

variable x+i although this index only ranges over n < i ≤ n+ ` for frames.
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representing tj , the head of its lexical unit.

In addition, we introduce one further constraint to curb the occurrence of ungrounded

frames in the output compression. All frames present in a sentence are evoked by a Target

lexical unit, indicated by dotted lines in Figure 6.1 and Figure 6.3. To prevent the presence

of frames with FEs but with no grounding in the output sentence, we enforce a restriction

that an active frame must activate all tokens in its Target lexical unit.

x+
i ≤ x+

j , ∀1 ≤ j ≤ n < i ≤ n+ ` (6.8)

s.t. tj is in the Target lexical unit of frame fi

6.2 Features

We now describe the features that are used to expand the definition of ∆tok(S, i) for n < i ≤

n+` to indicate the relevance of frames fi from the input sentence to the output compression,

as well as an additional linear scoring function ∆sem(Si, j) to characterize potential frame

elements 〈fi, tj〉 which relate these output frames to tokens in the compressed sentence.

6.2.1 Frame features

The feature templates used in the feature map φtok(S, i) for a frame fi consist solely of the

following indicators:

• The unique name of fi along those of its parent and grandparent in the Framenet

taxonomy.

We considered further ancestors in development experiments but found little benefit over

this configuration although the performance variation observed was relatively subtle.

6.2.2 FE features

The feature templates used in the feature map φsem(S, i, j) for a frame element 〈fi, tj〉

consist of the following indicators:

• The role label of the FE conjoined with its type from the set {core, peripheral,

extra-thematic} as well as indicators for whether (a) tj participates in a lexical
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unit for any FE in the input sentence, (b) tj is in the Target lexical unit responsible

for evoking the frame fi in the input sentence, and (c) a dependency relation exists

between tj and any token in the Target lexical unit for fi in the input sentence.

In addition to these indicators, we experimented with richer features which conjoined frame

names with FE labels and types as well combinations with syntactic features such as the

POS tags of ti and the label of any dependency edge between tj and the target of fi.

However, these richer features did not lead to a significant and stable improvement over

existing features in our tuning experiments over development datasets.

6.3 Experiments

We now consider an evaluation of multi-structured compression over frame-semantic struc-

tures over the BN and WN compression datasets (Clarke and Lapata, 2006b; Clarke and

Lapata, 2007) described in §3.1. Our experimental environment is configured as described in

§3.6. Chief among our goals is examining whether the addition of frame-semantic structure

introduces any gain in compression quality. In addition, we are interested in analyzing the

errors in compressed sentences in terms of their effect on output frame-semantic structures.

6.3.1 Compression quality

In this section, we consider the performance of the following inference approaches based on

dynamic programming:

• ILP-2gr-sem: The ILP described in §3.3.2 for recovering a bigram-factored com-

pressed sentence combined with the proposed extension in §6.1.4 for inferring corre-

sponding frame-semantic structures.

• ILP-dep-sem: The ILP described in §3.3.1 for inferring edge-factored compressed

dependency trees combined with the proposed extension in §6.1.4 for inferring corre-

sponding fram-semantic structures.

• ILP-2gr-dep-sem: The full ILP which combines the constraints from §3.3.2 for pro-

ducing a bigram-factored compression, §3.3.1 for producing an edge-factored depen-
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bn

Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

path DP-2gr (McD06) 82.94 72.84 61.08 52.65 - 70.96 66.34

path + DAG ILP-2gr-sem 82.86 72.70 60.62 52.07 - 70.53 66.58

tree ILP-dep 82.70 70.05 56.81 47.94 75.76 70.88 65.25

tree + DAG ILP-dep-sem 82.36 69.33 55.97 47.11 75.30 71.13 63.95

path + tree ILP-2gr-dep 82.85 72.66 60.87 52.87 75.73 73.82 68.56

path + tree + DAG ILP-2gr-dep-sem 82.77 72.74 61.14 53.17 75.73 73.93 68.67

Table 6.3: Experimental results for the BN corpus with all systems restricted to compress to the

size of the median reference compression. Boldfaced entries are statistically undistinguished from

the best result within each column under Wilcoxon’s signed rank test (p < 0.05).

dency tree and §6.1.4 for inducing a corresponding frame-semantic structure over the

compressed sentence.

New models are trained for these techniques using the minibatched structured perceptron

as described in §3.5. These approaches are compared on measures of output compression

quality against the following systems previously described in §3.6.1:

• DP-2gr: The dynamic program of McDonald (2006) described in §4.1.2 for inference

of bigram-factored compressions under a compression rate.

• ILP-dep: The ILP described in §3.3.1 for inferring edge-factored compressed depen-

dency trees.

• ILP-2gr-dep: The full ILP for multi-structured inference which combines the con-

straints from §3.3.1 to produce an edge-factored dependency tree with §3.3.2 to yield

a bigram-factored token ordering for the output sentence.

Table 6.3 lists measures of compression quality for these systems over the test partition of

the BN corpus. Most noticeable is the observation that including frame-semantic struc-

tures in the compression objective does not appear to improve results significantly on any

of the measures considered. Although minor gains are observed for the most expressive sys-

tem ILP-2gr-dep-sem, these results remain in lockstep with ILP-2gr-dep when statistical
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wn

Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

path DP-2gr (McD06) 75.36 63.40 52.15 42.97 - 63.08 59.43

path + DAG ILP-2gr-sem 75.21 63.22 52.02 42.78 - 62.55 59.03

tree ILP-dep 75.74 60.07 46.84 37.48 69.08 64.33 58.49

tree + DAG ILP-dep-sem 75.31 59.20 45.58 36.05 68.52 62.90 57.71

path + tree ILP-2gr-dep 76.15 64.47 53.63 45.15 69.52 67.35 61.82

path + tree + DAG ILP-2gr-dep-sem 75.88 63.71 52.71 43.87 69.19 66.65 61.92

Table 6.4: Experimental results for the WN corpus with all systems restricted to compress to the

size of the reference compression. Boldfaced entries are statistically undistinguished from the best

result within each column under Wilcoxon’s signed rank test (p < 0.05).

significance is considered. Moreover, ILP-dep-sem is noticeably weaker than ILP-dep in

n-gram and RASP F1 measures, giving rise to a conjecture that the scores derived from

frame-semantic structures may conflict with those drawn from dependency structures.

Table 6.4 contains the corresponding numbers over the WN test dataset. As with the

BN dataset, the frame-semantic approaches do not yield significant improvements over the

equivalent bigram and dependency compression approaches. In contrast, adding frame-

semantic structures appears to diminish performance significantly on some measures such

as trigram and 4-gram F1 for ILP-2gr-dep-sem when compared to ILP-2gr-dep, with

the performance drop appearing most consistent when comparing the dependency-based

approach ILP-dep-sem with ILP-dep. Note however that this drop in performance may be

partially explained by our decision to favor the BN corpus in tuning experiments for feature

selection owing to its lower average inference time (cf. Table 5.4) and multiple references.

Why do these more expressive models fail to produce significant improvements over

the compression data? Although the results were not unexpected given the challenge of

identifying a compelling set of features for frame and FE variables in tuning experiments,

we might reasonably expect that these richer models would offer moderate gains over ap-

proaches that do not consider frame semantics. We suspect that the reasons for this result

are five-fold:
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1. These models are likely hampered by a small training corpora that cannot adequately

exploit higher-order models as shown by our experiments with supervised trigrams in

§3.6.5 and with second-order dependencies in §5.3.3. Sparsity issues may therefore be

responsible for poor parameterizations of frame and FE features.

2. In addition, the utility of these system-generated representations is naturally lim-

ited by their robustness on unseen text and frame-semantic parsing is particularly

challenged in this respect by a setting of greater ambiguity than dependency pars-

ing,8 visible in the inconsistency of frame elements between input sentences and their

reference compressions shown in Table 6.2.

3. Furthermore, unlike n-grams and dependency edges which are closely tied to the

surface realization of a sentence, frame-semantic parses are more abstract and, con-

sequently, the identification of frames and FEs is not necessarily aligned with the

problem of finding good surface realizations for sentence compression. For example,

only 21% of the SEMAFOR-identified frames in the BN and WN training datasets

have FEs; the rest offer little benefit9 for these problems as they do not establish

codependencies between tokens or enforce a global structure but are nevertheless con-

sidered in the inference objective.

4. This also points to the limitation of our structured interpretation of frame-semantic

parses, i.e., that they do not involve inter-frame relations. Although these represen-

tations adhere closely to SEMAFOR output, alternative interpretations which extend

FEs to link inter-related frames may lead to different results.

5. Finally, the extractive compression task fails to take advantage of a key aspect of

this representation, namely the use of frames as abstractions over predicates with

varying surface realizations (e.g., predicates buy and sell can both be realized under

commerce sell) and these representations might indeed be more valuable in tasks

which involve paraphrasing.

8Indeed, since SEMAFOR relies on a dependency parse of a sentence as its input, its performance is

strictly circumscribed by parsing errors.

9Regardless of the presence of FEs, including these variables in the inference objective is equivalent to

introducing new features which indicate the frames that are evoked by each token.
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bn

Structures Inference
Frames FEs

P% R% F1% P% R% F1%

path + DAG ILP-2gr-sem 81.25 79.31 79.53 36.99 18.36 21.00

tree + DAG ILP-dep-sem 80.32 81.75 80.16 43.56 21.42 24.99

path + tree + DAG ILP-2gr-dep-sem 81.12 81.06 80.18 41.37 19.92 23.43

Table 6.5: Precision and recall of frames and frame elements (FEs) with respect to the reference

compressions for the BN corpus. Boldfaced entries are statistically undistinguished from the best

result within each column under Wilcoxon’s signed rank test (p < 0.05).

wn

Structures Inference
Frames FEs

P% R% F1% P% R% F1%

path + DAG ILP-2gr-sem 73.75 74.82 73.10 28.45 8.33 11.14

tree + DAG ILP-dep-sem 74.31 77.81 74.67 29.47 8.19 11.42

path + tree + DAG ILP-2gr-dep-sem 74.90 77.16 74.75 29.24 8.53 11.43

Table 6.6: Precision and recall of frames and frame elements (FEs) with respect to the reference

compression for the WN corpus. Boldfaced entries are statistically undistinguished from the best

result within each column under Wilcoxon’s signed rank test (p < 0.05).

6.3.2 Frame-semantic integrity

Although the addition of frame-semantic structures does not appear to help the multi-

structured compression framework, we are interested in whether the degree to which it

yields accurate frame-semantic representations on output text. Table 6.5 lists the precision,

recall and F1 for frames and FEs from the prior experiments over the BN test dataset while

Table 6.6 contains the corresponding results over the WN dataset.

With respect to frames, the most readily apparent trend across both datasets is the rela-

tively small variation in performance. Most differences are not statistically significant other

than a weaker recall rate for frames when the dependency-based perspective is excluded

from the model. We attribute this to a decrease in the number of inferred frames in the

output when relying on a models that discourages the presence of isolated frame-evoking

lexical units without strong adjacency relationships.



CHAPTER 6. COMPRESSION OVER PREDICATE-ARGUMENT STRUCTURES 138

Turning to the FEs, we observe that all absolute measures are drastically lowered.

Whereas the precision and recall of frames were balanced and relatively strong, FE preci-

sion is more than twice FE recall for the BN corpus and more than 3.5 times FE recall

for the WN corpus but FE identification remains half as precise as frame identification

across both datasets. Most interestingly, peak FE F1 is achieved with ILP-dep-sem on

both datasets although this was observed to be the weakest of the frame-semantic models

in the prior evaluation. We interpret this phenomenon as evidence that FE identification is

stronger when output tokens are less constrained—most true of the dependency-only com-

pression model—but that these relations do not capture adequate information on whether

their potential lexical units tokens should be removed or preserved under compression—a

property that is generally stronger in the bigram and joint models.

6.4 Remarks

The chief contribution of this work is an extension of the flow-based ILP formulation from

Chapter 3 to recover various forms of maximum-weight DAGs in graphs, including rooted

DAGs such as AMR graphs and spanning DAGs for augmented syntactic representations.

In general, these formulations can be incorporated in multi-structured inference models to

represent predicate-argument structures which capture higher-level semantic relations than

are normally made explicit through syntactic parse trees.

We also observe that a straightforward application of our multi-structured inference

formulation to frame-semantic structures using SEMAFOR yields no significant advantage

in our experiments. Although we expect that the use of larger compression corpora such as

Filippova and Altun (2013) will yield better features and more robust parameters for these

models, it remains an open question as to whether the limitations of the relatively abstract

frame-semantic formalism and the ambiguity inherent in parsing these structures can be

sufficiently controlled in order to yield performance gains on the compression task.

Regardless of this, we are keen to experiment with the full DAG-recovering ILP for the

recent AMR formalism, which appears to address many of the deficiencies that we encoun-

tered with Framenet. AMR parses are relatively close to surface lexicalizations and explic-
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itly capture many linguistic phenomena that are not addressed by syntactic representations

such as the use of re-entrant edges for coreferent entities. Moreover, the development of

AMR is explicitly data-driven and motivated by machine translation applications, thereby

prioritizing generality and broad coverage over depth within a particular domain. These

aspects suggest a greater degree of orthogonality for AMR structures with respect to syn-

tactic representations, making the formalism a particularly interesting candidate for our

multi-structured techniques.

Other potential applications are suggested by our generalization of flow-based inference

to DAGs. For instance, spanning DAGs may be used to represent rich syntactic or seman-

tic representations (McDonald and Pereira, 2006; Sagae and Tsujii, 2008; Schluter, 2014)

as well as a forest of k-best edge-factored dependency parses. A further (straightforward)

generalization to arbitrary connected graphs can be used to directly target the RASP struc-

tures used for evaluation in these experiments. These techniques therefore hold promise for

task-based evaluations of syntactic and semantic representations and toolkits in the context

of text-to-text generation problems.
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Chapter 7

Multi-Structured Sentence Fusion

A primary application for sentence compression is in the high-level task of abstractive sum-

marization, long seen as an important problem in natural language processing. In an analy-

sis of manual approaches to summarization, Jing and McKeown (2000) showed that humans

frequently reduce the size of their summaries by compressing sentences as well as merging

them. In the literature, the latter task is generally termed sentence fusion and broadly

defined as the problem of combining two or more sentences which overlap in information

content, avoiding extraneous details and preserving common information. In addition to its

role in human summarization, sentence fusion has been shown to be a valuable component

of automated summarization systems (Barzilay and McKeown, 2005). However, although

recent years have seen steady progress in single-sentence tasks such as sentence compres-

sion and paraphrase generation, research in sentence fusion has long been hampered by the

absence of datasets for the task.

