
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 873–880
Manchester, August 2008

A Framework for Identifying Textual Redundancy

Kapil Thadani and Kathleen McKeown
Department of Computer Science,

Columbia University,
New York, NY USA

{kapil,kathy}@cs.columbia.edu

Abstract

The task of identifying redundant infor-
mation in documents that are generated
from multiple sources provides a signifi-
cant challenge for summarization and QA
systems. Traditional clustering techniques
detect redundancy at the sentential level
and do not guarantee the preservation of
all information within the document. We
discuss an algorithm that generates a novel
graph-based representation for a document
and then utilizes a set cover approximation
algorithm to remove redundant text from it.
Our experiments show that this approach
offers a significant performance advantage
over clustering when evaluated over an an-
notated dataset.

1 Introduction

This paper approaches the problem of identifying
and reducing redundant information in documents
that are generated from multiple sources. This task
is closely related to many well-studied problems
in the field of natural language processing such as
summarization and paraphrase recognition. Sys-
tems that utilize data from multiple sources, such
as question-answering and extractive summariza-
tion systems that operate on news data, usually in-
clude a component to remove redundant informa-
tion from appearing in their generated output.

However, practical attempts at reducing redun-
dancy in the output of these types of systems usu-
ally involve clustering the sentences of the gener-
ated output, picking a representative sentence from
each cluster and discarding the rest. Although
this strategy would remove some redundant in-
formation, clustering approaches tuned for coarse

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

matches could also remove non-redundant infor-
mation whereas clustering approaches tuned for
near-exact matches could end up removing very
little repeated information. This is simply a con-
sequence of the fact that information can, and usu-
ally does, exist at the sub-sentential level and that
clusters of sentences don’t necessarily correspond
to clusters of information.

In this paper, we discuss a framework for build-
ing a novel graph-based representation to detect re-
dundancy within documents. We identify redun-
dancy at the sub-sentential level through pairwise
alignment between the sentences of a document
and use this to build a bipartite graph which en-
ables us to keep track of redundant information
across all sentences. Common information be-
tween pairs of sentences, detected with the align-
ment algorithm, can be extrapolated to document-
wide units of information using the graph struc-
ture. Individual sentences that are encompassed
by the information in the rest of the document can
then be identified and removed efficiently by us-
ing a well-known greedy algorithm adapted for this
representation.

2 Related Work

The challenge of minimizing redundant informa-
tion is commonly faced by IR engines and extrac-
tive summarization systems when generating their
responses. A well-known diversity-based rerank-
ing technique for these types of systems is MMR
(Carbonell and Goldstein, 1998), which attempts
to reduce redundancy by preferring sentences that
differ from the sentences already selected for the
summary. However, this approach does not at-
tempt to identify sub-sentential redundancy.

Alternative approaches to identifying redun-
dancy use clustering at the sentence level (Lin and
Hovy, 2001) to remove sentences that are largely
repetitive; however, as noted earlier, this is not
well-suited to the redundancy task. The use of sen-

873



tence simplification in conjunction with clustering
(Siddharthan et al., 2004) could help alleviate this
problem by effectively clustering smaller units, but
this issue cannot be avoided unless sentences are
simplified to atomic elements of information.

Other research has introduced the notion of
identifying concepts in the input text (Filatova and
Hatzivassiloglou, 2004), using a set cover algo-
rithm to attempt to include as many concepts as
possible. However, this approach uses tf-idf to
approximate concepts and thus doesn’t explicitly
identify redundant text. Our work draws on this
approach but extends it to identify all detectable
redundancies within a document set.

Another approach does identify small sub-
sentential units of information within text called
“Basic Elements” and uses these for evaluating
summarizations (Hovy et al., 2006). Our approach,
in contrast, does not make assumptions about the
size or structure of redundant information since
this is uncovered through alignments.

We thus require the use of an alignment algo-
rithm to extract the common information between
two pieces of text. This is related to the well-
studied problem of identifying paraphrases (Barzi-
lay and Lee, 2003; Pang et al., 2003) and the more
general variant of recognizing textual entailment,
which explores whether information expressed in
a hypothesis can be inferred from a given premise.
Entailment problems have also been approached
with a wide variety of techniques, one of which
is dependency tree alignment (Marsi et al., 2006),
which we utilize as well to align segments of text
while respecting syntax. However, our definition
of redundancy does not extend to include unidi-
rectional entailment, and the alignment process is
simply required to identify equivalent information.

