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ABSTRACT
In the online advertising industry, the process of designing an ad
creative (i.e., ad text and image) requires manual labor. Typically,
each advertiser launches multiple creatives via online A/B tests
to infer effective creatives for the target audience, that are then
refined further in an iterative fashion. Due to the manual nature
of this process, it is time-consuming to learn, refine, and deploy
the modified creatives. Since major ad platforms typically run A/B
tests for multiple advertisers in parallel, we explore the possibility
of collaboratively learning ad creative refinement via A/B tests
of multiple advertisers. In particular, given an input ad creative,
we study approaches to refine the given ad text and image by: (i)
generating new ad text, (ii) recommending keyphrases for new
ad text, and (iii) recommending image tags (objects in image) to
select new ad image. Based on A/B tests conducted by multiple
advertisers, we form pairwise examples of inferior and superior ad
creatives, and use such pairs to train models for the above tasks. For
generating new ad text, we demonstrate the efficacy of an encoder-
decoder architecture with copy mechanism, which allows some
words from the (inferior) input text to be copied to the output while
incorporating new words associated with higher click-through-
rate. For the keyphrase and image tag recommendation task, we
demonstrate the efficacy of a deep relevance matching model, as
well as the relative robustness of ranking approaches compared to
ad text generation in cold-start scenarios with unseen advertisers.
We also share broadly applicable insights from our experiments
using data from the Yahoo Gemini ad platform.
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Figure 1: Ad creative refiner based on parallel A/B tests done
by multiple advertisers. Advertiser 1 may learn in isolation
that having human elements leads to better CTR thanmulti-
media images; while advertiser 𝑁 may learn that using "lim-
ited time" in ad text works better than "great". The proposed
refiner collects data across A/B tests to recommend ad text
and image refinements for a given input ad creative.

1 INTRODUCTION
The image and text used for an online ad (collectively called an
ad creative) can be influential in targeting online users on a large
scale.Large businesses (advertisers) typically employ creative strate-
gists to design ad creatives; these creative strategists may conduct
market research to see trending themes and also gather insights
from past ad campaigns in related product categories. Such adver-
tiser specific creative customization is mostly a manual, expensive,
and time consuming process. In contrast, small businesses typically
resort to free online tools, e.g., stock image libraries [2], and generic
creative insights [3] to compile ad images and text; such tools can
reduce the time to design creatives but tend to be generic (e.g.,
lacking in business-specific customization). Once the ad creatives
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are ready, both large and small advertisers need to conduct online
A/B tests to validate the effectiveness of their creatives, and subse-
quently discard low performing creatives from their ad campaigns.
In addition, to reduce the chances of online users getting tired of
seeing the same ad repeatedly on a particular website (i.e., ad fatigue
[23]), advertisers need to frequently go through the design→A/B
test→refresh ad creatives cycle . Again, such cycles tend to be
time consuming and there is an emerging need for data-driven ap-
proaches to speed up the whole process of designing and refreshing
creatives.

In this paper, we highlight a key observation that accelerates
the above creative design process, and can be explained as follows.
Advertisers typically test their creatives via A/B tests in ad plat-
forms (e.g., Yahoo Gemini, Facebook Ads), i.e., they try out a set
of creatives on online users in a controlled setup such that the
click-through-rate (CTR) performance [5] difference across the cre-
atives can be solely attributed to the ad text and image. However,
advertisers conduct and learn from such A/B tests in isolation as
illustrated in Figure 1. As shown, advertiser 1 who is an internet
service provider, may learn via an A/B test that having human
elements in the ad image works better than having gadgets in the
image (since the ad text is same across the two creatives in the
example, the performance difference can be attributed to the ad
images). Via a separate A/B test, a different advertiser 𝑁 (selling
boots) may learn that using new and limited time in the ad text
works better than using great. Our key observation in the illustrated
example is that although the advertisers are learning in isolation,
the ad platform can learn across advertisers. In fact, most ad plat-
forms are authorized to use performance data across advertisers in
an aggregate manner to help advertisers perform better; however,
using A/B test data across advertisers in a collaborative manner to
automate ad creative refinement is a largely unexplored topic.

In this paper we address several sub-problems in ad creative (text
and image) refinement exploiting the above observation by using
multi-advertiser A/B test data:

(1) ad text generation: given an input ad creative, the task is to
generate refined ad text,

(2) ad text keyphrase recommendation: given an input ad cre-
ative, the task is to recommend keyphrases for inclusion in
the refined ad text, and

(3) ad image tag recommendation: given an input ad creative,
the task is to recommend image tags (objects) to guide the
selection of a refined ad image.

Another novelty in our proposed approaches for the above tasks
is that they do not depend on intermediate models such as CTR
prediction as required in previous work [5, 11] but rely on pairs of
examples of the form: (low CTR creative, high CTR creative) where
the CTR is based on the same population of users (i.e., targeting is
fixed). Both creatives in a pair are sourced from the same advertiser,
and at a high level, the task of refining can be seen as translating
the low CTR creative (source) to the high CTR creative (target). As
we discuss in this paper, such pairs can be naturally collected from
A/B tests conducted by multiple advertisers in an ad platform. Our
main contributions are as follows.