This chapter presents a new fusion dataset generated from existing human annotations

and explores extensions of the single sentence compression approach of Chapter 3 to n-way

sentence fusion.1 Our fusion dataset is constructed from evaluation data for summariza-

tion shared tasks in the Document Understanding Conference (DUC)2 and the Text Anal-

1An early version of this work was presented in Thadani and McKeown (2013b). We have also explored

the topic of evaluation for intersection-based fusion in Thadani and McKeown (2011b).

2Document Understanding Conference (DUC) resources: http://duc.nist.gov

http://duc.nist.gov
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ysis Conference (TAC).3 We use human-generated annotations produced for the pyramid

method (Nenkova et al., 2007) for summarization evaluation to produce a dataset of natural

human fusions with quantifiable agreement. This offers advantages over previous datasets

used for standalone English sentence fusion which contain annotator-induced noise (McK-

eown et al., 2010) or cannot be freely distributed to researchers (Elsner and Santhanam,

2011). In addition, each of these datasets contains around 300 instances of fusion while

the new dataset presented here contains 1860 instances and can be further expanded by

relaxing the filters used in its construction.

Crucially, this larger corpus encourages supervised approaches to sentence fusion, thereby

enabling experimentation with multi-structured inference strategies for the task. Previous

approaches to fusion have generally relied on variations of dependency graph combina-

tion (Barzilay and McKeown, 2005; Filippova and Strube, 2008b; Elsner and Santhanam,

2011) for content selection with a separate step for linearization that is usually based on an

LM. However, as the flow-based ILP for multi-structured compression from §3.2 is capable

of simultaneously identifying a dependency tree and its linearization, we adapt it to study

its utility in discriminative sentence fusion. Furthermore, we can also incorporate relevance

cues across input sentences through additional features and constraints that encourage re-

dundant input information to appear in the output fusion.

The primary contributions of this chapter are:

• A novel dataset of natural sentence fusions drawn from pyramid evaluation datasets

for summarization which are available to the NLP community.

• A supervised approach to sentence fusion that jointly addresses non-redundant content

selection and linearization.

• An extension of the dependency-based subproblem from §3.3.1 which incorporates the

orientation of output dependency edges in the solution.

3Text Analysis Conference (TAC) resources: http://www.nist.gov/tac

http://www.nist.gov/tac
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1 In 1991, the independents claimed nearly a third of adult book purchases but six years

later their market share was nearly cut in half, down to 17%.

2 By 1999, independent booksellers held only a 17 percent market share.

SCU Six years later independent booksellers’ market share was down to 17%

1 The heavy-metal group Metallica filed a federal lawsuit in 2000 against Nap-

ster for copyright infringement, charging that Napster encouraged users to trade

copyrighted material without the band’s permission.

2 The heavy metal rock band Metallica, rap artist Dr. Dre and the RIAA have sued

Napster, developer of Internet sharing software, alleging the software enables the

acquisition of copyrighted music without permission.

3 The heavy-metal band Metallica sued Napster and three universities for copy-

right infringement and racketeering, seeking $10 million in damages.

SCU Metallica sued Napster for copyright infringement

1 The government was to pardon 23 FARC members as the two sides negotiate prisoner

exchanges.

2 The Columbian government plans to pardon more than 30 members of FARC as they

negotiate a prisoner swap.

3 The government and FARC continued to argue over details of a prisoner

swap.

SCU The government and FARC negotiate prisoner exchanges

Table 7.1: SCU annotations drawn from DUC 2005–2007 and TAC 2008–2011. Human-annotated

contributors to the SCU are indicated as boldfaced spans within the respective source sentences.

7.1 Pyramid Fusion Corpus

The pyramid method is a technique for summarization evaluation that aims to quantify the

semantic content of summaries and compare automated summaries to human summaries on

the basis of this semantic content (Nenkova et al., 2007). First, for each summarization topic

to be evaluated, multiple human-authored summaries are produced—4 for most DUC and

TAC evaluations although DUC 2005 features 7 summaries per topic.4 Annotators then

4We also noted one document with 5 human summaries in TAC 2010.
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identify summarization content units or SCUs—intended to correspond to atomic units

of information—by reading and comparing these summaries.5 Each SCU contains a label

which is a concise English sentence stating its semantic meaning and a list of contributors

which are discontinuous character spans from the summary sentences—herafter referred to

as source sentences—in which that SCU is realized. Table 7.1 contains examples of SCUs

drawn from DUC 2005–2007 and TAC 2008–2011 data.

Our fusion corpus is constructed by taking the source sentences of an SCU as input

and the SCU labels as the gold-standard output fusion of these sentences. The fusion task

captured by this corpus is similar to sentence intersection as defined by Marsi and Krahmer

(2005) although it does not fit the criteria for strict intersection as addressed in Thadani and

McKeown (2011b) because source sentences may not expressly mention all the information

that is contained in an SCU label due to unresolved anaphora and entailments made using

external knowledge.

The following procedure was used to extract a corpus of fusion instances from the 17756

SCUs annotated in the DUC and TAC datasets.

1. We first choose to ignore all contributor sentences which are sourced from more than

one summary sentence, thereby ignoring higher-level concepts which straddle multiple

sentences. Dropping these contributors also reduces the dataset by 323 SCUs which

only feature multi-sentence contributors.

2. Naturally, SCUs that have only a single contributor are not useful for the fusion task.

These comprise a majority (55%) of SCUs in the corpus and dropping them leaves

7845 SCUs for further consideration.

3. In addition, we chose to restrict the number of input sentences to at most 4 since SCUs

with 5–7 contributors are present only in DUC 2005 and are thus fairly infrequent in

the dataset. This is accomplished by iteratively removing the contributors of these

SCUs which share the fewest words with the SCU label until only 4 remain.

4. Although SCU descriptions are required to be full sentences, we found that this was

not upheld in practice. We therefore removed SCUs whose labels contain fewer than

5An SCU annotation guide from DUC 2005 is available at http://www1.cs.columbia.edu/~ani/

DUC2005/AnnotationGuide.htm.

http://www1.cs.columbia.edu/~ani/DUC2005/AnnotationGuide.htm
http://www1.cs.columbia.edu/~ani/DUC2005/AnnotationGuide.htm
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5 words and did not have an identifiable verb beyond the first token. As a practical

consideration, SCUs with source sentences which have more than 100 tokens were also

dropped. Applying these filters leaves 6453 fusion candidates in the corpus.

5. Crucially, anotated concepts in this dataset often only cover a small fraction of source

sentences and may not represent the full overlap between them. To account for this,

we ignored SCUs without contributors that are at least half the length of their source

sentences as well as SCUs whose labels are less than half the length of the smallest

contributor. Imposing these constraints preserves 4628 SCUs in the dataset.

6. Finally, we chose to retain only SCUs whose labels contain terms present in at least

one source sentence, thus ensuring that the SCUs which are presumed to be reference

fusions are entirely reachable without paraphrasing.

This procedure yields 1860 fusion instances of which 873 have two inputs, 569 have three and

418 have four.6 Figure 7.1 shows the number of instances of each type with respect to the

DUC or TAC dataset they are drawn from. The fraction of SCUs retained from each dataset

is fairly consistent and ranges from 8.5% (DUC 2005) to 11.8% (TAC 2009). Naturally, the

size and quality of the dataset can be varied by adjusting the hyperparameters used in the

filtering procedure.

7.2 Multi-Structured Fusion

Prior approaches to fusion have often involved multiple stages. A content selection phase

typically combines the dependency graphs of input sentences to produce an intermedi-

ate syntactic representation of the information in the sentence (Barzilay and McKeown,

2005; Filippova and Strube, 2008b; Elsner and Santhanam, 2011). Linearization of output

fusions is usually performed by ranking hypotheses with an LM—sometimes with language-

specific heuristics to filter out ill-formed sentences. This pipelined strategy is also known as

overgenerate-and-rank and is often found to be a source of errors in fusion problems (Barzi-

lay and McKeown, 2005).

6We hope to eventually distribute the extracted corpus directly but interested researchers can currently

retrieve the raw data from NIST and reconstruct it from our guidelines.
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Figure 7.1: Distribution of instances in the pyramid fusion corpus constructed according to §7.1

with respect to the DUC or TAC dataset that they were drawn from.

The multi-structured sentence compression approach discussed previously already ad-

dresses both these problems by simultaneously producing a dependency tree and an n-gram

factored linearization rather than relying on pipelined stages to first select output content

and then linearize an intermediate dependency representation. Furthermore, the presence

of a relatively large dataset enables supervised approaches in which likelihood under an

LM is one of many features of output quality. Generic fusion—without a specific query

or restriction for output content—is similar to the sentence compression task albeit with

multiple input sentences; indeed, recent literature has eschewed the term fusion in favor

of multi-sentence compression (Filippova, 2010; Boudin and Morin, 2013; Tzouridis et al.,

2014). The remainder of this section discusses an adaptation of the multi-structured com-

pression approach from §3.2 to multiple input sentences. In addition, we introduce new

features and constraints that directly address the unique aspects of the fusion task.

7.2.1 ILP formulation

Consider a single fusion instance involving p input sentences S , {S1, . . . , Sp} and let F

denote their fusion. Assuming a linear model for inference, we formulate the MAP inference
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Figure 7.2: An illustration of adjacency flow values for a fusion of two input sentences using the

ILP from §3.3.2. Dashed lines denote all non-zero flow variables.

objective for the fusion task to follow (3.2) for sentence compression.

F̂ , arg max
F

∆(S, F )

= arg max
F

θ>φ(S, F ) (7.1)

where the scoring function ∆, feature map φ and learned parameters θ apply to the fusion

task. If Tr , {tri : ith token in Sr ∈ S} and T ,
⋃
r Tr, the optimal output fusion F̂ can

be recovered by an ILP solver which targets the joint objective from (3.3) under structural

constraints.

F̂ = arg max
x,y,z

x>∆tok + y>∆ngr + z>∆dep (7.2)

where a token configuration x, a path of bigrams y and an edge-factored dependency tree z

define the highest-scoring output sentence F̂ . Valid structural configurations for y and z are

ensured by using the flow network formulations from §3.2, which are defined over generic

token graphs and require no modification to work with multiple input sentences.7 For

example, Figure 7.2 illustrates the path-structured adjacency flow that would accompany

an n-gram solution extracted from two input sentences using the constraints from §3.3.2.

7.2.2 Redundancy

Although the ILP for compression yields non-degenerate structures for output sentences,

novel issues arise as a consequence of having multiple input sentences. One such issue is

that of redundancy in the input text. Table 7.2 illustrates the utility of redundancy as a

7DAGs that specify semantic parses can also be retrieved by adopting the expanded objective (6.1) and

corresponding structural constraints from §6.1.
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1 The heavy-metal group Metallica filed a federal lawsuit in 2000 against Napster for

copyright infringement, charging that Napster encouraged users to trade copyrighted

material without the band’s permission.

2 The heavy metal rock band Metallica, rap artist Dr. Dre and the RIAA have sued

Napster, developer of Internet sharing software, alleging the software enables the acqui-

sition of copyrighted music without permission.

3 The heavy-metal band Metallica sued Napster and three universities for copyright

infringement and racketeering, seeking $10 million in damages.

Fusion Metallica sued Napster for copyright infringement

1 The government was to pardon 23 FARC members as the two sides negotiate prisoner

exchanges.

2 The Columbian government plans to pardon more than 30 members of FARC as they

negotiate a prisoner swap.

3 The government and FARC continued to argue over details of a prisoner swap.

Fusion The government and FARC negotiate prisoner exchanges

Table 7.2: An illustration of lexical redundancy in fusion instances from our corpus. Dashed

underlining indicates content words—nouns, verbs, adjectives and adverbs—whose stems occur in

two input sentences while solid underlining indicates those which occur in all three.

cue for salience in fusion examples drawn from the pyramid dataset. In the first example,

every content word in the output fusion appears in at least two input sentences and most

appear in three, even without considering paraphrases such as filed a ... lawsuit ⇔ sued.

In addition, most redundant words in the input are present in the output except the phrase

heavy-metal band, whose inclusion would not be out of place in a good fusion. The second

example similarly demonstrates the importance of redundancy, particularly if a paraphrase

dictionary can identify the synonymy of exchange ⇔ swap.

Although redundancy in the input sentences yields a potential indication of information

salience, redundancy in an output sentence is undesirable. We address both these aspects:

the former by identifying groups of similar content words across sentences for additional

salience features and the latter through constraints over these groups.



CHAPTER 7. MULTI-STRUCTURED SENTENCE FUSION 148

7.2.2.1 Identifying input redundancy

We consider every pair of input sentences in S and identify groups {G1, . . . ,Ga} of similar

or identical open-class words—nouns, verbs, adjectives and adverbs. Word similarity is

established via stem/lemma overlap, Wordnet synonymy8 and abbreviation fitting. The

word groups are assumed to be closed under transitivity9 and are identified using a single-

link agglomerative clustering procedure which takes O
(
n2
)

time where n = maxr |Tr|. Each

group Gc is further partitioned into subgroups of similar tokens from each sentence, i.e., Gc ,

{Hrc : Hrc ⊆ Tr, 1 ≤ r ≤ |S|} where a subgroupHrc consists of the matched tokens from input

sentence Sr. In the first example from Table 7.2, this procedure would identify a group G =

{H1,H2,H3} for the lemma copyright where the subgroups H1 = {copyright, copyrighted},

H2 = {copyrighted} and H3 = {copyright} contain instantiations of the lemma in each

input sentence.

As previously discussed, we might expect that content words from large groups are more

likely to appear in an output fusion owing to their support from multiple input sentences.

We therefore define the support of a token Ω : tri → N as the number of sentences which

contain words that match tri .

Ω(tri )


= |Gc|, ∃Hrc ∈ Gc s.t. tri ∈ Hrc

= 0, otherwise

(7.3)

In §7.3.2, we describe features that allow the structured learner to exploit this measure of

support as an indication of salience for n-grams and dependency edges.