3 Levels of Information

In describing the redundancy task, we deal with
multiple levels of semantic abstraction from the
basic lexical form. This section describes the ter-
minology used in this paper and the graph-based
representation that is central to our approach.

3.1 Terminology

The following terms are used throughout this paper
to refer to different aspects of a document.

Snippet: This is any span of text in the doc-
ument and is a lexical realization of information.
While a snippet generally refers to a single sen-

tence within a document, it can apply to multiple
sentences or phrases within sentences. Since re-
dundancy will be reduced by removing whole snip-
pets, a snippet can be defined as the smallest unit
of text that can be dropped from a document for
the purpose of reducing redundancy.

To illustrate the levels of information that we
consider, consider the following set of short sen-
tences as snippets. Although this is a synthe-
sized example to simplify presentation, sentences
with this type of overlapping information occur
frequently in the question-answering scenario over
news in which our approach has been used.

x1: Whittington is an attorney.

x2: Cheney shot Whittington, a lawyer.

x3: Whittington, an attorney, was shot in Texas.

x4: Whittington was shot by Cheney while hunting quail.

x5: This happened during a quail hunt in Texas.

We can see that all the information in x1 is con-
tained in both x2 and x3. While no other snip-
pet is completely subsumed by any single snippet,
they can be made redundant given combinations of
other snippets; for example, x4 is redundant given
x2, x3 and x5. In order to identify these combina-
tions, we need to identify the elements of informa-
tion within each snippet.

Concept: This refers to a basic unit of informa-
tion within a document. Concepts may be facts,
opinions or details. These are not necessarily se-
memes, which are atomic units of meaning, but
simply units of information that are seen as atomic
within the document. We further restrict the defi-
nition of a concept to a unit of information seen in
more than one snippet, since we are only interested
in concepts which help in identifying redundancy.

Formally, a document can be defined as a set of
S snippets X = {x1, . . . ,xS}, which is a literal
representation of the document. However, it can
also be defined in terms of its information content.
We use Z = {z1, . . . , zC} to represent the set of C
concepts that cover all information appearing more
than once in the document. In the example above,
we can identify five non-overlapping concepts:

zA: Whittington was shot

zB: Whittington is an attorney

zC: The shooting occurred in Texas

zD: It happened during a hunt for quail

zE: Cheney was the shooter

We use subscripts for snippet indices and super-
scripts for concept indices throughout this paper.

874



Nugget: This is a textual representation of a
concept in a snippet and therefore expresses some
information which is also expressed elsewhere in
the document. Different nuggets for a given con-
cept may have unique lexico-syntactic realizations,
as long as they all embody the same semantics.
With regard to the notation used above, nuggets
can be represented by an S × C matrix Y where
each yc

s denotes the fragment of text (if any) from
the snippet xs that represents concept zc.

Since a concept itself has no unique textual re-
alization, it can be simply represented by the com-
bination of all its nuggets. For instance, in the ex-
ample shown above, concept zD is seen in both x4

and x5 in the form of two nuggets yD4 (“... while
hunting quail”) and yD5 (“... during a quail hunt”),
which are paraphrases. The degree to which we
can consider this and other types of lexical or syn-
tactic differences between nuggets that have the
same semantic identity depends on the alignment
algorithm used.

Intersection: This is the common information
between two snippets that can be obtained through
their alignment. For example, the intersection
from the alignment between x2 and x4 consists
of two fragments of text that express that Cheney
shot Whittington (an active-voiced fragment from
x2 and a passive-voiced fragment from x4).

In general, aligning xi and xj produces an in-
tersection vi,j which is simply a pair of aligned
text fragments covering the set of concepts that xi

and xj have in common. However, these undi-
vided segments of text may actually contain mul-
tiple nuggets from a document-wide perspective.
We assume that intersections can be decomposed
into smaller intersections through further align-
ments with snippets or other intersections; this pro-
cess is explained in Subsection 4.3.