• We solve three tasks around ad creative refinement: (i) ad
text generation, (ii) keyphrase recommendation, and (iii)
image tag recommendation.

• For ad text generation, we demonstrate that using a copy
mechanism to selectively copy parts of the input ad text
while introducing new words in the refined (generated) text
is significantly better than baselines.

• For keyphrase and image tag recommendation, we demon-
strate the efficacy of a deep relevance matching model for
ranking keyphrases and image tags. We also show the rel-
ative robustness of keyphrase ranking (compared to text
generation) in a cold-start scenario with unseen advertisers.
We observed a 87% CTR increase via such recommendations
for a major advertiser on Yahoo Gemini.

The remainder of the paper is organized as follows. Section 2 covers
related work, and Section 3 covers problem formulation. Section 4
explains data sources, and creation of pairs of creatives for training
ad refinement models. Section 5 covers proposed methods, Section 6
covers experimental results, and there is a discussion in Section 7.

2 RELATEDWORK
2.1 Online advertising
Today, advertisers work with ad platforms [5, 19, 26] to launch
campaigns that show ads to users on different websites. Advertisers
design one or more creatives with the help of creative strategists to
target relevant online users and measure the effectiveness of cam-
paigns with metrics such as click-through-rate (CTR = 𝑐𝑙𝑖𝑐𝑘𝑠

𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 )
are associated with the ad creative being tested. It is common for
advertisers to do exploratory A/B tests with a large pool of creatives
to efficiently learn which creative works best (popularly known
as dynamic creative optimization in the industry) [16]. However,
automatically understanding ad creatives (multi-modal in nature
due to the presence of text and an image) and leveraging this un-
derstanding to create a pool of relevant creatives for A/B testing
is emerging as an active area of research as described below. Un-
derstanding content in ad images and videos from a computer
vision perspective was first studied in [12], where manual annota-
tions were gathered from crowdsourced workers for: ad category,
reasons to buy products advertised in the ad, and expected user
response given the ad. Leveraging the dataset in this work, [20]
studied recommending keywords for guiding a brand’s creative
design. However, [20] was limited to only text inputs for a brand
(e.g., the brand’s Wikipedia page), and the recommendation was
limited to single words (keywords). In [27], the setup in [20] was
extended by including multi-modal information from past ad cam-
paigns, e.g., images, text in the image (OCR), and Wikipedia pages
of associated brands. In this paper, we focus on refining existing
(input) ad creatives, i.e., the refinement is specific to the input ad
creative as opposed to providing recommendations for an input
advertiser in [20, 27]. In addition, the usage of A/B test data across
advertisers is another key difference with respect to prior work.
Our approaches are limited to consuming only CTR data across
advertisers (and not conversions), since in most cases, it is owned
by the ad platform, which is typically authorized to use aggregated
data across advertisers to make system-wide improvements (not
biased towards a particular advertiser).

2.2 Relevance matching
One of our goals is to recommend a set of highly relevant keyphrases
and image tags for improving an (input) ad creative. This can be
modeled as a query-document relevance ranking problem [9], or as



a collaborative filtering problem where user-item latent representa-
tions are used for recommendations [10, 14]. However, given the
restriction on the number of keyphrases/image tags recommended,
and their relevance to the advertiser under consideration, we focus
on relevance ranking models (e.g., DRMM [9] and variants [25]) in
our keyphrase and image tag ranking setups.

2.3 Text-to-text generation
We formulate ad text generation as a sequence-to-sequence predic-
tion task, which is common in natural language processing prob-
lems like machine translation and abstractive summarization. State-
of-the-art performance in machine translation is typically obtained
with an encoder-decoder neural architecture with attention [18].
In abstractive summarization, where both the source and target se-
quences are in the same language, an additional mechanism to copy
input tokens to the output sequence has proven to be beneficial [24].
In the context of ad text generation, recent work [11] explored the
use of an encoder-decoder architecture to automatically generate
ad text based on an advertiser’s webpage. The main differences
between our work and [11] lie in: (i) studying ad refinement as
opposed to generating an ad from scratch, (ii) the use of A/B test
data across advertisers to train refinement models.

3 PROBLEM FORMULATION
We study three tasks around creative refinement as described below.

3.1 Task 1: ad text generation
In this task, the goal is to generate refined ad text (output) given an
input ad (text and image). For example, considering the illustration
in Figure 1 for advertiser #𝑁 , if the input ad text is ‘great offers on
cowboy boots!’, a possible generated output could be ‘limited time
offer on new cowboy boots!’. We assume that the input ad image is
retained for use with the output ad text. Additional metadata in the
form of ad image (tags) and associated advertiser category is also
assumed to be available. The output ad text is expected to have at
least Δ% better CTR performance compared to the input ad text
(where Δ is a design choice) and the output ad text is assumed to
be targeted to the same population of users as the input ad.