7.2.2.2 Minimizing output redundancy

While we expect largely positive weights on features for supporting tokens, this may also

have the effect of encouraging more than one token from the same group to occur in the

output. In order to avoid this problem, we can simply add a constraint for each group that

prevents all tokens within a group from appearing more than once in an ILP solution. In

8Specifically, whether either word shares at least a third of its Wordnet synsets with the other word.

9In other words, if a word is found to match with two groups, the groups are merged. Any input token

will therefore participate in at most one group.
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practice, however, we impose less stringent constraints which restrict each token in a group

to appear in the solution no more than the number of times any token in that group appears

in an input sentence. If we use xri to denote the indicator variable representing the presence

of token tri from sentence Sr in the output fusion, these constraints can be expressed as

∑
i,r,c:

tri∈Hrc∈Gc

xri ≤ max
Hrc∈Gc

|Hrc |, ∀c (7.4)

7.2.3 Dependency orientation

One aspect of dependency tree inference which we have not discussed thus far is the ori-

entation of edges in the output sentence. The ILP from §3.2 defines dependency edges

zij with no consideration to the relative positions of the tokens ti and tj in the solution.

Consequently, zij is scored identically regardless of whether it manifests as a right attach-

ment or a left attachment in the output compression. Note that the participating tokens ti

and tj might be drawn from different input sentences for the fusion task but, for clarity of

exposition, we omit sentence indices in this section and build on the notation from §3.2.

Although an invariance to dependency orientation is true for compression as well as

fusion, the issue is less significant in the case of the former. Since the dataset for compression

experiments from §3.1 does not include token reordering, the orientation of a dependency

edge between any two tokens remains fixed, i.e., if i < j, ti → tj is always a right attachment

and tj → ti is always a left attachment. Information on the direction of dependencies is

therefore easily incorporated into features which can consider the relative positions of the

two words in the input sentence.

However, ordering decisions are unavoidable for inference in fusion problems and po-

sitional features cannot always account for edges between tokens from different sentences.

This scenario is somewhat problematic since it does not distinguish between dependency

relationships which are closely tied to the direction of attachment such as subject and object,

e.g., the dependency parses of dog bites man and man bites dog would be scored identi-

cally. Without the ability to specify direction-aware features for dependency edges, the

trees produced by the dependency variables may be ineffective in constraining other output

structures.
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Conveniently, the flow formulation in §3.3.2 provides a solution. Although actual po-

sitional information is not captured in any structural indicator variables, observe that the

adjacency flow variables γ′ij implicitly encode the position of every active token in the output

sentence,10 If the total value of outgoing adjacency flow from token indicator xi is greater

than the outgoing adjacency flow from xj , ti must precede tj in the output and vice versa.

We can exploit this observation for additional constraints that forbid inconsistent scoring

of left and right attachments.11

Consider now two distinct types of dependency indicator variables: zrij indicates a right

attachment in which the governor ti precedes the dependent tj in F̂ and zlij indicates

a left attachment in which ti follows tj in F̂ . These orientation-aware variables can be

incorporated in the objective function from (7.2) by redefining z , 〈zl, zr〉. The score

for any dependency relationship ∆dep(S, i, j) with dependent tj governed by ti can now be

replaced by an orientation-aware scoring function ∆′dep(S, i, j, o) where o ∈ {l,r} depends

on whether the dependency is expressed through zlij or zrij .

We now require that these indicators remain consistent with the relative positions of ti

and tj in an output sentence hypothesis. The constraints below forbid a left attachment zlij

from becoming active when the difference between the outgoing flow from ti is greater than

that from tj , i.e., when ti precedes tj in the output sentence. Similarly, a right attachment

zrij is prevented from becoming active when tj precedes ti.∑
k

γ′ik −
∑
l

γ′jl ≤ Γ′max(1− zlij), ∀0 ≤ i ≤ n, (7.5)

1 ≤ j ≤ n, i 6= j∑
l

γ′jl −
∑
k

γ′ik ≤ Γ′max(1− zrij), ∀0 ≤ i ≤ n, (7.6)

1 ≤ j ≤ n, i 6= j

10Specifically, the total outgoing flow of adjacency commodity
∑
k γ

′
ik from any active token variable ti is

always equal to m− pi + 1 where pi ∈ {1, . . . ,m} is the position of ti in an output sentence.

11Beyond attachment direction, we can also exploit adjacency flow variables to define O
(
n2
)

variables

that correspond to the range of some active dependency, i.e., the number of tokens between its governor

and dependent. These non-binary variables can then be explicitly constrained—for instance, to prevent

long-range dependencies in the output—or can be scored by a feature-based scoring function and directly

incorporated into the output objective. We experimented briefly with the latter approach in the context of

the compression task from Chapter 3 but initial results have not shown promise.
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Because any difference between positive flow variables γ′ is always less than Γ′max, the con-

straints (7.5)–(7.6) have no effect on the program when the respective dependency variable

is not active.

7.3 Features

We largely base our features for the fusion task on the features for compression problems

previously described in §3.4. The changes introduced for fusion problems include a reduced

emphasis on lexical features and the inclusion of feature templates based on token support

as a signal of salience for n-grams and dependency edges in the output sentence. As before,

we record both absolute and normalized versions for scale-dependent features—normalizing

them by the average length of input sentences in an instance—in order to encourage the

models to be robust to variations in the size of a fusion problem.

7.3.1 Token features

We use a reduced set of token features when adapting the compression approach of Chapter 3

to fusion problems, excluding lexical features and POS context features with large spans

which we found led more readily to overfitting. The full set of feature templates used in the

feature map φtok(S, r, i) for a token tri consist of the following lexico-syntactic indicators:

• The POS of tri conjoined with the label of the dependency edge incident on tri in the

Stanford depedency parse of the input sentence.

• The POS tag of trj for j ∈ i− 2, . . . , i+ 2.

• The POS tag sequence of the segment 〈trj , trj+1〉 for j ∈ i− 2, . . . , i+ 1.

as well as the following fidelity and morphological features:

• Whether tri appears in the input—always 1 for our dataset of reachable fusions.

• Whether tri is capitalized and the relative position of tri in a sequence of capitalized

words if it is capitalized.

• Whether tri lies within parentheses.
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We do not directly incorporate the support of content words as defined in §7.2.2.1 in the

per-token feature map φtok(S, r, i); instead, we use this signal in richer feature templates

over both bigrams and dependency edges.

7.3.2 Bigram and dependency features

All bigram features described in §3.4.3 and dependency features from §3.4.4 are reused for

scoring y and z in (7.2). In addition, we draw on the measure of token support Ω defined in

§7.2.2.1 as the basis for the following additional feature templates included in both feature

maps φngr(S, r, r′, i, j) for bigrams 〈tri , tr
′
j 〉 as well as φdep(S, r, r′, i, j) for dependencies

〈tri , tr
′
j 〉.

• Ω(tri ) and whether Ω(tri ) ∈ {2, 3, 4} conjoined with the coarse POS of tri , i.e., an

indicator of whether tri is a noun, verb, adjective or adverb.

• If trk governs tri in a dependency parse of Sr, Ω(trk) and whether Ω(trk) ∈ {2, 3, 4}

conjoined with the coarse POS of trk.

• The fraction of tokens from the subtree rooted at tri in the dependency parse of Sr

which have their Ω ∈ {2, 3, 4} conjoined with the coarse POS of tri .

• The above templates applied to the second/dependent token tr
′
j from Sr′ instead of

the first/governor token tri from Sr in the bigram/dependency under consideration.

• Indicators of whether Ω(tri ) ∈ {2, 3, 4} and Ω(tj) ∈ {2, 3, 4} conjoined with the POS

tags of tri and tr
′
j .

The impact of these support-based features is evaluated in §7.4.3.

7.3.3 Deriving features for reference fusions

In §3.5.2, we discuss the problem of generating features for reference compressions to be

used in model training. Our solution to this involves progressively mapping tokens in a

reference compression to those in the input sentence, starting with the least ambiguous

mappings and then using these as contextual cues for further disambiguation. However, as

illustrated in Table 7.2, fusion instances often feature lexical redundancy across multiple

input sentences and output tokens are not order-constrained as in the compression task.
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Consequently, it is impractical to disambiguate reference tokens based on their position or

lexical context in a reference fusion.

We must therefore adopt a less aggressive mapping approach when deriving reference

features for the fusion task. Because the reference sentence cannot be assumed to be a

subsequence of the input sentence, the assumption that mappings must be monotonic is

no longer applicable and, similarly, contextual overlap is no longer a reliable signal for

disambiguation. We therefore rely on only lexical and syntactic overlap for disambiguating

reference tokens in this task. For remaining ambiguous tokens, all remaining mappings

are considered when generating token, bigram and dependency features and the resulting

feature vectors are averaged.

7.4 Experiments

In order to evaluate the performance of multi-structured fusion, we ran experiments over

the corpus described in §7.1. To aid reproducibility, we did not split the corpus randomly;

instead, the 593 instances from the DUC evaluations covering the years 2005–2007 were

chosen as a test dataset, while the 1267 instances from the TAC evaluations over 2008–2011

were used as a training dataset.12 This yields an approximate 70/30 train-test split with

near-identical proportions of 2-way, 3-way and 4-way fusions across the training and test

partitions.13 We used a further 10% of the training dataset—composed entirely of instances

from TAC 2011—as a development partition in order to tune feature configurations.

Sentence fusion is notoriously hard to evaluate even with human raters (Daumé III

and Marcu, 2004). In prior work, we proposed an approach to aid manual evaluations of

automated sentence intersection by reducing the evaluation task to judgments of textual

entailment (Thadani and McKeown, 2011b); however, this reduction is not applicable in

the context of generic sentence fusion. Here, we follow the standard approach of machine

translation and choose to rely on transparent automated measures of output quality in order

12The actual training dataset used in our experiments consisted of 1265 instances. An error in sentence

splitting led to the inadvertent removal of 2 valid fusion instances during the corpus construction process.

13In addition, this approach ensures that training and testing datasets never contain instances drawn from

the same summarization corpus, which may share input sentences.
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to engender more repeatable evaluations of fusion systems. Furthermore, as our test dataset

is larger than most previously-studied fusion corpora in their entirety, statistical measures

of output sentence quality are both viable and preferable for their coverage.

For the experiments presented here, we consider all n-gram and dependency F1 measures

that have been used to evaluate compression systems in Chapters 3–6. In order to ensure

that comparisons between different systems remain fair, we also follow the compression

evaluations in constraining output fusions to be a certain length—the length of the reference

fusion. It should be noted that this constraint makes the fusion task easier since the output

space is relatively smaller than that of the unconstrained fusion task. However, we expect

that practical implementations of fusion systems will be able to meet—if not surpass—the

performance of length-constrained fusion systems by incorporating predictive models or

heuristic approaches to estimate an appropriate length for the output sentence given the

input sentences.

The primary question under consideration in the following experiments is: what empir-

ical effect does multi-structured inference have in the fusion setting? In addition to average

measures over the full test dataset, we examine examples from the fusion output and look

at performance variation with a different number of inputs. In addition, we investigate

the effect of content selection under our approach to lexical redundancy from §7.2.2 as

well as whether orientation-aware dependencies from §7.2.3 have an impact on performance

measures.

7.4.1 Fusion quality

In this section, we consider the performance of the following inference approaches to sentence

fusion, redefining system names from sentence compression where appropriate.

• ILP-2gr: An ILP over only the token and bigram variables from the objective in (7.2)

and using the constraints in §3.3.2 to produce bigram-factored fusions.

• ILP-dep: An ILP over only the token and dependency variables from the objective

in (7.2) and using the constraints in §3.3.1 to infer edge-factored dependency trees

representing output fusions. Because we do not assume a total ordering of output

tokens for this task, the output of this model is treated as a collection of unordered
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Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

path ILP-2gr 51.67 37.64 28.53 22.47 - 34.00 32.89

tree ILP-dep 47.89 - - - 34.22 - -

path + tree ILP-2gr-dep 54.95 41.64 33.28 28.06 40.89 39.71 38.79

Table 7.3: Experimental results over the pyramid fusion corpus with all systems restricted to

produce outputs of the same length as reference fusions. Boldfaced entries are statistically undistin-

guished from the best result within each column under Wilcoxon’s signed rank test (p < 0.05).

words.

• ILP-2gr-dep: The full ILP for multi-structured sentence fusion which targets the

objective in (7.2) and combines the constraints from §3.3.1 to produce an edge-factored

dependency tree with those from §3.3.2 to yield a bigram-factored token ordering for

the output sentence.

Models are trained for these techniques using the minibatched structured perceptron as

described in §3.5.

Table 7.3 enumerates the performance of these systems under measures of output sen-

tence quality. We observe lower absolute numbers on all measures compared to the com-

pression task, illustrating the relative difficulty of fusion due to the larger output space

and variable token ordering. Regardless, multi-structured inference appears to yield a large

performance advantage over both single-structured techniques in all measures. Unlike the

compression systems, a clear gain is seen for ILP-2gr-dep over ILP-2gr under n-gram F1

and over ILP-dep under dependency F1, suggesting that the joint approach appears to offer

more than the sum of its parts. Out of 593 test instances, ILP-2gr reproduces 70 (11.8%)

references perfectly while ILP-2gr-dep reproduces 103 (17.4%).

Also notable in this comparison is the poor performance of ILP-dep, which is dramat-

ically worse than the other systems in terms of unigram F1. However, this is not entirely

surprising when considering the vastly increased output space of the fusion task with re-

spect to the extractive compression task examined in previous chapters. These results

highlight the fact that edge-factored tree structures are relatively unconstrained compared
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to bigram-factored paths; for instance, a verb may take multiple subjects in a valid solution.

These errors can be avoided with language-dependent linguistic constraints as in Clarke and

Lapata (2008) and Filippova and Strube (2008b) or with a pruning stage which precedes

fusion inference. However, snce the dependency-based model cannot produce an output

fusion without a linearization component, we do not pursue remedies for its shortcomings

in isolation and instead focus on its utility in joint inference with ILP-2gr-dep.

Because the dataset contains fusion instances with 2, 3, and 4 input sentences, we

can examine the impact of additional inputs—which offer an additional source of salience

but also a larger output space—on performance with respect to the reference sentence.

Table 7.4 reports the evaluation measures computed separately over the 275 test instances

with 2 inputs, the 162 with 3 inputs and the remaining 156 with 4 inputs.14 In each case,

ILP-2gr-dep maintains a statistically significant margin over the single-structure systems,

with absolute gains ranging from 4–7% in 4-gram F1 and 5–7% in RASP F1 over ILP-2gr

as well as 4–8% in dependency F1 over ILP-dep.