3.2 Concept graph representation

Figure 1 illustrates the example introduced in Sub-
section 3.1 as a network with intersections repre-
sented as edges between snippets. This is the type
of graph that would be built using pairwise align-
ments between all snippets. Note that although
some intersections such as v1,2 (between x1 and
x2) and v3,5 express concepts directly, other inter-
sections such as v2,3 and v2,4 are undivided com-
binations of concepts. Since we cannot directly
identify concepts and their nuggets, this graph is
not immediately useful for reducing redundancy.

x1

B

x2

ABE

x3

ABC

x4

ADE

x5 CD

B

B

AB

AE

A

C

D

Figure 1: Graph representing pairwise alignments
between the example snippets from Section 3. For
clarity, alphabetic labels like A represent concepts
zA. Node labels show concepts within snippets and
edge labels indicate concepts seen in intersections.

x1

B

x2

ABE

x3

ABC

x4

ADE

x5 CD

zAzB

zC

zD

zE

yB1

yA2

yB2

yE2

yA3
yB3

yC3

yA4
yD4

yE4

yC5

yD5

Figure 2: Structure of the equivalent concept graph
for the example document illustrated in Figure 1.
Circular nodes xs represent snippets, large squares
zc represent concepts and small squares yc

s depict
nuggets for each concept within a snippet.

Now, since the matrix Y describes the interac-
tion of concepts with snippets, it can be viewed as
an incidence matrix that defines a bipartite graph
between snippets and concepts with nuggets rep-
resenting the edges. In this concept graph repre-
sentation, each snippet can connect to any number
of other snippets via a shared concept. Since con-
cepts serve to connect multiple snippets together,
the concept graph can also be seen as a hypergraph,
which is a generalization of a graph in which each
edge may connect together multiple vertices.

875



Figure 2 illustrates the structure of the equiva-
lent concept graph for the previous example. This
is simply the bipartite graph with the two types of
nodes, namely snippets and concepts, represented
using different symbols. For clarity, nuggets are
also depicted as nodes in the graph, thereby reduc-
ing edges to simple links indicating membership.
This representation identifies the redundancy be-
tween snippets in terms of non-overlapping con-
cepts and is therefore more useful than the graph
from Figure 1 for reducing redundancy.

4 Constructing the Concept Graph

We now describe how a concept graph can be con-
structed from a document by using dependency
tree alignment and leveraging the existing struc-
ture of the graph during construction.

4.1 Alignment of snippets

In order to obtain the concept graph representation,
the common information between each pair of
snippets in the document must first be discovered
by aligning all pairs of snippets with each other.
We make use of dependency parsing and alignment
of dependency parse trees to obtain intersections
between each pair of snippets, where each inter-
section may be a discontiguous span of text corre-
sponding to an aligned subtree within each snip-
pet. In our experiments, dependency parsing is
accomplished with Minipar (Lin, 1998) and align-
ment is done using a bottom-up tree alignment al-
gorithm (Barzilay and McKeown, 2005) modified
to account for the shallow semantic role labels pro-
duced by the parser. The alignment implementa-
tion is not the focus of this work, however, and the
framework described here could by applied using
any alignment technique between segments of text
in potentially any language.

As seen in Figure 1, the intersections that can be
extracted solely by pairwise comparisons are not
unique and may contain multiple concepts. A truly
information-preserving approach requires the ex-
plicit identification of concepts as in the concept
graph from Figure 2, but efficiently converting the
former into the latter poses a non-trivial challenge.

4.2 Extraction of irreducible concepts

Our approach attempts to obtain a set of irre-
ducible concepts such that each concept in this set
cannot wholly or partially contain any other con-
cept in the set (thereby conforming to the defini-

tion of a concept in Subsection 3.1).
We attempt to build the concept graph and main-

tain irreducible concepts alongside each of the
S(S − 1)/2 pairwise alignment steps. Every in-
tersection found by aligning a pair of snippets is
assumed to represent some concept that these snip-
pets share; it is then compared with existing con-
cepts and is decomposed into smaller intersections
if it overlaps partially with any one of them. This
implies a worst-case of C comparisons at each
pairwise alignment step (2C if both fragments of
an intersection are compared separately). How-
ever, this can be made more efficient by exploiting
the structure of the graph. A new intersection only
has to be compared with concepts which might be
affected by it and only affects the other snippets
containing these concepts. We can show that this
leads to an algorithm that requires fewer than C
comparisons, and additionally, that these compar-
isons can be performed efficiently.

