Text to Text Generation
A Candidacy Exam

Kapil Thadani
Columbia University
New York, NY

DECEMBER 2009
Text to Text Generation

• Rewriting of text according to requirements

• Potential operations:
 • Rewording and rearranging phrases
 • Combining or splitting up sentences
 • Deleting content

• Applications: summarization/redundancy, question-answering
Text to Text Generation

1 Paraphrase induction

- Rewording and rearranging phrases
- Preserve original meaning

Ms. Palin supported the bridge project while running for governor, and abandoned it after it became a national scandal.

↓

After it became a national scandal, Ms. Palin abandoned the bridge project that she had supported during her gubernatorial campaign.
Text to Text Generation

Paraphrase induction

- Rewording and rearranging phrases
- Preserve original meaning

Ms. Palin supported the bridge project while running for governor, and abandoned it after it became a national scandal.

After it became a national scandal, Ms. Palin abandoned the bridge project that she had supported during her gubernatorial campaign.
Paraphrase induction

- Rewording and rearranging phrases
- Preserve original meaning

Ms. Palin supported the bridge project while running for governor, and abandoned it after it became a national scandal.

After it became a national scandal, Ms. Palin abandoned the bridge project that she had supported during her gubernatorial campaign.
Sentence simplification

- Splitting up sentences for readability
- Preserve original meaning

Ms. Palin supported the bridge project while running for governor, and abandoned it after it became a national scandal.

Ms. Palin supported the bridge project while running for governor. She abandoned it after it became a national scandal.
Sentence compression

- Delete content for summarization
- Preserve *important* aspects

Ms. Palin supported the bridge project while running for governor, and abandoned it after it became a national scandal.

↓

Ms. Palin abandoned the bridge project after it became a national scandal.
Text to Text Generation

4 Sentence fusion
- Combine sentences for summarization
- Preserve important aspects

Ms. Palin supported the bridge project while running for governor, and abandoned it after it became a national scandal.

The media keeps repeating that Palin actually turned against the bridge project only after it became a national symbol of wasteful spending.

Ms. Palin supported the bridge project while running for governor, and abandoned it only after it became a national symbol of wasteful spending.
Ms. Palin supported the bridge project while running for governor, and abandoned it after it became a national scandal.

The media keeps repeating that Palin actually turned against the bridge project only after it became a national symbol of wasteful spending.

↓

Ms. Palin supported the bridge project while running for governor, and abandoned it only after it became a national symbol of wasteful spending.
Text to Text Generation
Dimensions

1 Preservation of sentence semantics:
 • Lossless (paraphrasing, simplification)
 • Lossy (compression, fusion)

2 Transformation of sentences:
 • One to one (paraphrasing, compression)
 • One to many (simplification)
 • Many to one (fusion)
Text to Text Generation

Reluctant paraphrase

Dras (1997)

- Links paraphrasing, simplification and compression
- Mathematical optimization with constraints
 1. Sentence length
 2. Readability
 3. Lexical density
- Paraphrasing only carried out if a constraint is violated
Text to Text Generation
Reluctant paraphrase

Dras (1997)

- Links paraphrasing, simplification and compression
- Mathematical optimization with constraints
 1. Sentence length
 - Number of words ↓
 2. Readability
 3. Lexical density
- Paraphrasing only carried out if a constraint is violated

M. Dras (1997) Reluctant Paraphrase: Textual Restructuring under an Optimisation Model
Text to Text Generation
Reluctant paraphrase

Dras (1997)

- Links paraphrasing, simplification and compression
- Mathematical optimization with constraints
 1. Sentence length
 - Number of words ↓
 2. Readability
 - Sentence complexity (average sentence length) ↓
 - Word complexity (average number of syllables OR proportion of infrequent words) ↓
 3. Lexical density
- Paraphrasing only carried out if a constraint is violated
Text to Text Generation
Reluctant paraphrase

Dras (1997)

- Links paraphrasing, simplification and compression
- Mathematical optimization with constraints
 1. Sentence length
 - Number of words ↓
 2. Readability
 - Sentence complexity (average sentence length) ↓
 - Word complexity (average number of syllables OR proportion of infrequent words) ↓
 3. Lexical density
 - Proportion of non-content words ↔
- Paraphrasing only carried out if a constraint is violated
Paraphrase Induction
Two strategies