Furthermore, system performance appears to steadily decrease as the number of input

sentences increases. This phenomenon can be generally attributed to a contingent increase

in the number of possibilities for constructing a valid output sentence, which appears to

outpace the marginal signals of support provided by additional input sentences. We also

considered whether this variation might stem from an increasing proportion of valid fusions

which do not match the sole designated reference compression. To verify this, we assembled

pseudo-references using only the contributor spans designated by SCU annotators (cf. 7.1)

which are not necessarily full sentences or even contiguous fragments of text. As the number

of contributors for any instance is equal to the number of input sentences, averaging the

F1 measures against these pseudo-references should be less sensitive to input size than the

sole reference used in our primary evaluation. However, the variation in F1 measures across

systems and the number of input sentences was observed to be similar to the results in

Table 7.4.

14The models used to produce these numbers remain unchanged and were trained on the full training

dataset composed of instances with 2, 3 and 4 input sentences.
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Num. inputs Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

2

ILP-2gr 54.71 42.89 35.16 29.51 - 38.91 37.60

ILP-dep 52.24 - - - 40.10 - -

ILP-2gr-dep 57.06 46.04 38.63 33.42 44.78 43.83 42.82

3

ILP-2gr 51.61 36.25 25.91 19.02 - 32.13 30.85

ILP-dep 46.40 - - - 32.02 - -

ILP-2gr-dep 55.62 40.69 31.83 26.16 40.65 38.92 38.08

4

ILP-2gr 46.37 29.83 19.57 13.64 - 27.28 26.72

ILP-dep 41.77 - - - 26.13 - -

ILP-2gr-dep 50.55 34.87 25.37 20.58 34.27 33.24 32.40

Table 7.4: Results over the pyramid fusion corpus broken down by number of input sentences.

Boldfaced entries are statistically undistinguished from the best result within each column and row

group under Wilcoxon’s signed rank test (p < 0.05).

We expect that this phenomenon of decreasing performance with additional input sen-

tences can be controlled in various ways when considering practical fusion systems. For

instance, most previous work on fusion uses a multi-stage approach in which the first

stage consists of explicit alignment of the tokens in the input sentence and fusion infer-

ence operates over graphs of bigrams (Filippova, 2010; Thadani and McKeown, 2011b)

or dependencies (Barzilay and McKeown, 2005; Filippova and Strube, 2008b). Although

error-propagation is a risk with such strategies, they can be used to disambiguate redun-

dant substructures and prune implausible constructions while remaining compatible with

multi-structured inference in a following phase.

7.4.2 Example output

Table 7.5 contains examples of reference and system-generated fusions for instances from

the test partition. We selected examples for readability and diversity, favoring instances

with few errors with respect to the references while avoiding perfect results, which are

uninteresting from the point of view of analysis, as well as overly noisy results, from which
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insights cannot be easily gleaned. This is therefore not intended to be a representative

sample of system performance over the test dataset.

Unsuprisingly, we observe that ILP-2gr makes errors common to n-gram models with

short context windows. For instance in example (a),15 the semantic error introduced by

ILP-2gr in substituting capsules for current is likely due to the inability of the model to per-

ceive that the previous word is by rather than using. This error is avoided by ILP-2gr-dep

which accounts for the syntactic dependency between by and currents. In other examples

like (e) and (f), the limitations of relying on a local bigram factorization with ILP-2gr

manifest as separate clauses which are joined by a single overlapping noun phrases—a rarer

occurrence in ILP-2gr-dep solutions. However, both systems are vulnerable to outputs

with leading and trailing truncations, as illustrated by examples (c) and (i).

We present the output of ILP-dep as a set of tokens since linearization is not provided

by the model.16 In the absence of additional information to guide the production of output

sentences, these ILP-dep token solutions largely do not appear amenable to resolution as

meaningful text—as is also evidenced by the lower unigram F1 scores for ILP-dep. For

instance, the ILP-dep solution in example (d) contains all the verbs from input sentences

because the redundancy constraints from §7.2.2.2 do not apply to non-synonyms. In con-

trast, the ILP-2gr and ILP-2gr-dep solutions in that instance avoid redundant verbs.

The bigram-based ILP-2gr often produces fluent sentences and occasionally recovers

solutions that rival ILP-2gr-dep, e.g., examples (d) and (g) in Table 7.5. However, both

ILP-2gr and ILP-2gr-dep are often penalized in comparisons with reference sentences

even when they are perfectly valid fusions. In addition to comparing system outputs to

contributor sentences as described previously, we also conducted an intrinsic evaluation by

comparing the log-likelihood of system responses for test instances under a trigram LM

trained on Gigaword 3. Similar performance is recorded for both systems: an average log-

probability of −284.70 for ILP-2gr and −284.06 for ILP-2gr-dep—a statistically significant

15A similar issue is seen in example (h).

16Linearization of dependency trees is usually accomplished with LMs (Bangalore and Rambow, 2000) and

is a common feature of most previous work on fusion (Barzilay and McKeown, 2005; Filippova and Strube,

2008b; Elsner and Santhanam, 2011).
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(a) Input (i) Russian efforts to reach the submarine using underwater capsules failed and

Russia talked to NATO officials .

Input (ii) Russian navy rescue efforts were complicated by strong underwater currents and

near zero visibility at the 450 feet depth where the vessel was trapped and by

heavy surface storms .

Reference Russian efforts to reach the submarine failed

ILP-2gr Russian efforts were complicated by underwater capsules

ILP-dep {Russian, reach, failed, efforts, near, and, by}
ILP-2gr-dep Russian efforts were complicated by underwater currents

(b) Input (i) At McKinney ’s trial in October , McKinney ’s attorney pleaded that McKinney

committed manslaughter in five minutes of “ gay panic ” to a sexual advance

from Shepard , because drug and alcohol addicted McKinney had been abused

homosexually at age 7 and had consensual homosexual sex at 15 .

Input (ii) In attempting to get his client a life sentence rather than the death penalty , he

argued that McKinney ’s past , which included sexual abuse as a child , caused

him to lash out in rage at Shepard ’s sexual advances .

Reference His attorney pleaded that McKinney committed manslaughter in five minutes

of “ gay panic ”

ILP-2gr At McKinney ’s attorney pleaded that McKinney ’s sexual abuse as a life sen-

tence rather

ILP-dep {McKinney, McKinney, pleaded, McKinney, committed, in, ”, to, rather, McK-

inney, past, lash, out, in, ’s}
ILP-2gr-dep McKinney ’s attorney pleaded that McKinney committed manslaughter in rage

at Shepard ’s sexual advances

(c) Input (i) Two aboriginal protestors won the 1999 Goldman Environmental Prize for hav-

ing delayed the mine project .

Input (ii) In 1999 Jacqui Katona and Yvonne Mararula , two aboriginal protestors of

the mine , were awarded the Goldman Environmental Prize for protecting the

tropical rainforest through protests to delay mining in the Jubiluka mine and

an appeal to a UN panel to halt mine operation .

Reference Katona and Mararula won the Goldman Environmental Prize in 1999

ILP-2gr In 1999 Goldman Environmental Prize for having delayed the mine

ILP-dep {won, 1999, Goldman, Environmental, for, having, delayed, Prize, for, protect-

ing}
ILP-2gr-dep aboriginal protestors won the Goldman Environmental Prize for having delayed

Table 7.5: Examples of reference and system-generated fusions for instances with 2 input sentences

from the test partition of the pyramid fusion corpus.



CHAPTER 7. MULTI-STRUCTURED SENTENCE FUSION 160

(d) Input (i) In 2000 the US agreed to resettle 600 Burmese refugees .

Input (ii) The US agreed to accept 1,500 Burmese student refugees from Thailand .

Input (iii) The US accepted hundreds of Burmese student refugees .

Reference In 2000 the US agreed to resettle 600 Burmese refugees

ILP-2gr The US agreed to resettle 600 Burmese refugees from Thailand

ILP-dep {In, to, resettle, refugees, agreed, to, accept, US, Burmese, student}
ILP-2gr-dep In 2000 the US agreed to accept 1,500 Burmese refugees

(e) Input (i) More than 450 bills were introduced nation-wide on gay and lesbian issues .

Input (ii) Shepard ’s murder , in part , prompted over 450 bills to be introduced in state

legislatures on issues important to gays and lesbians .

Input (iii) Over 450 bills on issues important to gays and lesbians were introduced in

legislatures across the country in 1999 , prompted in part by the murder of

Matthew Shepard .

Reference More than 450 bills were introduced nation-wide on gay and lesbian issues

ILP-2gr Shepard ’s murder prompted over 450 bills were introduced nation-wide on issues

ILP-dep {bills, nation-wide, on, Shepard, prompted, to, be, in, issues, important, intro-

duced, murder}
ILP-2gr-dep Over 450 bills were introduced in legislatures on issues important to gays

(f) Input (i) In a 1994 Justice Department settlement Microsoft changed some licensing prac-

tices with computer makers .

Input (ii) In 1994 , the Justice Department reached a settlement with Microsoft requiring

the company to change its business practices .

Input (iii) In 1994 Justice settled with Microsoft , requiring them to change aspects of

licensing agreements with PC makers .

Reference In a 1994 Justice Department settlement Microsoft changed some licensing prac-

tices with computer makers .

ILP-2gr Justice Department reached a settlement with Microsoft changed some licensing

practices with PC makers

ILP-dep {settlement, Microsoft, changed, licensing, In, 1994, Department, with, prac-

tices, In, Justice, with, with, makers}
ILP-2gr-dep In 1994 Justice Department settlement with Microsoft changed some licensing

practices with computer makers

Table 7.5: Examples of reference and system-generated fusions for instances with 3 input sentences

from the test partition of the pyramid fusion corpus.
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(g) Input (i) In France , art dealers are obliged by law to register all purchases except those

bought at public auction .

Input (ii) Also , French dealers are required to register all purchases .

Input (iii) French law requires dealers to register purchases .

Input (iv) In France dealers must register all purchased art , except what is bought at

auction .

Reference In France , art dealers are obliged by law to register all purchases

ILP-2gr French law requires dealers to register all purchases except those bought at

auction

ILP-dep {law, to, except, bought, register, French, requires, dealers, to, must, art, except,

at}
ILP-2gr-dep French dealers are required to register all purchases except those bought at

auction

(h) Input (i) China ’s “ one child ” policy has kept population growth down to the same 1.9

percent as in western Europe .

Input (ii) China , the most populous country , has instituted programs to limit births but

will still see large gains in population .

Input (iii) The policy has had a dramatic effect , with the fertility rate falling to around

1.9 from 2.25 by 1994 .

Input (iv) China has a strict birth control policy but it is not effective in the countryside .

Reference China ’s “ one child ” policy has kept population growth down

ILP-2gr China ’s “ policy has kept population growth down to the countryside

ILP-dep {China, one, kept, down, to, has, to, but, policy, to, 1.9, has}
ILP-2gr-dep China ’s policy has kept population growth down to around 1.9 percent

(i) Input (i) On January 1 , 1993 , the agreed upon separation was official .

Input (ii) On New Year ’s day , 1993 , Slovaks sloughed off a thousand year subservience

to Hungary and seven decades as the junior partner in Czechoslovakia and

celebrated the birth of a sovereign , independent republic .

Input (iii) Two new states were born on January 1 , 1993 .

Input (iv) The amicable separation became official January 1 , 1993 after which the two

began moving rapidly apart .

Reference On January 1 , 1993 , the agreed upon separation was official

ILP-2gr and seven decades as the agreed upon separation was official January 1

ILP-dep {1993, separation, was, official, On, and, as, 1993, became, January, after, the}
ILP-2gr-dep as the agreed upon separation became official January 1 , 1993 .

Table 7.5: Examples of reference and system-generated fusions for instances with 4 input sentences

from the test partition of the pyramid fusion corpus.
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Structures Inference
Content F1% for n-grams of order Syntactic relations F1%

selection 1 2 3 4 z Stanford RASP

path ILP-2gr
−support 45.58 32.72 25.14 20.86 - 29.26 28.63

+support 51.67 37.64 28.53 22.47 - 34.00 32.89

tree ILP-dep
−support 42.91 - - - 30.17 - -

+support 47.89 - - - 34.22 - -

path + tree ILP-2gr-dep
−support 53.31 40.28 32.46 27.51 40.16 38.85 37.40

+support 54.95 41.64 33.28 28.06 40.89 39.71 38.79

Table 7.6: Experimental results over the pyramid fusion corpus with all systems restricted to

produce outputs of the same length as reference fusions. Boldfaced entries are statistically undistin-

guished from the best result within each column under Wilcoxon’s signed rank test (p < 0.05).

improvement at p < 0.05—suggesting that fluency might play a smaller role in the difference

between these systems than the ability to identify salient information for fusions. A deeper

examination of our approach to content selection follows.

7.4.3 Content selection

Table 7.6 compares the performance of the previously-seen systems, which use support fea-

tures from §7.3.2 alongside redundancy constraints from §7.2.2.2, against equivalent systems

trained without these features or constraints. The former scenario is denoted by the label

+support and the latter, which is similar to compression inference from Chapter 3, is sum-

marized by the label −support . Interestingly, although the +support additions appear to

play a significant role in the performance of ILP-2gr—with a 5% increase in bigram F1—as

well as for ILP-dep—with a 4% increase in dependency F1—they do not appear to make a

large impact on ILP-2gr-dep, with all measures gaining by less than 2%. We interpret this

as an indication that the joint model is relatively capable of identifying salient content for

fusion whereas a single-perspective model might be challenged to do so without additional

indicators of salient content.