Consider the definition of alignment along the
lines of a mathematical relation. We require snip-
pet alignment to be an equivalence relation and it
therefore must have the following properties.

Symmetry: If an intersection vi,j contains a
concept z′, then vj,i will also contain z′. This
property allows only S(S − 1)/2 alignments to
suffice instead of the full S(S − 1). Therefore,
without loss of generality, we can specify that all
alignments between xi and xj should have i < j.

Transitivity: If intersections vi,j and vj,k both
contain some concept z′, then vi,k will also con-
tain z′. This property leads to an interesting con-
sequence. Assuming we perform alignments in
order (initially aligning x1 and x2 and iterating
for j within each i), we observe that xi has been
aligned with snippets {x1, . . . ,xj−1} and, for any
i > 1, snippets {x1, . . . ,xi−1} were aligned with
all snippets {x1, . . . ,xS}. Since i < j, this im-
plies that xi was directly aligned with snippets
{x1, . . . ,xi−1} which in turn were each aligned
with all S snippets. Therefore, due to the prop-
erty of transitivity, all concepts contained in a
new intersection vi,j that also exist in the partly-
constructed graph would already be directly asso-
ciated with xi. Note that this does not hold for
xj as well, since xj has not been aligned with
{xi+1, . . . ,xj−1}; therefore, it may not have en-
countered all relevant concepts.

This implies that for any i and j, all concepts
that might be affected by a new intersection vi,j

876



have already been uncovered in xi and thus vi,j

only needs to be compared to these concepts.

4.3 Comparisons after alignment

For every new intersection vi,j produced by an
alignment between xi and xj , the algorithm com-
pares it (specifically, the fragment from xi) with
each existing nugget yk

i for each concept zk al-
ready seen in xi. Checking for the following cases
ensures that the graph structure contains only irre-
ducible concepts for all the alignments seen:

1. If vi,j doesn’t overlap with any current
nugget from xi, it becomes a new concept that
links to xi and xj . In our example, the first
intersection v1,2 contains “Whittington ... an
attorney” from x1 and “... Whittington, a
lawyer” from x2; this becomes a new concept
zB since x1 has no other nuggets.

2. If vi,j overlaps completely with a nugget yk
i ,

then xj must also be linked to concept zk. For
example, x1’s fragment in the second inter-
section v1,3 is also “Whittington ... an attor-
ney”, so x3 must also link to zB.

3. If vi,j subsumes yk
i , it is split up and the non-

overlapping portion is rechecked against ex-
isting nuggets recursively. For example, x2’s
fragment in the intersection v2,3 is “... shot
Whittington, a lawyer”, part of which over-
laps with yB

2 , so this intersection is divided
up and the part representing “... shot Whit-
tington ...” becomes a new concept zA.

4. If, on the other hand, yk
i subsumes vi,j , the

concept zk is itself split up along with all
nuggets that it links to, utilizing the present
structure of the graph.

When comparing intersections, we can restrict the
decomposition of nuggets to prevent the creation
of overly-granular concepts. For instance, we
can filter out intersections containing only isolated
named-entities or syntactic artifacts like determin-
ers since they contain no information by them-
selves. We can also prevent verbs and their ar-
guments from being split apart using information
from a snippet’s dependency parse, if available.

4.4 Efficiency of the algorithm

Instead of C additional comparisons in the worst
case after each pairwise snippet alignment, we
need no more comparisons in the worst case than
the maximum number of concepts that can exist in

a single snippet. Since this value grows no faster
than C as S increases, this is a significant improve-
ment. Other factors, such as the overhead required
to split up concepts, remain unchanged.

Furthermore, since all the additional compar-
isons are carried out between nuggets of the same
snippet, we don’t need to perform any further
alignment among nuggets or concepts. Alignments
are expensive; each is O(n1n2) where n1 and n2

are the number of words in the two segments of
text being aligned (if dependency tree alignment is
used) along with an overhead for checking word
similarity. However, since we now only need to
compare text from the same snippet, the com-
parison can be performed in linear time by sim-
ply comparing spans of word indices, thereby also
eliminating the overhead for comparing words.

5 Decreasing redundancy

The concept graph can now be applied to the task
of reducing redundancy in the document by drop-
ping snippets which contain no information that is
not already present in the rest of the document.