3.2 Task 2: ad text keyphrase ranking
This is a simpler variant of task 1, where instead of generating
the entire ad text, the task is to recommend keyphrases in the re-
fined ad text. We formulate this as a ranking problem, where one
needs to rank keyphrases from a given vocabulary, for inclusion in
the refined ad text. For example, in Figure 1 for advertiser #𝑁 , if
the input ad text is ‘great offers on cowboy boots!’, a recommended
list of keyphrases could have ‘limited time’ and ‘new’ as the top
ranked keyphrases. The motivation here is to study cases when
target text generation is hard to achieve, but useful keyphrase rec-
ommendations can still be provided. The objective is to recommend
keyphrases that would increase the CTR if included in the ad text
while keeping all other aspects of the ad (such as ad image) constant.

3.3 Task 3: ad image tag ranking
In this task, given an input ad image and text, the goal is to rec-
ommend image tags (output) to refine the ad image. Image tags
essentially correspond to objects in the image, and are sourced from
a given vocabulary of tags (explained later in Section 4.3). This task

is the visual parallel of task 2, where instead of recommending
textual keyphrases, we recommend tags for refining the ad image.
The image tags can be used to select an ad image from a pool of
images (e.g., via a stock image library [2]); however, selecting or
generating the final ad image is beyond the scope of this paper, and
our study is limited to recommending image tags for the refined
ad image. For example, in Figure 1 for advertiser #1, if the input
ad text is the one with multimedia devices, a recommended list
of image tags could contain ‘human’ as a top ranked image tag.
In addition, we assume that the input ad text is retained, and is
available as metadata along with the associated advertiser category.
The selection of an ad image based on the recommended tags is
expected to increase the CTR of the refined creative.

4 DATA
In this section, we first explain the ad platform setup in Section 4.1;
specifically Yahoo Gemini ad platform, however, the underlying
hierarchical structure is fairly standard in the advertising industry.
This is followed by our method for leveraging the ad platform setup
to form ordered pairs of creatives (Section 4.2); the ordered pairs
of creatives have a crucial role in our proposed methods to solve
the tasks outlined in Section 3. In Section 4.3, we cover additional
steps to automatically annotate the ad creative pairs with matched
keyphrases and identified image tags. Finally in Section 4.4, we
describe data insights which motivate our approaches.

Great deals!

advertiser i

campaign 1 campaign 2 campaign 3

ad-group 1 ad-group 2

ad-id 1

text 1 img 1

ad-id 2

text 1 img 2

ad-id 3

text 2 img 1

Limited time offers!Great deals!

CTR1 CTR2 CTR3< <

D-I-S-T pair D-T-S-I pair

Figure 2: Ad campaign setupwithmultiple ad-groups and ad-
ids. Difference in CTRs across ad-ids in the same ad-group
can be attributed to differences in ad text and image. Ad-ids 1
and 2 form a different-image-same-text (D-I-S-T) pair, while
1 and 3 form a different-text-same-image (D-T-S-I) pair.

4.1 Ad platform setup
As shown in Figure 2, an advertiser in the Yahoo Gemini ad plat-
form can create multiple campaigns and each campaign can have
multiple ad-groups. Each ad-group is tied to a pre-specified target



audience. For example, if the advertiser is a major telecommu-
nications company, different campaigns may represent different
offerings from the company (e.g., mobile phone plans and WiFi
routers) whereas examples of ad-group targeting can be seniors in
New York City and males in San Francisco. As shown in Figure 2,
there can be multiple ad-ids in an ad-group; each ad-id has an ad
text and image associated with it. For each qualifying user for the
ad-group, one of the ad-ids is shown at random; in other words,
if there is CTR performance difference across the ad-ids, it can be
purely attributed to the differences in ad image and text across the
ad-ids in the ad-group. For the example shown, the difference in
CTRs of ad-id 1 and 2 can be attributed to the difference in the ad
image, while for ad-ids 1 and 3, the difference can be attributed to
the difference in ad text. However, in the case of ad-ids 2 and 3, the
CTR difference is a result of differences in both the image and text.

4.2 Constructing ad creative pairs
We use data from ad-groups across multiple advertisers to form
two datasets: (i) different-text-same-image (D-T-S-I) dataset, and
(ii) different-image-same-text (D-I-S-T) dataset as described below.

4.2.1 D-T-S-I dataset. To create this dataset, from each ad-group,
we create pairs of ad-ids (creatives) such that in each pair the ad text
is different but the ad image is same. Furthermore, in each such pair,
we order the ad-ids as (source, target) where source CTR is lower
than target CTR. For example, in Figure 2, (ad-id 1, ad-id 3) form
such a (source, target) pair in the D-T-S-I dataset. We collect such
pairs using ad-groups across multiple advertisers. In case multiple
pairs have the same source ad text (but different target ad text),
we only retain the pair with highest CTR difference, and discard
the other (duplicate-source) pairs. Finally, we keep the pairs where
the relative CTR difference is higher than Δ% (design choice). The
intuition behind creating such pairs is to provide training examples
to an ad text refinement model, e.g., for generating the target ad
text given the source ad text (explained in Section 5.1).