To contextualize the quality of content selection by these models, we evaluate a further

set of systems which do not rely on support features but instead operate on different input
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Structures Inference
Content F1% for n-grams of order Syntactic relations F1%

selection 1 2 3 4 z Stanford RASP

path ILP-2gr
+support 51.67 37.64 28.53 22.47 - 34.00 32.89

(contribs) 61.94 47.54 37.67 31.74 - 44.84 43.74

tree ILP-dep
+support 47.89 - - - 34.22 - -

(contribs) 55.97 - - - 41.68 - -

path + tree ILP-2gr-dep
+support 54.95 41.64 33.28 28.06 40.89 39.71 38.79

(contribs) 64.86 51.62 42.99 37.92 51.34 51.05 49.47

Table 7.7: Experimental results over the pyramid fusion corpus with all systems restricted to

produce outputs of the same length as reference fusions. Boldfaced entries are statistically undistin-

guished from the best result within each column under Wilcoxon’s signed rank test (p < 0.05).

data—the SCU contributors for each instance instead of the full source sentences. As

described in §7.1, these contributors are human-selected spans within each input sentence

that realize the content of an SCU, thereby serving as indirect human annotations for

content selection in the fusion task. Moreover, one-third of the instances in the pyramid

fusion corpus (660 instances) feature an output fusion that is an exact string match of one

of their contributors—more than double the number of input sentences which exactly match

a reference fusion (300 instances).17

Table 7.7 contains a comparison between the systems which operate on contributors as

input to those which operate on the full input sentences and rely on support features for

content selection. We observe a difference of 9–11% between the two groups, indicating that

further refinements will be necessary to approach human performance on content selection

for fusion problems.18 Although annotations that resemble these contributors are unlikely

17We chose to retain these contributors and input sentences in the dataset in order to more accurately

model the decisions of human annotators who were generating SCUs over the sentences.

18Interestingly, initial results for ILP-2gr over this dataset (Thadani and McKeown, 2013b) yielded

+support system performance which was competitive with the model over human-labeled contributors.

However, all results reported here exhibit significant performance gains over those systems owing to feature

refinements as well as a more rigorous derivation process for reference features. These improvements there-

fore appear to have a greater impact on the contributor-guided baseline system than systems which operate
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to be available for practical applications of sentence fusion, this result also suggests that

admitting any human-supplied cues for content selection—as in the query-based sentence

fusion approaches of Krahmer et al. (2008)—may aid fusion models which otherwise struggle

with identifying the salient information in complex sentences.

7.4.4 Dependency orientation

Without a fixed token ordering for fusion problems as in the compression task studied previ-

ously, it is perhaps unsurprising that output dependencies in z may have orientations which

are incompatible with the token ordering in y. We therefore also considered the following

extension of ILP-2gr-dep proposed in §7.2.3 to introduce orientation-aware dependencies

which are scored differently depending on whether they form right or left attachments in

the fusion solution.

• ILP-2gr-depo: A variation of ILP-dep with separate dependency variables for left

and right attachments and constraints (7.5)–(7.6) linking them to the orientation of

the dependencies in the output sentence.

A new model is trained for this technique in the same experimental environment as that of

ILP-2gr-dep. The features used for each dependency edge are the features from the original

model—namely those drawn from §3.4.4 and the support features from §7.3.2—although

the use of separate variables allows them to acquire different parameters during training.

During development experiments, we did not see an advantage in introducing features that

explictly acknowledged the orientation of output dependencies.

Table 7.8 contains a comparison of ILP-2gr-depo and ILP-2gr-dep. We observe a slim

but noticeable improvement across all measures for ILP-2gr-depo relative to ILP-2gr-dep

including a statistically significant absolute increase of 1% in {3,4}-gram F1 and depen-

dency F1. A modest gain for this model is in line with expectations due to the sparsity

of direction-specific dependencies and the observation that output dependencies between

tokens drawn from the same input sentence largely preserve their orientations. The im-

provement is distributed evenly across instances featuring 2, 3 and 4 input sentences.

over full input sentences.
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Structures Inference
F1% for n-grams of order Syntactic relations F1%

1 2 3 4 z Stanford RASP

path + tree
ILP-2gr-dep 54.95 41.64 33.28 28.06 40.89 39.71 38.79

ILP-2gr-depo 55.16 42.19 34.31 29.11 41.79 40.46 39.39

Table 7.8: Experimental results for joint models over the pyramid fusion corpus with all systems

restricted to produce outputs of the same length as reference fusions. Boldfaced entries are statis-

tically undistinguished from the best result within each column under Wilcoxon’s signed rank test

(p < 0.05).

We note, however, that inference with ILP-2gr-depo introduced a significant overhead

in computational resources. In general, ILP inference over fusion problems is slower than

for compression because of increase in program size for multiple input sentences. Doubling

the number of dependency edges and all their contingent constraints appeared to yield

significantly memory usage and far slower inference for the Gurobi solver19 used here. We

therefore expect that orientation-aware edges will not be usable in practical fusion systems

without a pruning stage to identify the dependency edges which are most likely to flip their

orientations in attachments across input sentences.

7.5 Remarks

The key contribution of this chapter is an extension of the ILP-based compression tech-

nique of Chapter 3 to accommodate multiple input sentences with overlapping information,

thereby yielding a multi-structured approach to the challenging problem of sentence fusion.

We introduce additional features and constraints to recognize redundancy in the input sen-

tences and control dependency orientation in the output sentences. Moreover, we identify

a novel dataset of natural sentence fusions that can be reconstructed from summarization

evaluation datasets which are freely available to the natural language processing community.

In our experiments, we observe a significant benefit for the multi-structured approach

in all evaluations for fusion problems with a varying number of input sentences. Most

19We use Gurobi 6.0: http://www.gurobi.com.

http://www.gurobi.com
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interestingly, multi-structured fusion without features indicating token support across input

sentences significantly outperforms bigram-based fusion with support features, indicating

that the joint approach also has an inherent advantage in content selection.

The variations on compression inference described previously indicate potential research

directions for the fusion task. For instance, the approximation technique in Chapter 4 can

be extended to fusion with an efficient technique for bigram-based fusion inference. We are

currently considering the use of shortest-path algorithms—previously applied to fusion by

Filippova (2010)—with projected gradient descent to permit discriminative learning and

efficient inference for these problems.

Our investigation thus far has indicated that multi-structured inference offers consis-

tent benefits for a variety of text-to-text generation tasks, prompting the question: can

these formulations be useful other natural language processing problems? We examine this

further through a multi-structured formulation for monolingual alignment problems in the

following chapter. Among other applications, monolingual alignment is useful for identify-

ing support in fusion problems (Marsi and Krahmer, 2005; Elsner and Santhanam, 2011;

Thadani and McKeown, 2011b) and generating lexical resources for text-to-text tasks such

as paraphrasing and simplification.
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Chapter 8

Multi-Structured Monolingual

Alignment

Textual alignment involves the identification of links between words or phrases which are

semantically equivalent in their respective sentences. Although alignment is often considered

in the context of phrase-table construction for MT systems, monolingual alignment is often

needed in natural language problems which involve pairs or groups of related sentences. For

instance, most approaches for recognizing textual entailment rely on alignment techniques

to establish the overlap between an input premise and a hypothesis before determining if the

former entails the latter. Automated question answering techniques often rely on alignment

to identify answers to input questions in large corpora. Monolingual alignment is also

relevant to text-to-text generation—sentence fusion approaches often contain an explicit

alignment phase (Barzilay and McKeown, 2005; Filippova and Strube, 2008b; Thadani and

McKeown, 2011b) or incorporate alignment into inference (Elsner and Santhanam, 2011).

This chapter extends the notion of multi-structured inference as previously discussed for

text-to-text generation techniques to the problem of supervised monolingual alignment. In

addition to modeling alignments as a set of aligned phrase pairs (MacCartney et al., 2008;

Thadani and McKeown, 2011a; Yao et al., 2013b), we also account for syntax by including

an edge-based alignment representation composed of a set of aligned pairs of dependency
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edges consistent with the phrase-based representation.1 Under this formulation, the score

of any alignment is defined to factor over all aligned phrase pairs and edge pairs in the

alignment.

Recovering a full sentence alignment that optimizes this joint scoring function is non-

trivial due to both the interdependence among individual phrase alignments—resulting

in an NP-hard problem (DeNero and Klein, 2008)—as well as the interaction between

phrase-based and edge-based alignments to ensure consistency between the two represen-

tations. As before, we describe an ILP to recover joint phrasal and edge-based alignments

parameterized by feature-based scoring functions. We evaluate this joint aligner on human-

annotated corpus for textual entailment (Brockett, 2007) and paraphrasing (Cohn et al.,

2008) and observe significant gains over phrase-based alignments generated by the Meteor

metric for machine translation (Denkowski and Lavie, 2011) as well as a state-of-the-art

discriminatively-trained phrase-based aligner (Thadani and McKeown, 2011a).

The contributions of this chapter are as follows:

• An improved version of the paraphrase alignment corpus of Cohn et al. (2008) with

improved tokenization and collapsed named entities.2

• A multi-structured inference approach to monolingual text alignment that jointly

induces phrasal and dependency-based alignment relations.

8.1 Aligned Paraphrase Corpus

As our dataset, we use a modified version of the human-aligned corpus of paraphrases

described by Cohn et al. (2008), which we call the Edinburgh corpus. We derive this dataset

from the original corpus first by standardizing the treatment of quotes (both single and

double) and by truecasing the text (Lita et al., 2003). Following MacCartney et al. (2006),

1This is joint work with Scott Martin and Michael White and was originally presented in Thadani et al.

(2012). An initial approach to syntactically-informed phrase-based alignment was addressed in Thadani and

McKeown (2011a).

2The modified corpus is available at http://www.ling.ohio-state.edu/~mwhite/data/coling12/.

http://www.ling.ohio-state.edu/~mwhite/data/coling12/
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sure possible

Figure 8.1: Two examples of human-authored phrase alignments between the sentences “They

discussed the aspects in detail and reached an extensive agreement.” and “Both parties discussed the

specific issues and arrived at a general consensus.” drawn from Cohn et al. (2008).

we collapse named entities using the Stanford named entity recognizer3 trained on the pre-

built models distributed with it (Finkel et al., 2005). For example, the corpus contains

a sentence with the named entity Bank of Holland, which we collapse to the single token

Bank of Holland.

A fraction of the alignment instances in the original corpus of Cohn et al. (2008) contains

annotations from multiple annotators. Figure 8.1 contains one such example in which the

human annotators have disagreements. In order to extract training and testing splits,

we use all of the non-overlapping portions of the corpus—those only aligned by a single

human annotator—as training data. We then randomly sampled training instances from

the overlapping portions of the corpus: 45 instances from the ‘trial’ portion drawn from

the mtc subcorpus, 19 from the news portion, and 10 from the novels portion. The testing

data includes all of the instances in the overlapping portions of the corpus that are not

selected as training data, plus the five remaining ‘trial’ instances. The resulting splits yield

70% for training and 30% for testing, with identical ratios from the three subcorpora—mtc,

news and novels) in both training and testing. The training set has 715 paraphrase pairs

3Stanford named-entity recognizer: http://nlp.stanford.edu/software/CRF-NER.shtml

http://nlp.stanford.edu/software/CRF-NER.shtml
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Gold alignments: sure possible

Meteor alignments: Exact Synonym

Figure 8.2: Alignment grid for a training example from the Edinburgh corpus with annotated

alignments—both sure and possible—in black as well as Meteor alignments in red.

with a total of 29,827 tokens and an average of 20.9 tokens per sentence, while the test set

has 305 paraphrase pairs with 14,391 tokens and 23.6 tokens/sentence on average. Finally,

rather than using the merged alignments from the Edinburgh corpus for the overlapping

portions, we randomly select one of the two annotators to use as the reference alignment in

an unbiased way, with each annotator chosen exactly half of the time.

8.1.1 Corpus analysis

Figure 8.2 shows an example paraphrase pair from the training portion of the corpus. The

recall errors in the Meteor alignments that are supported by Stanford parser dependencies
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. . . send a military officer to East Timor to monitor Indonesian troops redeployment

. . . send an official to East Timor to scout Indonesia ’s force movements

xcomp

dobj

prep

xcomp

det
amod pobj aux

dobj

amod

nn

xcomp

dobj
prep

xcomp

det
pobj

aux

dobj

possessive

poss

nn

Figure 8.3: Highlighted tokens indicate recall errors for Meteor which are supported by easily-

aligned Stanford dependencies in the alignment example from Figure 8.2.

are highlighted in Figure 8.3. These recall errors are supported in the sense that the missed

aligned tokens participate in dependencies with other aligned tokens. For example, Meteor

fails to align scout with monitor. This token-level alignment is supported by two aligned de-

pendencies, namely the alignment of send
xcomp−−−−→ scout with send

xcomp−−−−→ monitor and scout

aux−−→ to with monitor
aux−−→ to. Here, the other tokens in the dependencies are identical, and

thus the dependencies provide strong evidence for the token-level alignment. Interestingly,

the final three recall errors involve interrelated dependencies, suggesting the need for joint

inference.

Using this notion of dependency edge alignments supporting token-level alignments, we

counted how frequently the token alignments were supported by dependency alignments,

and found that 64% of the sure alignments and 65% of the sure+possible alignments in

the training dataset were supported in this way. We also tabulated how often the dependen-

cies were aligned, and found that 54% of the dependency edges were aligned based on the

sure token alignments, and 62% were aligned based on the sure+possible alignments,

thus indicating the greater potential of dependencies to aid alignment when including the

possibles. The alignment percentages varied considerably by type: of the non-rare depen-

dency types, 74% of the aux dependencies were aligned (including the possibles), while

only 38% of the rcmod dependencies were aligned, with most core dependency types such

as xcomp and dobj in the 64-70% range.4

4Note that dependencies can fail to be aligned for a variety of reasons including parse errors, head-
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8.2 Multi-Structured Alignment

We first introduce some notation for alignment problems. Consider a pair of text segments

〈S1,S2〉 where each segment consists of one of more sentences. Let Tr denote the set of

tokens in text segment Sr, i.e., each tri represents a token in the ith position of segment Sr

where r ∈ {1, 2}. Finally, we use nr , Tr to denote the number of tokens in each input text

segment.

8.2.1 Alignment as linear optimization

Let A indicate an alignment between S1 and S2. The MAP inference problem can be cast

as the problem of that of finding the alignment Â under some linear scoring function.

Â , arg max
A

∆(S1,S2, A)

= arg max
A

θ>φ(S1,S2, A) (8.1)

where we recycle notation for the scoring function ∆, the alignment feature map φ and

parameters θ from Chapter 3. The tractability of this maximization hinges on the definition

of alignment used and specifically the factorizations it permits.

A fundamental feature of text alignment is the restriction that every input token must

participate in only one alignment relation. In a word alignment setting, alignment relations

are defined over pairs of tokens and the maximization in (8.1) can be solved in polynomial

time using the Hungarian algorithm for assignment (Kuhn, 1955; Munkres, 1957). However,

multi-word paraphrases such as the ones in the alignment examples from Figure 8.1 cannot

be easily decomposed into token pairs and thereby introduce ambiguity for both human

annotators and automated alignment systems.