5.1 Reduction to set cover

Every snippet xs in a document can be represented
as a set of concepts {zc : yc

s ∈ Y}. Since concepts
are defined as information that is seen in more than
one snippet as per the definition in Subsection 3.1,
representing snippets as sets of concepts will over-
look any unique information present in a snippet.
Without loss of generality, we can add any such
unique information in the form of an artificial con-
cept for each snippet to Z so that snippets can be
completely represented as sets of concepts from Z.
Note that the union of snippets

⋃S
s=1 xs equals Z.

Reducing redundancy in the document while
preserving all information requires us to identify
the most snippets whose entire informational con-
tent is covered by the rest of the snippets in the
document, thereby targeting them for removal.
Since we express informational content in con-
cepts, this problem reduces to the task of finding
the smallest group of snippets that together cover
all the concepts in the document, i.e. we need to
find the smallest subset X′ ⊆ X such that, if X′

contains R snippets x′r, the union of these snippets⋃R
r=1 x′r also equals Z. Therefore, every concept

in a snippet from X−X′ also exists in at least one
snippet from X′ and no concept from Z is lost.

This formulation of the problem is the classic

877



set cover problem, which seeks to find the smallest
possible group of subsets of a universe that cov-
ers all the other subsets. A more general variant
of this problem is weighted set cover in which the
subsets have weights to be maximized or costs to
be minimized. While this problem is known to
be NP-hard, there exists a straightforward local
maximization approach (Hochbaum, 1997) which
runs in polynomial time and is proven to give so-
lutions within a known bound of the optimal solu-
tion. This greedy approximation algorithm can be
adapted to our representation.

5.2 Selecting non-redundant snippets

The algorithm selects a snippet xr to the subset X′

such that information content of X ∪ xr is max-
imized. In general, this implies that the snippet
with the highest degree over uncovered concepts
must be selected at each iteration. Other measures
such as snippet length, fluency, or rank in an or-
dered list can be included in a weight measure in
order to break ties and introduce a preference for
shorter, more fluent, or higher-ranked snippets.

Consider the example from Section 3. The can-
didates for selection are x2, x3 and x4 since they
contain the most uncovered concepts. If x2 is se-
lected, its concepts zA, zB and zE are covered.
At this stage, x5 contains two uncovered concepts
while x3 and x4 contain just one each. Thus, x5

is selected next and its concepts zC and zD are
covered. Since no uncovered concepts remain, all
snippets which haven’t been selected are redun-
dant. This solution, which is shown in Figure 3,
selects the following text to cover all the snippets:

x2: Cheney shot Whittington, a lawyer.

x5: This happened during a quail hunt in Texas.

Other solutions are also possible depending on
the factors involved in choosing the snippet to be
selected at each iteration. For example, the algo-
rithm might choose to select x3 first instead of x2,
thereby yielding the following solution:

x3: Whittington, an attorney, was shot in Texas.

x4: Whittington was shot by Cheney while hunting quail.

6 Experiments

To evaluate the effectiveness of this framework
empirically, we ran experiments over documents
containing annotations corresponding to concepts
within the document. We also defined a metric

x1

B

x2

ABE

x3

ABC

x4

ADE

x5 CD

zAzB

zC

zD

zE

yB1

yA2

yB2

yE2

yA3
yB3

yC3

yA4
yD4

yE4

yC5

yD5

Figure 3: Pruned version of the concept graph ex-
ample shown in Figure 2, illustrating the outcome
of removing redundant snippets.

for comparing any concept graph over a document
to a gold-standard concept graph. This was used
to compare the concept graphs created by our ap-
proach to perturbed versions of the gold-standard
graphs and graphs created by clustering.

6.1 Dataset

Due to the scarcity of available annotated datasets
suitable for evaluating redundancy, we utilized the
pyramid dataset from DUC 2005 (Nenkova et al.,
2007) which was created from 20 articles for the
purpose of summarization evaluation. Each pyra-
mid document is a hierarchical representation of 7
summaries of the orginal news article. These sum-
maries have been annotated to identify the indi-
vidual semantic content units or SCUs where each
SCU represents a certain fact, observation or piece
of information in the summary. A sentence frag-
ment representing an occurrence of an SCU in a
summary is a contributor to the SCU.