4.2.2 D-I-S-T dataset. To create this dataset, from each ad-group,
we create pairs of ad-ids such that the ad image is different but the
ad text is same. As in the D-T-S-I dataset, we order the ad-ids in the
pair as (source, target) where source CTR is lower than target CTR;
in Figure 2, (ad-id 1, ad-id 2) is an example of such a pair. We collect
such pairs across ad-groups of multiple advertisers. If there are pairs
with the same source image, we retain the pair with the highest CTR
difference and discard the other duplicates. Finally, we filter out
pairs with relative CTR difference below Δ% (design choice). The
intuition behind creating such pairs is to provide training examples
for refined ad images given source ad text and image.

4.3 Keyphrases and image tags annotation
For each pair in the D-T-S-I andD-I-S-T datasets, we addmetadata in
the form of matched keyphrases and image tags (explained below).

Keyphrases. We first form a vocabulary of keyphrases using an
unsupervised keyphrase extraction method1 on the collective ad
text corpus (including both source and target ad text from all pairs).
For example, from retail advertisers, typical examples of extracted
keyphrases include phrases like free shipping and limited time offers,

1We used multipartite-rank [7] method implemented in the PKE keyphrase extraction
package [6]. Choice of this method (versus others in PKE, e.g., TF-IDF, and Position-
rank [8]) was guided by visual inspection of results on representative advertisers.

while from telecommunication advertisers, examples include high
speed internet and bundle deals. Using the obtained vocabulary of
keyphrases, for each pair in the D-T-S-I and D-S-T-I datasets, we
add a list of exact matches found in the source and target ad text.

Image tags. Image tags are the objects detected in an image via
the (pre-trained) Inception Resnet v2 object detection model as
in the Open Images V2 repository [15]. We extract these image
tags from the source and target ad images in D-T-S-I and D-I-S-T
datasets. Inception Resnet v2 [15] is a convolutional neural network
trained by Google on Flickr images in the Open Images V2 dataset.
It has about 5000 classes (possible tags in an image). Each image
can have multiple tags and the model returns a list of inferred tags
with confidence scores. We retain all tags with a score above 0.8.
For example, the ad image in ad-id 2 in Figure 2 has tags woman,
child, face, whereas the image in ad-id 1 has the tag multimedia.

4.4 Insights from D-I-S-T and D-T-S-I datasets
Based on 5 months (July–November 2019) of data from the Yahoo
Gemini platform, we gathered several insights from D-T-S-I and
D-I-S-T datasets spanning a sample of over 3500 advertisers. The
minimum CTR difference (Δ) in each source-target pair was kept at
10%. We highlight key insights below which guided our proposed
approaches (additional statistics are covered later in Section 6).

High word overlap between source and target text. In the D-T-S-I
dataset, the average number of words in both target and source
ad text is close to 13 (sequence length), but there is a 60% overlap
between words in source and target. This indicates: (i) target retains
a lot of words from the source (plausibly to preserve context), and (ii)
there are word replacements in source to keep the sequence length
roughly the same. Hence, a copy mechanism which can selectively
copy parts of the source text while introducing new words in target
looks intuitive for the ad text generation task (details in Section 5.1).

Discriminative power of keyphrases and image tags. An advertiser
category-wise case study using the D-T-S-I dataset revealed that
the presence of certain keyphrases in the target ad text (and their
absence in the source) consistently led to higher CTR relative to the
source. For example, in the case of retail category advertisers, such
keyphrases included free shipping and limited time offer. In a parallel
study using the D-I-S-T dataset, we observed analogous results with
image tags. For example, for telecommunication advertisers, we
found that target images with human elements (i.e. having tags
woman, man, child) had higher CTR than source images with just
multimedia tag. The above insights motivate the use of a ranking
approach for recommending keyphrases and image tags for refining
an input ad creative (details in Section 5.2).

5 GENERATION AND RANKING MODELS
We now describe, the proposed solutions for tasks 1-3 (Section 3).
The text generation approach for task 1 (Section 3.1) is explained in
Section 5.1. For tasks 2 (Section 3.2) and 3 (Section 3.3), the proposed
keyphrase/image tag ranking model is explained in Section 5.2.

5.1 Ad text generation model for task 1
Task 1 can be formulated a sequence-to-sequence (seq2seq) predic-
tion task, where given an input ad text (source sequence of tokens),
the predicted output should be a refined version of the input ad text
(target sequence) with a higher expected CTR. The construction of



the D-T-S-I dataset (in Section 4.2.1) is naturally suited for training
such a seq2seqmodel, since in each pair the target ad text has higher
CTR than the source ad text (the same ad-group, and same image
constraints in each pair eliminate all other confounding factors
affecting CTR). Given the D-T-S-I dataset, to solve task 1, we pro-
pose using an encoder-decoder architecture with a mechanism to
selectively copy words from the source text; the intuition behind the
proposal, and underlying architecture details are explained below.