Instead, we address the more general problem of phrase-based alignment in which a

phrase is composed of one or more contiguous tokens from an input text segment, often

with a limit δ on the length of a phrase. Using Vr , {〈tri , . . . , trj〉 : 1 ≤ i ≤ j ≤ i+ δ ≤ nr}

to denote the set of all alignable phrases from text segment Sr, a valid phrase-based align-

ment is a subset of V1 × V2 with every input token represented no more than once in an

dependent inversions (not taken into account here) and more large-scale structural divergences.
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alignment relation. Phrase-based alignment provides a more natural representation for tex-

tual equivalence in natural language and has also found widespread use as a component

of phrase-based machine translation (Och and Ney, 2003). Unfortunately, this problem is

NP-hard in the general case (DeNero and Klein, 2008) and has previously been addressed

through simulated annealing search (MacCartney et al., 2008) and ILP formulations (DeN-

ero and Klein, 2008; Thadani and McKeown, 2011a).

8.2.2 Multi-structured objective

As illustrated in §8.1.1, correspondence in syntactic structure over input sentences offers

a valuable signal for alignment even in the absence of exact word overlap. Moreover, we

demonstrated in Thadani and McKeown (2011a) that syntactic constraints for certain mod-

ifiers such as determiners and prepositions help avoid spurious alignments of common func-

tion words. However, rather than manually defining hard rules over potentially-noisy input

syntax, we now adopt a multi-structured perspective to this problem and view input text

segments as both an ordered sequence of tokens as well as a forest of dependency parse

trees for every sentence in the text segment. We can thus capture this syntactic context in

an alternative alignment structure defined over dependencies from the parses of the input

text segments.

More formally, we associate each Tr with a dependency forest represented by a set of

labeled edges Zr , {〈tri , trj〉 : trj ∈ Tr is a dependent of tri ∈ Tr ∪ {root}, i 6= j} such

that every token from Tr is a dependent in exactly one edge and the root is represented

by a special token tr0 /∈ Tr which is not a dependent in any edge.5 A valid dependency

alignment is now a subset of Z1 × Z2 with every input dependency represented no more

than once.6 The alignment of dependency trees in this manner is a key component of some

sentence fusion systems (Barzilay and McKeown, 2005; Filippova and Strube, 2008b) and

we might expect that jointly aligning dependencies alongside phrases will prove valuable for

the phrase-based alignment task as well.

5When the number of sentences in a text segment |Sr| > 1, we assume the dependency parses of all its

sentences share a common root node.

6This is equivalent to each token being represented at most once as a dependent in an alignment relation.
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They discussed the aspects in detail and reached an extensive agreement .

Both parties discussed the specific issues and arrived at a general consensus .

Figure 8.4: A potential phrase-based alignment solution v to the example from Figure 8.1. Faded

tokens do not participate in the alignment structure.

We now describe a joint objective for phrase-based and dependency-based alignment.

Let vijkl denote a binary variable which indicates whether the phrases 〈t1i , . . . , t1j 〉 ∈ V1

and 〈t2k, . . . , t2l 〉 ∈ V2 are aligned in a phrase-based alignment and let ∆phr(S1,S2, i, j, k, l)

denote the corresponding feature-based scoring function. Similarly, let wjl denote a binary

variable which indicates whether the sole dependency edge from Z1 which features t1j ∈ T1

as a dependent is aligned to the edge from Z2 which has t2l ∈ T2 as a dependent, with

∆edg(S1,S2, j, l) representing the corresponding edge alignment score. We can now write

the objective from (8.1) in terms of these indicator variables as follows.

Â = arg max
v,w

∑
i,j:

〈t1i ...t1j 〉∈V1

∑
k,l:

〈t2k...t
2
l 〉∈V2

vijkl ·∆phr(S1,S2, i, j, k, l)

+
∑

j: t1j∈T1

∑
l: t2l ∈T2

wik ·∆edg(S1,S2, j, l)

= arg max
v,w

v>∆phr + w>∆edg (8.2)

where the indicator vector v , 〈vijkl〉〈t1i ...t1j 〉∈V1, 〈t2k...t2l 〉∈V2 compactly represents a full phrase-

based alignment configuration, the indicator vector w , 〈wjl〉t1j∈T1, t2l ∈T2 represents a depen-

dency alignment configuration, and ∆phr and ∆edg denote corresponding vectors of scores

for phrase and dependency edge alignment respectively.

Naturally, structural considerations prevent efficient optimization of this objective. Specif-

ically, the following conditions must hold for valid and consistent alignments.

• Every input token is present in at most one phrase alignment vijkl

• Every input dependency is present in at most one dependency edge alignment wij
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root They discussed the aspects in detail and reached an extensive agreement .

root Both parties discussed the specific issues and arrived at a general consensus .

Figure 8.5: A potential dependency alignment solution w to the example from Figure 8.1 which

is consistent with the phrase-based alignment solution from Figure 8.4. Faded tokens and edges do

not participate in the dependency alignment.

• Phrase and dependency alignments are consistent, i.e., governors and dependents of

aligned dependency edges must also appear in aligned phrase pairs.

8.2.3 Inference via ILP

Unlike the text-to-text generation tasks addressed previously, these conditions are local to

pairs of phrases, dependencies or tokens across the input sentences. Valid and consistent

alignment structure can therefore easily be enforced through integer and linear constraints

in an ILP. We enumerate the necessary constraints here.

Alignment relations over phrase pairs must avoid overlapping in tokens in order to

ensure a consistent segmentation for phrase-based alignment. This can be expressed by

straightforward constraints on all phrase variables that cover a particular token.

∑
i,j:

i≤p≤j

∑
k,l

vijkl ≤ 1, ∀1 ≤ p ≤ n1 (8.3)

∑
k,l:

k≤q≤l

∑
i,j

vijkl ≤ 1, ∀1 ≤ q ≤ n2 (8.4)

These constraints—along with the integer constraints on v variables—are sufficient to guar-

antee a valid phrase-based alignment along the lines of previous work (DeNero and Klein,

2008; MacCartney et al., 2008; Thadani and McKeown, 2011a). A valid dependency align-
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ment requires similar constraints on all edge alignment variables w associated with a de-

pendency in the input.

∑
l

wjl ≤ 1, ∀1 ≤ j ≤ n1 (8.5)

∑
j

wjl ≤ 1, ∀1 ≤ l ≤ n2 (8.6)

It is generally as important to avoid spurious relations in alignment problems as it is to

identify appropriate ones. For this reason, it is often helpful to distinguish phrases and

dependencies which participate in an output alignment from poor alignment candidates

in the parameterization, as is done in MacCartney et al. (2008). Practically, this merely

requires the inclusion of additional binary variables which indicate the absence of phrases

and dependency edges in an output alignment.

Specifically, we can use binary variables vij·· to indicate that the phrase 〈t1i , . . . , t1j 〉 ∈ V1

remains unaligned7 and similarly v··kl to indicate that 〈t2k, . . . , t2l 〉 ∈ V2 remains unaligned,

with corresponding scores ∆phr(S1,S2, i, j, ε, ε) and ∆phr(S1,S2, ε, ε, k, l) in the objective

from (8.2). The phrase alignment constraints (8.3)–(8.4) can now be replaced by the fol-

lowing equality constraints which ensure that every token participates in either a phrase

alignment or in an unaligned phrase.

∑
i,j:

i≤p≤j

vij·· +
∑
k,l

vijkl = 1, ∀1 ≤ p ≤ n1 (8.7)

∑
k,l:

k≤q≤l

v··kl +
∑
i,j

vijkl = 1, ∀1 ≤ q ≤ n2 (8.8)

A similar modification can be introduced to the dependency alignment problem using bi-

nary variables wj· and w·l to denote unaligned dependencies from Z1 and Z2 respectively,

a corresponding revision to the edge alignment scoring function ∆edg and the following

7Note that unaligned text need not be parameterized as full phrases; for instance, MacCartney et al.

(2008) considers fixed-length phrases for alignment relations alongside the tokens in unaligned text. In

general, the flexibility of an ILP formulation allows us to consider phrases of varying length as well as

discontinuous phrases as needed.
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equality constraints to replace (8.5)–(8.6).

wj· +
∑
l

wjl = 1, ∀1 ≤ j ≤ n1 (8.9)

w·l +
∑
j

wjl = 1, ∀1 ≤ l ≤ n2 (8.10)

Finally, we turn to the problem of making the phrase-based and dependency alignments

consistent with each other. In order to connect the two configurations, we introduce aux-

iliary binary variables ξpq which indicate that the token t1p ∈ T1 and the token t2q ∈ T2

participate in an aligned phrase pair.

ξpq =


1, iff ∃ i, j, k, l s.t. vijkl = 1, i ≤ p ≤ j, k ≤ q ≤ l

0, otherwise

(8.11)

Additional constraints are required to impose this definition on ξ variables. By definition,

an active token pair indicator must participate in exactly one phrase alignment relation.

Equivalently, a phrase alignment relation must activate token pair indicators for all its

covered tokens.

∑
i,j:

i≤p≤j

∑
k,l:

k≤q≤l

vijkl = ξpq, ∀1 ≤ p ≤ n1, (8.12)

1 ≤ q ≤ n2

In order to ensure that phrase-based and dependency-based alignments remain consistent,

the edge alignment relations must activate token pair indicators for their governors and

dependents. In combination with (8.12), this ensures that these governors and dependents

also participate in phrases that are aligned to each other.

wjl − ξjl ≤ 0, ∀1 ≤ j ≤ n1, (8.13)

1 ≤ l ≤ n2

wjl − ξπ(j)π(l) ≤ 0, ∀1 ≤ j ≤ n1, (8.14)

1 ≤ l ≤ n2

where π(i) indicates the index of the token which governs tri in the dependency parse Zr

of the respective input sentence. The root nodes of both input sentences are assumed to

always be aligned, i.e., ξ00 = 1.
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Note however that the inverse of this implication is not enforced by the above constraints,

i.e., if the governors and dependents of two dependencies are aligned, the dependencies may

not necessarily be aligned to each other. An additional set of constraints is needed to enforce

this behavior.

ξjl + ξπ(j)π(l) − wjl ≤ 1, ∀1 ≤ j ≤ n1, (8.15)

1 ≤ l ≤ n2

With these constraints, the solution to an ILP with the objective from (8.2) is guaranteed to

contain a valid phrase-based alignment in v and a valid dependency alignment in w such that

dependency edges are only aligned if the tokens they link participate in aligned phrases.

Assuming phrases are contiguous, the ILP requires O(n1n2) constraints and O
(
δ2n1n2

)
variables where δ is the maximum number of tokens in an alignable phrase.

8.3 Features

The scoring function in (8.2) that guides alignment inference is a linear function over the

feature maps for each substructure, i.e., phrase alignment features φphr and edge matching

features φedg.

8.3.1 Phrase alignment features

The feature templates enumerated below are used in the feature map φphr(S1,S2, i, j, k, l)

for an alignment between 〈t1i , . . . , t1j 〉 from text segment S1 to 〈t2k, . . . , t2l 〉 from S2. We

assume without loss of generality that these phrases are contiguous and bounded in length

by some pre-determined limit δ ≥ 1 and that phrases which remain unaligned are limited

to single tokens, e.g., for an unaligned token from S1, i = j while k = l = ε. These features

are drawn largely from MacCartney et al. (2008) and were also used in our initial work on

phrase-based alignment in Thadani and McKeown (2011a). They consist of the following

templates over the input phrases:

• Whether one of the spans does not participate in the alignment, i.e., whether either i

and j or k and l are set to ε.
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• The average size of the two token spans if both participate in the alignment.

• The difference in size between the two token spans if both participate in the alignment.

• Whether 〈t1i , . . . , t1j 〉 forms a constituent in a shallow parse (chunking) of S1, and

separately whether 〈t2k, . . . , t2l 〉 forms a constituent in a shallow parse of S2. We use

TagChunk8 to generate POS tags and chunks over the input text segments.

• If the two phrases consist of single tokens, whether these tokens are near-identical—

determined by stem/lemma overlap, abbreviation fitting and Wordnet synonymy as

in §7.2.2.1.

• The maximum similarity between the two phrases using the following normalized sim-

ilarity measures: (a) a case-insensitive string match of the phrases, (b) for phrases

which consist of single tokens, the previous measure for matching near-identical to-

kens, (c) for phrases which consist of single tokens with at least one referring to a

collapsed named entity, the Jaccard coefficient over their components, (d) for phrases

of sufficient length, e−d where d is the normalized Levenshtein edit distance between

the phrases, (e) the maximum Wordnet path similarity and (f) the maximum Jiang-

Conrath similarity over all pairs of Wordnet synsets evoked by the input phrases.

as well as features that capture the context of these phrases:

• The maximum similarity measure over the tokens t1i−1 and t2k−1 which precede the

input phrases in S1 and S2 respectively.

• The maximum similarity measure over the tokens t1j+1 and t2l+1 which follow the

phrases in S1 and S2 respectively.

• A measure of positional distortion expressed as the absolute distance between the

relative positions of the midpoints of the phrases in their respective text segments,

i.e., |(i + j)/2n1 − (k + l)/2n2| where n1 and n2 are the number of tokens in S1 and

S2 respectively.

8TagChunk: http://www.umiacs.umd.edu/~hal/TagChunk/

http://www.umiacs.umd.edu/~hal/TagChunk/
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8.3.2 Edge matching features

The following feature templates are used in the feature map φedg(S1,S2, i, k) for an align-

ment between dependency edges 〈t1i , t1j 〉 from the Stanford dependency parse of S1 to 〈t2k, t2l 〉

from the parse of S2. These features are based entirely on the dependency labels of the

input dependencies, inspired in part by the corpus analysis from §8.1.1. To limit overfit-

ting, we group labels together according to the hierarchy of Stanford dependency labels.9.

Specifically, we group the descendants of subj, obj, comp excluding obj and its descendants,

mod excluding {det, predet} and {poss, possessive}—each of which are paired as shown.

These are used in edge indicator features which record:

• For a non-alignment relation (i.e., j = ε or l = ε), the deepest label group in the

collapsed hierarchy described above which contains the label of this edge.

• For an alignment relation, a conjugation of the deepest label groups from the hierarchy

above which contain their labels.