The pyramid construction for a group of sum-
maries of the same article mirrors the concept
graph representation described in Subsection 3.2.
SCUs with more than two contributors are simi-
lar in definition to concepts while their contribu-
tors fill the role of nuggets. Using this analogy,
each dataset consists of a combination of the seven
summaries in a single pyramid document; the 20
pyramid documents therefore yield 20 datasets.

6.2 Evaluation metrics

The evaluation task requires us to compare the con-
cept graph generated by our algorithm to the ideal

878



x1

x2

x3

x4

x1

x2

x3

x4

Concepts SCUs

(merge)

(split)

Lalg

Lpyr

Figure 4: The bipartite graph on the left shows
snippets xs linked to concepts produced automati-
cally; the one on the right shows the same snippets
linked to SCUs from annotated data. Dashed lines
indicate mappings between concepts and SCUs.

concept graph extracted from the pyramid docu-
ment annotations. Standard metrics do not ap-
ply easily to the problem of comparing bipartite
graphs, so we define a novel metric modeled on
the well-known IR measures of precision, recall
and F-measure. Figure 4 illustrates the elements
involved in the evaluation task.

We define the metrics of precision, recall and F-
measure over the links between snippets and con-
cepts. Assuming we have a mapping between gen-
erated concepts and gold-standard SCUs, we can
judge whether each link is correct. Let each single
link between a snippet and a concept have an asso-
ciated weight of 1 by default and let L indicate a
set of such links. We use Lalg and Lpyr to distin-
guish between the sets of links generated by the al-
gorithm and retrieved from the annotations respec-
tively. Precision and recall are defined as follows
while F-measure retains its traditional definition as
their harmonic mean.

Precision =
Sum of weights in Lalg ∩ Lpyr

Sum of weights in Lalg

Recall =
Sum of weights in Lalg ∩ Lpyr

Sum of weights in Lpyr

To determine a mapping between concepts and
SCUs, we identify every concept and SCU pair,
say zc and zs, which has one or more snippets in
common and, for each snippet xi that they have
in common, we find the longest common subse-
quence between their nuggets yc

i and ys
i to obtain

the following score which ranges from 0 to 1.

LCS score =
length(LCS)

min (length(yc
i ), length(ys

i ))

Measure Random Clustering Concepts
Precision 0.0510 0.2961 0.4496
Recall 0.0515 0.1162 0.3266
F1 score 0.0512 0.1669 0.3783

Table 1: Summary of the evaluation metrics aver-
aged over all 20 pyramid documents when m=0.5

This score is compared with a user-defined map-
ping threshold m to determine if the concept and
SCU are sufficiently similar. In order to avoid bi-
asing the metric by permitting multiple mappings
per concept, we adjust for merges or 1 : N map-
pings by cloning the concept and creating N 1 : 1
mappings in its place. We then adjust for splits or
N : 1 mappings by dividing the weight of each of
the links connected to a participating concept by
N . Due to this normalization, the metrics are ob-
served to be stable over variations in m.

6.3 Baselines

We compare the performance of the algorithm
against two baselines. The first approach involves
a random concept assignment scheme to build arti-
ficial concept graphs using the distributional prop-
erties of the gold-standard concept graphs. The
number of concepts C and the number of snippets
that each concept links to is determined by sam-
pling from distributions over these properties de-
rived from the statistics of the actual SCU graph
for that document. For evaluation, these artificial
concepts are randomly mapped to SCUs using m
to control the likelihood of mapping. The best
scores from 100 evaluation runs were considered.

The second baseline used for comparison is a
clustering algorithm, since clustering is the most
common approach to dealing with redundancy. For
this purpose, we use a recursive spectral partition-
ing algorithm, a variant of spectral clustering (Shi
and Malik, 2000) which obtains an average V-
measure (Rosenberg and Hirschberg, 2007) of 0.93
when clustering just pyramid contributors labeled
by their SCUs. The algorithm requires a parame-
ter that controls the homogeneity of each cluster;
we run it over the entire range of settings of this
parameter. We consider the clustering that maxi-
mizes F-measure in order to avoid any uncertainty
regarding optimal parameter selection and to im-
plicitly compare our algorithm against an entire hi-
erarchy of possible clusterings.

879



6.4 Results

Table 1 shows the F1 scores over evaluation runs
using the random concept assignment, clustering
and concept graph techniques. These results are
obtained at a mapping threshold of m = 0.5,
which implies that we consider a mapping between
a concept and an SCU if their nuggets over com-
mon sentences share more than 50% of their words
on average. The results do not vary significantly at
different settings of m.