Intuition. We borrow ideas from state-of-the-art models in ab-
stractive summarization [24] and use it to solve task 1 as follows.
We use an encoder-decoder architecture with attention [4], along
with a copy mechanism [24] as shown in Figure 3. In our setup, the
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Figure 3: Encoder-decoder with attention and copy mecha-
nism for generating refined (target) ad text given source ad.

motivation for using the copy mechanism is driven by the observa-
tion that there is a 60% overlap between source and target words in
the D-T-S-I dataset (as mentioned in Section 4.4). It is plausible that
copying some words from the source is good enough to preserve
the underlying context, while adding new words in the target can
boost the CTR. We describe the underlying model details below.

Model details: We use a bidirectional LSTM encoder for the
source sequence and an LSTM decoder for the target sequence
[4]. Following [18], the attention distribution is computed as:

𝑒𝑡𝑖 = ℎ⊤𝑖 𝑊att𝑠𝑡 , 𝑎𝑡 = softmax
(
𝑒𝑡
)
, (1)

where ℎ𝑖 is the encoder hidden state, 𝑠𝑡 is decoder state at step 𝑡 ,
𝑎𝑡 is the attention distribution, and𝑊att represents the learnable
parameters. The attention-weighted sum of all encoder hidden
states is used compute the context vector as:

𝑐𝑡 =
∑
𝑖

𝑎𝑡𝑖ℎ𝑖 . (2)

The generation probability 𝑝𝑔𝑒𝑛 for step 𝑡 is computed using the
context vector (𝑐𝑡 ), decoder state (𝑠𝑡 ) and decoder input (𝑥𝑡 ) as:

𝑝gen = 𝜎
(
𝑤⊤
𝑐 𝑐𝑡 +𝑤⊤

𝑠 𝑠𝑡 +𝑤⊤
𝑥 𝑥𝑡 + 𝑏ptr

)
, (3)

where 𝑤𝑐 , 𝑤𝑠 , 𝑤𝑥 are vectors and 𝑏ptr is a scalar, all of which are
learnable; 𝜎 (·) denotes the sigmoid function. Here, 𝑝gen is used
to softly choose between generating a word from the entire vo-
cabulary versus copying a word (token) from the input sequence
(via sampling from the attention distribution 𝑎𝑡 ). The vocabulary
distribution for generating a new word can be computed as:

Pvocab = softmax
(
𝑉 ′(𝑉 [𝑠𝑡 ; 𝑐𝑡 ] + 𝑏) + 𝑏 ′

)
, (4)

where 𝑉 , 𝑉 ′, 𝑏, and 𝑏 ′ are learnable parameters. With 𝑝𝑔𝑒𝑛 , the
effective distribution over the vocabulary can be written as:

P(𝑦) = 𝑝genPvocab (𝑦) + (1 − 𝑝gen)
∑

𝑖:𝑦𝑖=𝑦
𝑎𝑡𝑖 , (5)

where 𝑦 is a word in the vocabulary. For training, the loss at step 𝑡
(L𝑡 ) is the negative log-likelihood associated with target word 𝑦∗𝑡 ,
and that of the whole sequence is simply the average:

L𝑡 = − log
(
P(𝑦∗𝑡 )

)
, L =

1
𝑇

𝑇∑
𝑡=0

L𝑡 . (6)

Our implementation of the above model leveraged OpenNMT-Py
[13] with: train steps = 200k, optimizer = SGD, and batch size = 128.

5.2 Ranking model for tasks 2 and 3
We consider solving the keyphrase (and image tag) recommenda-
tion problem via a ranking model, where the model outputs a list
of keyphrases (and image tags) in decreasing order of relevance for
a given ad creative. We describe below the model for the keyphrase
ranking task; the image tag ranking model is analogous, and we
skip its description for brevity. We use the state-of-the-art pairwise
deep relevance matching model (DRMM) [9, 25] whose architecture
for our recommendation setup is shown in Figure 4. It is worth
noting that our pairwise ranking formulation can be changed to
accommodate other multi-objective or list-based loss-functions. We
chose the DRMM model since it is not restricted by the length of
input, as most ranking models are, but relies on capturing local
interactions between query and document terms. Given a (source
ad text , target keyphrase) combination, the model first computes
the top-𝑘 interactions between the source ad text words and the
keyphrases. These interactions are passed through a multi-layer
perceptron (MLP), and the overall score is aggregated with a query
term gate which is a softmax function over all terms in that query.
DRMM employs a pair-wise ranking loss function as described
below. We denote the source ad text by just 𝑠𝑟𝑐 in the following ex-
planation. Given a triple (𝑠𝑟𝑐 , 𝑝+, 𝑝−) where keyphrase 𝑝+ is ranked
higher than keyphrase 𝑝− with respect to 𝑠𝑟𝑐 , the loss function is:

L(𝑠𝑟𝑐, 𝑝+, 𝑝−;𝜃 ) =𝑚𝑎𝑥 (0, 1 − 𝑠 (𝑠𝑟𝑐, 𝑝+) + 𝑠 (𝑠𝑟𝑐, 𝑝−)), (7)

where 𝑠 (𝑠𝑟𝑐, 𝑝) denotes the predicted matching score for keyphrase
𝑝 , and the source ad text. Metadata in the form of image tags, and
advertiser category can be introduced as additional query terms. In
our implementation, we used the top-k version of DRMM [25] in
Match-Zoo [1] with 𝑘 = 20 and ADAM optimizer.

6 RESULTS
In this section, we first cover notable statistics of the D-T-S-I and
D-I-S-T datasets in Section 6.1, followed by a description of evalua-
tion metrics in Section 6.2. This is followed by results on ad text
generation, keyphrase ranking, and image tag ranking.
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Figure 4: DRMM-(top 𝑘) for keyphrase/image tag ranking.

task keyphrase ranking image-tag ranking
source target source target

vanilla-split
# tokens (1) 12.24±3.6 12.25±3.6 13.44±3.8 13.44±3.8
# tokens (2) 12.37±3.6 12.32±3.6 13.44±3.7 13.44±3.7
# kp/img (1) 12.02±4 7.14±3.8
# kp/img (2) 12.13±4 7.06 ±3.8

Table 1: Mean (±std) of attributes of train (1) and test (2) sets:
number of words in ad text (# tokens), number of matched
keyphrases (# kp), and number of image tags (# img).

6.1 Dataset statistics
The D-T-S-I and D-I-S-T datasets were built using a sample of 5
months of data from Yahoo Gemini (July-November 2019). The data
consisted of over 3500 advertisers (> 8500 campaigns in English
for U.S. audiences, ∼ 100 categories), and each ad-id considered in
the dataset had over 10, 000 impressions. After the filtering process
(i.e., keeping only source target pairs with more than Δ = 10% CTR
difference, and removing duplicate sources), the D-T-S-I dataset
consisted of over 20, 000 pairs while the D-I-S-T dataset consisted of
over 10, 000 pairs. Each dataset was randomly divided into train, test
and validation sets in proportions of 77%, 20%, and 3% respectively;
we will refer to this as a vanilla split. In addition to the vanilla split,
we created a cold-start split where there was no overlap between
advertisers in train, test and validation sets; this presents a much
more difficult (versus vanilla split) learning problem with unseen
advertisers Additional dataset statistics are shown in Table 1 .

6.2 Evaluation metrics
For ad text generation, we use standard metrics for text generation
problems: (i) BLEU [21], and (ii) ROUGE scores [17]. We introduce
metrics to gauge the presence of matched (target) keyphrases in the
generated sequence: (i) keyphrase-precision (kp-P), (ii) keyphrase-
recall (kp-R), and (iii) keyphrase -F (kp-F). In other words, we com-
pute precision and recall for target keyphrases, considering the list
of tokens in the generated text. For both keyphrase and image tag

source: Shop Womens Swimsuits at 
XYZ. Gifts For Everyone On Your List!

target ( = generated): Shop Womens 
Swimsuits at XYZ. Save On The 
Season’s Latest Trends!

ROUGE-L-F = 100

source: 2019 XYZ Deals! Huge Markdowns on 
2019 XYZ ! See Your XYZ Discount Now & Save!

target: XYZ Clearance! Huge Markdowns to Move 
XYZ! See Your Discount & Save!
 
generated: XYZ Clearance! Huge XYZ Price Cuts 
this Month! Get Deals Near You Now!

ROUGE-L-F = 39

baseline ~ 61

ROUGE-L F score

co
un

ts

Figure 5: Histogram of ROUGE-L F scores in test set for
vanilla-split (ATTN + CP + CAT model). Two anonymized
examples are also shown with their ROUGE-L F scores.

ranking, we use: (i) precision at 𝑘 (𝑃@𝑘), (ii) recall at 𝑘 (𝑅@𝑘), and
(iii) normalized cumulative discounted gain at 𝑘 (𝑁𝐷𝐶𝐺@𝑘).

6.3 Ad text generation results
Table 2 covers generation results for the vanilla, and cold-start cases
(metrics on test set). The baseline scores are for the case when the
source ad text is considered as the predicted ad text (i.e., no change
in input), and compared with the target ad text. In Table 2, CAT and
IMG denote the addition of category and image tags to beginning
of the input sequence (image tags in alphabetical order). The main
observations are as follows.