While the evaluation in §8.4 proceeds with these features, it should be noted that we

have identified promising new features in followup experiments.10 Specifically, we observed

notable improvements in results when including dependency features based on POS tags,

local structure and similarity measures over token stems. We intend to conduct a more

comprehensive and controlled examination of alignment features—including variations over

the underlying parsing tools and formalisms—in future work on this task.

8.4 Experiments

To evaluate the proposed approach to multi-structured alignment, we conducted alignment

experiments over the Edinburgh corpus described in §8.1. The corpus features 715 training

instances and 305 test instances and we used 30% of the training dataset for development

experiments. We report macro-averaged precision, recall and F1 for all token pairs within

9Stanford dependencies manual (de Marneffe and Manning, 2008): http://nlp.stanford.edu/

software/dependencies_manual.pdf

10We owe these observations to additional experiments by Michael White, a collaborator on this work.

http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf
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aligned phrases as well as aligned dependency edge pairs obtained by projecting reference

alignments onto the Stanford parses of S1 and S2. In addition, we include the percentage

of results which exactly match the phrase-based alignment of the references.

The following systems were considered in the experiments:

• Meteor: The Meteor alignment tool (Denkowski and Lavie, 2011) using its precision-

focused max accuracy setting, which we found to yield higher F1 on the training

dataset than the max coverage option.

• ILP-phr: An ILP for phrase-based alignment which ignores dependency edges, equiv-

alent to the approach presented in Thadani and McKeown (2011a).11 This is an

optimal variant of the inference objective from MacCartney et al. (2008) which out-

performs a number of other alignment techniques (Och and Ney, 2003; Liang et al.,

2006b; Chambers et al., 2007).

• ILP-phr-edg: The full ILP for multi-structured alignment over phrases and depen-

dency edges as described in §8.2.3.

We trained models using the structured perceptron from §3.5 for 20 epochs.12 Separate

models were trained on the training dataset with just the sure alignments and with the

sure+possible alignments.13

8.4.1 Confident alignments

Table 8.1 contains macro-averaged results from the various systems over the test dataset

when using only sure alignments for training and evaluation. It is evident that the super-

vised aligners have much higher recall than Meteor, with some unsurprising loss in precision

due to the conservative max accuracy matching. This naturally leads to a lower F1 for re-

covering both token alignments as well as dependency alignments projected onto Stanford

parses, in addition to fewer overall cases of perfect phrase-based alignment.

11Specifically, the ILP without syntactic constraints.

12Models for multi-structured alignment were trained with the original structured perceptron of Collins

(2002) described in Algorithm 1 and not the minibatched variant of Zhao and Huang (2013).

13Note that all alignments are considered equally when evaluating on the sure+possible alignments.



CHAPTER 8. MULTI-STRUCTURED MONOLINGUAL ALIGNMENT 182

Inference
Token pairs Projected dependencies All phrases

P% R% F1% P% R% F1% Acc%

Meteor (DL11) 81.82 71.90 75.49 84.64 58.03 65.60 11.22

ILP-phr (TM11) 74.83 83.25 77.85 76.07 78.42 75.10 12.21

ILP-phr-edg 76.57 83.79 79.20 73.56 84.27 76.30 12.21

Table 8.1: Macro-averaged results for prediction of sure alignments on the test dataset with

respect to aligned token pairs, projected dependency alignments over Stanford parses and entire

phrase-based alignment configurations. Boldfaced entries are statistically undistinguished from the

best result within each column under Wilcoxon’s signed rank test (p < 0.05).

Compellingly, the multi-structured ILP-phr-edg improves in both precision and recall

on aligned tokens over the phrase-only ILP-phr, with the improved precision largely re-

sponsible for a statistically significant increase in F1. On projected dependency alignments,

however, ILP-phr retains greater precision and the F1 improvement for ILP-phr-edg is

driven entirely by a nearly 6% gain in recall. It therefore appears that parameterizing de-

pendency edges in the objective leads to additional alignments that are more often accurate

than noisy and also boosts the precision of aligned token pairs. However, the rate of perfect

alignments in the test dataset is statistically indistinguishable for these two systems.

8.4.2 All alignments

We also considered the possible alignments in the corpus which are produced with lower

annotator agreement and often involve paraphrasing or logical inference. Table 8.2 reports

results over the test dataset with sure+possible alignments for training and evaluation.

The trends observed in the sure-only evaluation are largely repeated in this setting albeit

with system differences appearing somewhat exaggerated. For instance, Meteor once again

leads the aligners in terms of precision, recovering more than 90% of dependency align-

ments projected from sure+possible phrase alignments. However, the larger fraction of

paraphrasal alignments in this setting leads to lower recall than in the sure-only setting;

consequently all F1 scores as well as the rate of perfect alignments remain lower for Meteor

than those of the supervised systems.
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Inference
Token pairs Projected dependencies All phrases

P% R% F1% P% R% F1% Acc%

Meteor (DL11) 85.40 64.76 72.32 91.19 51.80 62.57 10.56

ILP-phr (TM11) 70.84 82.54 75.37 80.09 80.74 78.79 13.53

ILP-phr-edg 73.03 84.60 77.57 77.04 88.76 80.92 14.85

Table 8.2: Macro-averaged results for prediction of sure+possible alignments on the test dataset

with respect to aligned token pairs, projected dependency alignments over Stanford parses and entire

phrase-based alignment configurations. Boldfaced entries are statistically undistinguished from the

best result within each column under Wilcoxon’s signed rank test (p < 0.05).

As expected, the increase in recall for ILP-phr-edg over ILP-phr is greater in this

setting with a statistically significant increase of 2% for token alignments and an 8% im-

provement for dependency alignments. Differences in precision remain largely unchanged so

this translates to higher F1 on both measures for ILP-phr-edg as well as a significant im-

provement in the rate of perfect phrase-based alignment solutions. Token alignment F1 for

these systems is lower than in the sure-only scenario owing to the ambiguity of possible

alignments—manifested here as lower precision since these systems are less conservative

in introducing alignments than Meteor under max accuracy. On the other hand, F1 for

projected dependency alignments is higher because the additional dependency alignments

induced by possible phrase alignments appear to be easier to identify using shallow label

features, as illustrated by the example in Figure 8.3.

8.5 Remarks

The main contribution of this chapter is a multi-structured approach to monolingual phrase-

based alignment which jointly identifies phrasal and syntactic dependency alignments using

exact ILP inference and discriminative structured prediction. Our alignment technique

shows significant gains over the well-known Meteor aligner and well-studied phrase-based

aligners (MacCartney et al., 2008; Thadani and McKeown, 2011a). While further research

in token alignment (Yao et al., 2013a; Sultan et al., 2014) and phrase-based alignment (Yao

et al., 2013b) has surpassed our results in recent years, we believe that the more general
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multi-structured approach is capable of improving further. Initial experiments14 with im-

proved features for dependency tree alignments demonstrate that significant performance

improvements can be obtained with better features and a more rigorous tuning methodology.

As with the text-to-text generation techniques discussed in the previous chapters, run-

time is a concern for ILP-based alignment inference. However, the multi-structured for-

mulation can easily be factored into two subproblems: phrase-based alignment over v,

which is NP-hard (DeNero and Klein, 2008), and dependency alignment over w, which is a

straightforward assignment problem that can be solved in polynomial time with the Hun-

garian algorithm (Kuhn, 1955; Munkres, 1957). This resembles the extractive compression

task—also composed of two sub-problems of which only one is tractable—thereby intro-

ducing the possibility of following Chapter 4 in applying dual decomposition to speed up

multi-structured alignment through the use of Lagrange multipliers over the ξ variables.

While standalone monolingual alignment is an interesting testbed for multi-structured

inference, it also has many practical applications in text-to-text generation tasks. For

instance, recovering the derivations of reference solutions for compression (cf. §3.5.2), fusion

(cf. §7.3.3) and other text-to-text problems such as paraphrase generation are all variations

on the monolingual alignment problem. Alignment can also be used in the identification of

redundant content for fusion problems (cf. 7.2.2) instead of clustering in order to recover

concepts which are phrases and not simply open-class tokens. Finally, statistical alignment

can also be used in the evaluation of system output when working with reference solutions

that are not reachable under lexically-constrained models, i.e., those which do not admit

paraphrases and reordering. We aim to better exploit the natural synergies of alignment

and generation problems through further integration of systems for the two tasks. As

an example, we expect that alignment can be used to acquire additional training data

for compression and that compression able to generate additional training examples for

alignment, raising the question of whether it is possible to simultaneously train or adapt

semi-supervised systems for both tasks in resource-constrained scenarios.

14Experiments conducted by Michael White exhibit a 4–6% improvement in token alignment F1 over

the Edinburgh corpus thanks to improved corpus pre-processing, with further improvements indicated in

preliminary experiments using novel syntactic features.
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Chapter 9

Conclusions

In this dissertation, we examine the role of common structural representations and combi-

nations thereof in high-level structured prediction problems such as sentence compression,

sentence fusion and text alignment. In particular, we largely focus on joint inference over

phrasal or n-gram factorizations of a token sequence as well as edge and second-order fac-

torizations of its dependency tree. We presented a number of models that synthesize new

sentences—and, in one case, alignments over sentences—using these joint factorizations

and show that they often capture properties of text which are lacking in single-perspective

models. A brief overview of the broad technical contributions follows:

• In Chapter 3, we describe a multi-structured objective for the sentence compression

problem which assembles an output sentence through both a sequence of n-grams and

an edge-factored dependency tree. In order to recover feasible output sentences, we

develop a flexible integer linear program (ILP) which guarantees optimal solutions

for this joint objective. Even though n-gram features and dependency features have

access to the same underlying signals (lexical information, POS tags and dependency

labels), our experiments indicate that joint inference over both structures results in

improved performance on all corpora over single-structure approaches. This advantage

is observed to persist when evaluating at different compression rates, and we note

that multi-structured inference is particularly beneficial when compression rates are

aggressive. To our knowledge, this technique yields state-of-the-art performance for
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extractive compression over the datasets described in §3.1.1

• In order to overcome the practical limitations of the previous compression approach—

namely its dependence on ILPs whose general intractability can hamper real-world

implementations—Chapter 4 presents approximate inference algorithms for the same

objective by separately addressing the n-gram and dependency subproblems through

dual decomposition. While the former subproblem can be addressed efficiently through

a restriction to order-preserving bigrams, the problem of recovering optimal non-

projective subtrees in directed graphs remains intractable and must be approximated.

Our experiments indicate that the use of subgradient-based dual decomposition for

multi-structured inference results in a decrease in average runtime over the ILP

approach—which relies on a highly optimized multi-core solver—despite no effort

toward code optimization.

• In both these compression approaches, exact solutions cannot be guaranteed in polyno-

mial time because they accommodate non-projectivity in the output dependency trees

and can also support reordering of the input tokens. However, these aspects are not

needed for extractive compression in a mostly projective language like English. Chap-

ter 5 extends the order-preserving assumption to both output structures and describes

a generalization of a well-known dynamic programming algorithm for projective de-

pendency parsing that can recover an optimal compressed dependency tree as well

as a corresponding bigram factorization for an input sentence. This polynomial-time

approach leads to significantly improved runtime for multi-structured compression

with no meaningful decrease in output quality. An extension to second-order depen-

dencies is also viable with no asymptotic increase in runtime, resulting in moderate

performance improvements which we believe can be further improved with additional

training data.

• While the relaxed and tractable techniques discussed previously are motivated by

improving runtime, the flexible integer programming approach readily supports ex-

1Qian and Liu (2014) report similarly strong results for an independent implementation of our approach

using different features and a different split of the WN corpus.
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tensions such as the use of additional structured representations of text. In Chapter 6,

we attempt to incorporate predicate-argument structures for the output sentence by

extending the flow-based inference strategy to various forms of directed acyclic graphs

(DAGs). This representation remains compatible with various well-known shallow se-

mantic representations including the predicate-based Propbank, its recent extension

to full-sentence semantics in the Abstract Meaning Representation (AMR), and the

frame-semantic formalism underlying the Framenet project. In addition, we con-

duct experiments incorporating Framenet structures alongside n-grams and depen-

dency trees. Although we do not find improvements over the extractive compression

datasets, we conjecture that performance gains remain a possibility for representations

which are closer to surface lexicalizations such as AMR, which can be characterized

by DAG-structured parses over concepts and their arguments.

• Extending the multi-structured compression approach in another direction, Chapter 7

explores the related task of sentence fusion, which combines multiple input sentences.

Developing empirical models for multi-structured requires a source of training data—

which we produce using the human annotations from shared-task datasets for sum-

marization evaluation—and an inference approach which can draw information from

multiple input sentences and order it into a coherent sentence, which we find in the

compression system discussed previously. Rather than align the input sentences prior

to lexicalization (and consequently risk propagating errors), we propose a single-stage

inference approach which identifies redundancy in the input sentences in order to de-

fine features that aid content selection, while restricting redundancy in the output

sentence through constraints over groups of similar input tokens. Our experiments

indicate that multi-structured fusion offers a strong improvement over bigram-based

fusion and that dependency-only models are overwhelmed by the ambiguity in the

fusion task. We also uncover mild performance gains by parameterizing dependencies

differently based on their orientation in an output sentence.

• Finally, we consider the utility of a multi-structured approach to inference for phrase-

based alignment—a task closely related to many aspects of text-to-text generation—in
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Chapter 8. Our supervised framework recovers phrase-based alignments between two

sentences alongside a consistent mapping of dependency edges from the parse trees

over the sentences. We find that the inclusion of syntactic structure in the objective

results in clear improvements over phrase-based alignment in isolation, which has

itself previously been shown to outperform a number of monolingual and cross-lingual

alignment techniques. This formulation appears amenable to further improvements

on evaluation measures—through better syntactic features—as well as improvements

in runtime with an approximate inference strategy based on dual decomposition.

9.1 Limitations

Our investigation of multi-structured inference was limited in the following aspects owing

to time and resource constraints. We hope to address these issues in future research.

9.1.1 Datasets

We limited our compression experiments to the commonly used datasets of Clarke and La-

pata (2006b) and Clarke and Lapata (2007). However, recent work by Filippova and Altun

(2013) has raised the possibility of using large-scale automatically-constructed datasets in

compression research, in this case by using the headlines of news articles to reliably guide

automated compressions of their leading sentences. Although this approach produces refer-

ence compressions using a subtree-pruning assumption—observed to be violated frequently

in the BN and WN datasets by §3.1.1 and Qian and Liu (2014)—it is possible that growing

the dataset by two orders of magnitude will compensate for noise in reference compressions.