We observe that the concepts extracted by our
graph-based approach perform significantly better
than the best-performing clustering configuration.
Despite a fairly limited alignment approach that
doesn’t use synonyms or semantic analysis, the
concept graph outperforms the baselines by nearly
an order of magnitude on each document. This
validates our initial hypothesis that clustering ap-
proaches are not suitable for tackling the redun-
dancy problem at the sub-sentential level.

7 Conclusions and Future Work

We have described a graph-based algorithm for
identifying redundancy at the sub-snippet level and
shown that it outperforms clustering methods that
are traditionally applied to the redundancy task.

Though the algorithm identifies redundancy at
the sub-snippet level, redundancy can be decreased
by dropping only entirely redundant snippets. We
hope to be able to overcome this limitation by
extending this information-preserving approach to
the synthesis of new non-redundant snippets which
minimize redundant content in the document.

In addition, this work currently assumes that re-
dundancy is bidirectional; however, we intend to
also address the case of unidirectional redundancy
by considering entailment recognition approaches.

Acknowledgements

We are grateful to Andrew Rosenberg, David El-
son, Mayank Lahiri and the anonymous review-
ers for their useful feedback. This material is
based upon work supported by the Defense Ad-
vanced Research Projects Agency under Contract
No. HR0011-06-C-0023.

References
Barzilay, Regina and Lillian Lee. 2003. Learn-

ing to paraphrase: an unsupervised approach us-

ing multiple-sequence alignment. In Proceedings of
HLT-NAACL, pages 16–23.

Barzilay, Regina and Kathleen R. McKeown. 2005.
Sentence fusion for multidocument news summa-
rization. Computational Linguistics, 31(3):297–328.

Carbonell, Jaime G. and Jade Goldstein. 1998. The
use of MMR, diversity-based reranking for reorder-
ing documents and producing summaries. In Pro-
ceedings of ACM-SIGIR, pages 335–336.

Filatova, Elena and Vasileios Hatzivassiloglou. 2004.
A formal model for information selection in multi-
sentence text extraction. In Proceedings of COL-
ING, page 397.

Hochbaum, Dorit S. 1997. Approximating covering
and packing problems: set cover, vertex cover, in-
dependent set, and related problems. In Approxi-
mation algorithms for NP-hard problems, pages 94–
143. PWS Publishing Co., Boston, MA, USA.

Hovy, Eduard, Chin-Yew Lin, Liang Zhou, and Junichi
Fukumoto. 2006. Automated summarization evalu-
ation with basic elements. In Proceedings of LREC.

Lin, Chin-Yew and Eduard Hovy. 2001. From single
to multi-document summarization: a prototype sys-
tem and its evaluation. In Proceedings of ACL, pages
457–464.

Lin, Dekang. 1998. Dependency-based evaluation of
MINIPAR. In Proceedings of the Workshop on the
Evaluation of Parsing Systems, LREC.

Marsi, Erwin, Emiel Krahmer, Wauter Bosma, and Ma-
riet Theune. 2006. Normalized alignment of depen-
dency trees for detecting textual entailment. In Sec-
ond PASCAL Recognising Textual Entailment Chal-
lenge, pages 56–61.

Nenkova, Ani, Rebecca Passonneau, and Kathleen
McKeown. 2007. The pyramid method: Incorporat-
ing human content selection variation in summariza-
tion evaluation. ACM Transactions on Speech and
Language Processing, 4(2):4.

Pang, Bo, Kevin Knight, and Daniel Marcu. 2003.
Syntax-based alignment of multiple translations: ex-
tracting paraphrases and generating new sentences.
In Proceedings of HLT-NAACL, pages 102–109.

Rosenberg, Andrew and Julia Hirschberg. 2007. V-
measure: A conditional entropy-based external clus-
ter evaluation measure. In Proceedings of EMNLP,
pages 410–420.

Shi, Jianbo and Jitendra Malik. 2000. Normalized cuts
and image segmentation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 22(8):888–
905.

Siddharthan, Advaith, Ani Nenkova, and Kathleen
McKeown. 2004. Syntactic simplification for im-
proving content selection in multi-document summa-
rization. In Proceedings of COLING, page 896.

880