Copymechanismworks. In both vanilla and cold-start cases, there
is a significant lift in the metrics due to the copy mechanism. In
case of vanilla split, the copy mechanism is able to beat the baseline
(predicted sequence = source sequence) metrics. However, in cold-
start, it is below the baseline (but is better than the no-copy version).

Category helps. There is a consistent improvement in metrics
on using category metadata in the input sequence. As expected,
category information provides a relatively higher lift (4.4% above
ATTN+CP in ROUGE-L F) for cold-start split compared to vanilla
split (0.2% lift). In comparison, adding image tags to the input
sequence (along with category) does not provide any lift (suggesting
the need for better ways to incorporate image information).

Cold-start is challenging. We computed the histogram of ROUGE-
L F scores on the test set using the best model (ATTN+CAT+CP)
for the vanilla-split (Figure 5) and cold-start split (Figure 6) cases;
for both splits, the baseline ROUGE-L F is around 61. As shown,
for vanilla, the distribution has a significant number examples
above the baseline, while the distribution’s mass significantly shifts
below baseline for cold-start. The listed examples of generated text
give a sense of how good the generated outputs are in terms of
human judgement vis-a-vis ROUGE-L F scores. The keyphrase
based metrics for generation (kp-P,R,F) as reported in Table 2, are
helpful in gauging the extent to which target keyphrases appear
in the generated text. For example, in the lower scored generated
text in Figure 5, clearance is correctly introduced, but price cuts is
incorrectly introduced. Although price cuts is incorrect given the
target text (which has a guaranteed CTR lift), it remains to be seen
if it leads to a lower CTR online (beyond the scope of this paper).



model BLEU ROUGE-1 F ROUGE-2 F ROUGE-L F kp-P kp-R kp-F
vanilla-split
baseline (pred=src) 56.28 63.49 50.79 61.13 0.643 0.644 0.643
ATTN 50.74 57.62 47.26 56.01 0.552 0.548 0.55
ATTN + CP 59.38 65.61 55.13 63.79 0.661 0.648 0.655
ATTN + CP + CAT 59.45 65.74 55.35 63.91 0.661 0.649 0.655
ATTN + CP + CAT + IMG 58.37 65.63 55.18 63.82 0.663 0.646 0.654
cold-start split
baseline (pred=src) 56.01 63.69 51.02 61.57 0.643 0.637 0.64
ATTN 16 26.64 13.29 25.02 0.195 0.177 0.185
ATTN + CP 34.39 45.26 30.86 42.81 0.462 0.422 0.441
ATTN + CP + CAT 35.91 47.52 32.64 44.69 0.494 0.434 0.462
ATTN + CP + CAT + IMG 33.42 44.33 29.53 41.76 0.422 0.37 0.394

Table 2: Ad text generation results: ATTN denotes the LSTM encoder-decoder with attention model, CP denotes copy mecha-
nism, CAT denotes adding category, and IMG denotes adding source image tags.

co
un

ts

ROUGE-L F score

source: Want Ad-Free Music ? Start 
your 90 Day Free Trial of XYZ Premium.

target: Start Free 90 Day Trial XYZ 
Premium: Ad-Free Music, Create 
Playlists, More Skips & Replays!
 
generated: XYZ  Day Music Trial. Free 
Trial of  XYZ Free Trial. Sit Closer.

ROUGE-L-F = 24

source: Spectacular Bird’s-Eye Views of World 
Wonders. Enjoy a bird’s-eye view of some of the 
most spectacular and significant sites in the world.
target: Incredible XYZ Shots of World Wonders. 
Enjoy a bird’s-eye view of some of the most 
spectacular and significant sites in the world.
generated: Enjoy Spectacular Views of World 
Wonders. Enjoy a bird's-eye view of some of the 
most spectacular and significant sites in the world.

ROUGE-L-F = 82

baseline ~ 61

Figure 6: Histogram of ROUGE-L F scores in test set for cold-
start split (ATTN + CP + CAT model). Two anonymized ex-
amples are also shown with their ROUGE-L F scores.

6.4 Keyphrase ranking results
Table 3 shows the results for keyphrase ranking. The baselines
included methods using: (i) cosine similarity (EMB-SIM) based on
Glove [22] embeddings for keyphrases and input text (average of
word embeddings), and (ii) TF-IDF representation of source ad text
and keyphrases is used to compute similarity and keyphrases are
ranked in descending order of similarity. As shown in Table 3, for
both splits, using DRMM with category features performs the best
in terms of all metrics. Cold-start best performance is compara-
ble to the vanilla split best performance (e.g., 7% drop in 𝑅@10,
compared to 33% drop in 𝑘𝑝 − 𝑅 in Table 2 for generation). Hence,
keyphrase ranking seems to be more robust to unseen advertisers
compared to ad text generation. As seen in text generation, naively
adding image tags to the input along with category does not gener-
alize well (mildly hurts performance). We suspect that since image
tags represent objects, they provide no additional context for the
ranker to select better keyphrases. Most often, keyphrases provide
more information about the brand, and image tags that represent
objects may not add any complementary information about the
brand directly that the ranking model can exploit. In future, we
shall explore features that encapsulate information in the image
directly [27] rather than use image tags for keyphrase ranking. We