We cannot immediately infer the performance of multi-structured techniques when a

large amount of training data is available. It is possible that simpler models with richer

features will perform competitively in such a scenario, thereby restricting the utility of rich

multi-structured inference to scenarios in which training resources are limited. However, we

suspect that higher-order models such as the trigram models from §3.6.5 and the second-

order dependency models from §5.3.3 will also see performance gains when feature sparsity

is not a concern. Higher-order models have been observed to improve performance in tasks
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such as dependency parsing (McDonald and Pereira, 2006; Koo and Collins, 2010; Pitler,

2014) even when training data is relatively plentiful.

The same caveat applies to the problems of sentence fusion and phrase-based alignment,

which rely on corpora which are approximately as large as the compression datasets used

here. Automated acquisition of sentence fusion data may be viable from datasets of news

articles containing lightly-edited newswire text while monolingual alignment data can pos-

sibly be acquired from parallel datasets used in machine translation. We expect that the

flexible multi-structured techniques can be modified to take advantage of increased train-

ing resources in both tasks, although the efficiency tradeoffs involved in using higher-order

models will require further consideration.

9.1.2 Features

The performance of all our supervised discriminative approaches is naturally closely tied

to the features defined over various substructures. For our experiments on compression

and fusion, we attempted to isolate useful features in ablation tests over the development

datasets with varying amounts of training data. However, feature tuning is an inexact

science and we expect that further refinement may lead to features with better performance

and generalization, especially if accompanied by additional datasets from new domains.

Different feature sets may also result in varying benefits for particular structured rep-

resentations. For instance, refining the feature set and reference derivation approach for

our previously published research on the compression task (Thadani and McKeown, 2013a;

Thadani, 2014) led to an outsized gain for the n-gram models relative to the dependency-

based models. Although we made an effort to represent various linguistic attributes—open-

class words, morphology, POS tags and dependency labels—equally when assigning features

for each structured representation,2 it nevertheless remains possible that novel features may

favor models based on a particular structured representation.

Furthermore, although these linguistic attributes comprise standard sources of features

2Note that this is not the case for the features described in §8.3 for multi-structured alignment. Here,

we used a well-studied feature set for phrase-based inference and augmented it with complementary but

relatively näıve features for dependency mappings.



CHAPTER 9. CONCLUSIONS 190

in statistical natural language problems, additional indicators based on the distributional

properties of text could also be considered within these models. For instance, word clusters

based on lexical co-occurrence frequencies over text collections (Brown et al., 1992) have

been found to be useful for features in structured tasks such as dependency parsing (Koo et

al., 2008). Recent research in lexical semantics has also yielded fast and accurate techniques

to recover vector embeddings of words in Euclidean spaces with intriguing regularities un-

der linear transformations (Mikolov et al., 2013a; Mikolov et al., 2013b; Mikolov et al.,

2013c). The utility of these unsupervised lexical representations in higher-level text-to-text

generation problems remains an open question and a point of interest for future work.

9.1.3 Representations

We use dependency structures throughout this dissertation and rely on the Stanford parser

to recover dependency parses that serve as gold-standard dependency trees for training

and evaluation. However, since our reference trees are derived from imperfect statistical

models, it is likely that the use of alternative statistical parsers will yield different results

for the structured prediction tasks considered here. A similar caveat holds for the frame-

semantic parses provided by SEMAFOR in Chapter 6 which was observed to be inconsistent

in labeling frame elements 6.1.4 across original and compressed sentences—a phenomenon

which may partially explain the absence of performance improvements when frames and

frame elements are included in the compression objective.

We also did not pursue alternative notions of syntactic representation such as context-

free grammars (CFGs) for constituent parse trees. Synchronous grammars have been em-

ployed previously for sentence compression (Galley and McKeown, 2007; Cohn and Lapata,

2008; Cohn and Lapata, 2009; Ganitkevitch et al., 2013) and quasi-synchronous gram-

mars (Smith and Eisner, 2006) have been used to incorporate paraphrases in surface real-

izations for other text-to-text tasks (Woodsend et al., 2010; Woodsend and Lapata, 2011;

Woodsend and Lapata, 2012). Although constituency parse structures can technically be

accommodated within our ILP framework for text-to-text generation—with non-terminal

nodes potentially acquiring coefficients drawn from the parameters of a synchronous CFG—

the resulting increase in program size and relatively minimal increase in representative power
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renders experimentation in this direction unappealing. However, these models may prove

useful as an alternative source of syntactic compression solutions in the dual decomposition

technique described in Chapter 4.

9.1.4 Learning algorithms

We trained all models in this dissertation with the structured perceptron, which is described

in §3.5.1. While this algorithm is straightforward to implement and analyze, it is limited to

optimizing a 0/1 loss over the structured output space and—despite the use of parameter

averaging—may have poor generalization. Large-margin techniques such as the structured

SVM (Tsochantaridis et al., 2004) and MIRA (Crammer and Singer, 2003; McDonald et

al., 2005a) trade off ease of implementation for better generalization and the ability to

incorporate non-differentiable cost functions as well as multiple inference hypotheses in

the learning procedure. In addition, we do not control the learning rate of the structured

perceptron although recent research indicates the benefit of specifying per-feature error

rates in gradient updates to better exploit rare but predictive features (Duchi et al., 2011).

We expect that a principled application of more advanced learning techniques will improve

evaluation results for all inference techniques discussed here.

Furthermore, all our datasets are composed solely of reachable problems, i.e., prob-

lems with structured output spaces which contain the reference solution. However, such

datasets are less likely to exist in text-to-text generation tasks which require lexical choice

or paraphrasing. Although paraphrases can be incorporated relatively easily in the inference

techniques proposed in this work, the structured perceptron’s 0/1 loss is unsuited to train-

ing over unreachable instances. Replacing the loss function with one which is less sensitive

to these issues—such as structured ramp loss (Gimpel and Smith, 2012)—is another im-

portant consideration for extending these supervised inference techniques to new problems

and datasets.

9.1.5 Evaluation

An advantage of working on reachable structured problems is that it remains easy to quan-

tify system performance using automated measures. This is especially true for the extractive



CHAPTER 9. CONCLUSIONS 192

compression scenario in which output tokens do not change their relative ordering from the

input sentence, where automated measures have been increasingly adopted (Napoles et al.,

2011b). This approach sidesteps the cost and time required for human judgments, which

are vulnerable to systematic biases without careful controls and must be discarded when

systems are updated, e.g., when promising new features are included. It is therefore prefer-

able to expend human effort on manual annotations, such as those underlying the datasets

studied here, while relying on statistical measures for repeatable evaluations.

We can also see the drawbacks of this approach in the case of multi-way fusion in Chap-

ter 7. Every instance in the dataset has a solitary reference fusion but a much vaster output

space than an equivalent compression problem, so viable system-generated fusions may be

unduly penalized for not recovering the exact surface realizations of their corresponding

reference sentences. Although we compensate for this issue by additionally computing the

evaluation measures over contributors drawn from the input, this highlights the limitations

of working with datasets without multiple references per instance for non-trivial text-to-text

problems, particularly if the references are not reachable. Therefore, although automated

measures can suffice for comparing system performance on a particular dataset, human

evaluations will ultimately be necessary if the output from these systems is intended to

stand in for human-authored text.

9.2 Future Work

Despite the limitations enumerated above, multi-structured inference appears to be a use-

ful notion for formulating and reasoning about practical natural language problems. The

following categories summarize our ongoing and future extensions of this work.

9.2.1 Unifying text-to-text operations

This research is intended to form the foundational components of a generic monolingual text-

to-text framework. By pairing supervised structured prediction with expressive features over

natural language structures, many text-to-text applications can be addressed through the

same approach given an adequate amount of training data. Furthermore, extensions to new
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structured representations, learning algorithms and inference techniques will likely benefit

more than one text-to-text application.

In this dissertation, we have largely considered challenges in intrinsic content selection—

the identification of the most salient content within the input without external guidance—

and syntactic manipulation—in order to produce grammatical output sentences which are

similar to references. Content selection can easily be extended via salience features to

extrinsic information such as queries in query-based fusion (Krahmer et al., 2008) or image

descriptors for image caption generation (Yang et al., 2011; Mitchell et al., 2012). Similarly,

since some of the proposed inference strategies accommodate full output spaces for n-grams

and dependency trees, the only limitation for syntactic variation is the factorization of

these structures chosen for a particular task. For instance, we expect that the second-order

dependencies supported by the dynamic programs from Chapter 5 will suffice for most

applications similar to sentence compression but, if more intricate transformations require

higher-order dependencies or all siblings of a dependency to be parameterized, this can be

incorporated into ILP and dual decomposition inference.

Furthermore, many practical text-to-text transformations rely on specific forms of para-

phrasing, e.g., sentence simplification can broadly be viewed as sentence compression paired

with lexical simplification. In addition to accommodating syntactic variation, all systems

described in this work are capable of admitting lexical paraphrases, including—to a lim-

ited degree—the compressive parsing approach in Chapter 5. We can therefore incorpo-

rate paraphrase candidates drawn from training corpora, general resources such as the

PPDB (Ganitkevitch et al., 2013) as well as task-specific directional paraphrases in text-

to-text problems. This straightforward extension will make the proposed multi-structured

framework applicable to a wide variety of problems including lexico-syntactic transforma-

tions like simplification and grammatical error correction as well as higher-level applications

such as the generation of natural language entailments or stylistic variations on a text.

9.2.2 Direct applications

A natural application of our text-to-text framework is in single and multi-document sum-

marization. A summarization algorithm that is able to compress sentences can make better
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use of summary budgets—an observation that has motivated much research in combining

sentence compression and selection for summaries (Daumé and Marcu, 2002; Clarke and

Lapata, 2007; Madnani et al., 2007; Zajic et al., 2007; Gillick and Favre, 2009; Liu and

Liu, 2009; Martins and Smith, 2009; Berg-Kirkpatrick et al., 2011; Chali and Hasan, 2012;

Genest and Lapalme, 2012; Woodsend and Lapata, 2012; Almeida and Martins, 2013; Li et

al., 2013; Molina et al., 2013; Morita et al., 2013; Qian and Liu, 2013; Wang et al., 2013;

Kikuchi et al., 2014; Li et al., 2014). Recent methods have focused on joint inference using

ILPs or fast dual decomposition but rely on simple subtree-deletion models for the com-

pression task itself. We are keen to investigate the incorporation of richer multi-structured

compression models within a summarization objective.

Similarly, sentence fusion was originally devised to improve multi-document summa-

rization (Barzilay and McKeown, 2005) by exploiting partial redundancy between related

sentences from different documents. However, fusion in this context relies on pipelined

stages and is therefore vulnerable to error propagation. We are interested in pursuing

a joint formulation of fusion over multiple sentences within summarization over multiple

documents which avoids these issues. Furthermore, recent work has proposed compelling

extensions of the fusion task such as sentence enhancement (Cheung and Penn, 2014)—the

combination of dissimilar sentences in abstractive summarization—which may also benefit

from joint inference and supervised learning.

Other immediate applications of this framework include image caption generation, which

may be viewed as a form of sentence fusion across captions from training images3 with image-

specific features as an extrinsic source of salience, and grammatical error correction, which

involves lexico-syntactic transformations which may benefit from joint inference under n-

gram and syntactic structures. More generally, sentence realization in natural language

generation (NLG) systems can be viewed as a multi-stage problem which starts with a

DAG representation of semantic content and refines it into a syntactic tree which is then

linearized into a sentence and finally modified with appropriate morphology (Bohnet et al.,

2010). However, each of these stages can be combined into a single step following Chapter 6,

thereby supporting the use of a common objective for general NLG problems.

3A suggestion by Hal Daumé III.
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9.2.3 Task-based evaluations

As noted in §9.1.3, structural analyses over reference sentences can be noisy—as in the case

of Stanford and SEMAFOR parses—and the choice of which representation or tool is used

for gold-standard reference structures may affect output sentences in a measurable way.

This naturally invites the question: which representations and tools are most appropriate

for use in tasks such as text-to-text generation and alignment? Although this may be

asked of any system which relies on syntactic features from these structures, we believe

that structured inference tasks described here are far more sensitive to the variations across

formalisms and the errors made by specific tools.

We aim to explore this by considering the effect of varying dependency parsers in a

task-based evaluation with multi-structured monolingual alignment.4 Phrase-based and

dependency alignment solutions are easy to evaluate and analyze given reference align-

ments. By varying the dependency structure used in multi-structured alignment, we can

observe both the standalone contribution of a particular type of parse structure to the align-

ment problem as well as its marginal contribution when paired with phrase-based inference.

Furthermore, this naturally leads to an exploration of which dependency structures make

orthogonal alignment errors and whether multiple syntactic formalisms can be paired to

reduce overall error on the alignment task.

9.2.4 Multi-task learning

Finally, although we have thus far discussed applications in isolation, it is not unreasonable

to expect that learned parameters for different datasets, domains and even different text-

to-text tasks may be largely similar. Salience features may vary in each of these situations

but the feature subspace which is concerned with the fluency of an output sentence may

benefit from a shared parameterization and additional training data from multiple domains

and tasks. The availability of an inference framework which applies to multiple text-to-

text generation problems allows us to explore a number of hypotheses around shared or

co-regularized parameters for structured output spaces.

4Joint work with Michael White.
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Multi-task learning may also be considered within a particular structured representation.

For instance, because an optimal dependency parse must be recovered within the space of

all possible parse trees for an output sentence, multi-structured compression serves as a gen-

eralization of dependency parsing—a fact made explicit by the use of a well-studied parsing

algorithm for the task in Chapter 5. This naturally invites the question of whether tree-

banks can be directly used to refine the parameters of dependency edge variables rather than

syntactic features drawn from parses over the input. We are therefore examining whether

multi-task learning over text-to-text generation and problems such as dependency parsing

can lead to performance improvements on either task.5 As further structured represen-

tations such as AMR are introduced within this text-to-text framework, structure-specific

multi-task learning may become viable over the relevant training resources.

In our view, these extensions serve to further bridge the gap between natural language

analysis and generation, allowing us to further both aspects over time and establish clear

evidence of progress when working with newer structured formalisms. Much work remains

to be done toward each of these problems but we remain hopeful that the foundational steps

introduced in this dissertation remain flexible and general enough to serve these goals.

5An ongoing project with Alexander Rush.
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