model P5 P10 R5 R10 ndcg5 ndcg10
vanilla
EMB-SIM 0.17 0.10 0.07 0.09 0.19 0.14
TF-IDF 0.33 0.26 0.15 0.23 0.35 0.30
DRMM 0.50 0.39 0.25 0.38 0.53 0.47
+ CAT 0.51 0.40 0.25 0.39 0.53 0.48
+ CAT + IMG 0.41 0.32 0.21 0.32 0.43 0.39
cold st.
EMB-SIM 0.12 0.07 0.05 0.06 0.14 0.11
TF-IDF 0.27 0.21 0.12 0.18 0.29 0.26
DRMM 0.38 0.29 0.22 0.32 0.41 0.37
+ CAT 0.42 0.32 0.24 0.36 0.45 0.40
+ CAT + IMG 0.34 0.26 0.20 0.30 0.36 0.33

Table 3: Kephrase ranking: baselines versus DRMM, and the
effect of adding category and image tags as query terms.

split metric add-0 add-1 add-2 add-3 add-10
cold-start kp-P 0.50 0.50 0.49 0.46 0.35
cold-start kp-R 0.43 0.45 0.46 0.47 0.53

Table 4: Ranking-aided keyphrase metrics for generation.
Add-0 denotes no assistance, and add-10 denotes adding top
10 ranked keyphrases in the generation output.

also study the possibility of assisting generation results with corre-
sponding ranking results. Table 4 shows the boost in kp-R for the
best generation results (ATTN+CP+CAT), when the corresponding
(top-𝑟 ) outputs of the DRMM + CAT model are added to the list
of matched keyphrases in generated text. As shown for cold-start,
just adding the top ranked keyphrase (add-1) improves the recall
(0.43 → 0.45) without affecting the precision (0.5). This indicates
that ranking results can complement generation results in a helpful
manner (illustrative cold-start examples in Figure 7).

6.5 Ad image tag ranking results
Table 5 shows the ranking results for image tags (baselines, and CAT
+ IMG feature additions in DRMM). Using DRMM with category



Figure 7: Sample keyphrase ranking results vis-a-vis gen-
erated ad text (cold-start); the keyphrase recommendations
can cover target keyphrases missed by poor generation.

model P5 P10 R5 R10 ndcg5 ndcg10
vanilla
EMB-SIM 0.16 0.15 0.12 0.22 0.18 0.23
TF-IDF 0.27 0.24 0.21 0.35 0.29 0.37
DRMM 0.49 0.34 0.35 0.49 0.53 0.50
+ CAT 0.50 0.35 0.36 0.49 0.54 0.51
+ CAT + IMG 0.51 0.37 0.34 0.49 0.55 0.52
cold st.
EMB-SIM 0.16 0.15 0.11 0.20 0.18 0.22
TF-IDF 0.28 0.24 0.20 0.33 0.29 0.36
DRMM 0.41 0.31 0.29 0.43 0.44 0.44
+ CAT 0.43 0.33 0.31 0.45 0.46 0.46
+ CAT + IMG 0.53 0.37 0.38 0.52 0.58 0.55

Table 5: Image tag ranking: baselines versus DRMM, and the
effect of adding category and image tags as query terms.

and image tags performs the best. The efficacy of image tags (in
source) to predict relevant tags (in target) may be linked to common
modality. We also report the frequent top ranked image tags for

category top 5 ranked image tags
apparel clothing, face, hair, girl, pattern
job portals face, clothing, multimedia, road, man, woman
auto wheel, car, motorcycle, clothing, face
real estate man, woman, mansion, bedroom, kitchen
Table 6: Frequent top ranked image tags by category.

selected categories in Table 6 using the DRMM + CAT + IMGmodel.

6.6 Online results
We deployed the ranking models for tasks 2 and 3 (i.e., keyphrase
and image tag rankers) as an internal service for Yahoo Gemini
account teams which manage campaigns of major advertisers. To
study end-to-end adoption, we partnered with the account team for
an Internet service provider. Using their existing creative (text and
image) as input, the top keyphrase and top image tag recommen-
dation were considered. The advertiser approved an A/B test for
the refined creative (incorporating both image and text refinements
together) versus their existing creative. The A/B test was conducted
for 2 weeks via Yahoo Gemini, and the refined creative showed an
87% improvement in CTR, validating the model recommendations.

7 DISCUSSION
Our results show the efficacy of using A/B test data across adver-
tisers for both generation and ranking formulations of ad creative
refinement. Account teams testing the proposed models requested
additional evidence in the form of CTR of similar ads (i.e., with
recommended keyphrases and image tags) to convince advertis-
ers to approve tests for refined creatives. Studying the extent of
adoption by advertisers and using this feedback to control creative
generation is a promising direction for future research.
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