1. Non-parallel corpora
 - Easier to obtain data
 - Harder to detect accurate paraphrases

2. Parallel corpora
 - Harder to obtain data
 - Easier to detect accurate paraphrases
Paraphrase Induction

Lattice-based

MT-based
Paraphrase Induction

Lin & Pantel (2001)
Barzilay & Lee (2003)
Quirk et al. (2004)

Barzilay & McKeown (2001)
Pang et al. (2003)

Lattice-based

MT-based
Bannard & Callison-Burch (2005)
Callison-Burch (2008)

Learning paraphrase rules
Lin & Pantel (2001)

1. Standard (non-parallel) corpus: newswire
2. Extended distributional hypothesis:
 - Extract slotted paths from dependency trees
 - Paths which tend to have similar slots are similar

Barzilay & McKeown (2001)

1. Parallel corpora: multiple translations of French novels
2. Bootstrap through co-training:
 - Identify predictive context patterns around paraphrases
 - Identify paraphrases within predictive context patterns
Paraphrase Induction
Learning paraphrase rules

Lin & Pantel (2001)

Inference rules:

- NN_0 is the author of $\text{NN}_1 \equiv \text{NN}_0$ wrote NN_1
- NN_0 solved $\text{NN}_1 \equiv \text{NN}_0$ found a solution to NN_1
- NN_0 caused $\text{NN}_1 \equiv \text{NN}_1$ is triggered by NN_0

Barzilay & McKeown (2001)

Lexical paraphrases:

- burst into tears \equiv cried
- comfort \equiv console
- countless \equiv lots of

Morpho-syntactic patterns:

- NN_0 POS $\text{NN}_1 \equiv \text{NN}_1$ IN DET NN_0
 King’s son son of the King
- VB_0 to $\text{VB}_1 \equiv \text{VB}_0$ VB VB_1
 start to talk start talking
Lin & Pantel (2001)

3 Human evaluation on paths from 6 TREC-8 questions:
 • Accuracy varies from 35% - 92.5%
 • Very low overlap with manually generated paraphrases

4 Can’t distinguish between synonymy and antonymy!

Barzilay & McKeown (2001)

3 Human evaluation of generated paraphrases:
 • 86.5% out of context; 91.6% in context
 • 69% overlap with human paraphrases in small recall study

4 65% of paraphrases extend beyond synonymy
Paraphrase Induction

Lattice-based methods

- Lin & Pantel (2001)
- Pang et al. (2003)
- Quirk et al. (2004)
- Barzilay & McKeown (2001)
- Bannard & Callison-Burch (2005)
- Callison-Burch (2008)

Lattice-based methods
Paraphrase Induction
Lattice-based methods

Barzilay & Lee (2003)

1. Comparable corpora: clustered newswire articles
2. Multiple sequence alignment (MSA) over clustered sentences
 - Regions of high variability are slots
 - Lattices from sentences with similar slot values are similar

Pang et al. (2003)

1. Parallel corpus: Multiple Translation Chinese
2. FSAs from parse forests created by merging syntactic trees
 - Squeezing to remove redundancy
 - Different FSA paths are paraphrases

Paraphrase Induction
Lattice-based methods

Barzilay & Lee (2003)

- Human evaluation on AFP/Reuters:
 - 38% improvement over templates from Lin & Pantel (2001)
 - Generated paraphrases from 59 sentences judged better than Wordnet substitution baseline

Pang et al. (2003)

- Human evaluation on parallel sentence groups:
 - 15% improvement over Barzilay & McKeown (2001), but half the number of paraphrases generated
 - Word repetition 10x more likely for MSA algorithm
Paraphrase Induction

MT-based methods

Lattice-based

MT-based
Paraphrase Induction
MT-based methods

Quirk et al. (2004)
1. Comparable corpora: online news clusters
2. Phrase-based MT approach; no inter-phrase reordering
3. Human evaluation on 59 sentence corpus
 - Paraphrases better than Barzilay & Lee (2003) and far less information added and lost
 - More general than MSA (15/59 paraphrases from one template)

1. Bilingual parallel corpora from Europarl
2. Pivot through foreign-language corpus
 - No syntax: equal, created equal, to create equal
3. Manual evaluation

<table>
<thead>
<tr>
<th></th>
<th>Meaning</th>
<th>Grammar</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>No syntax (B&CB '05)</td>
<td>46%</td>
<td>44%</td>
<td>36%</td>
</tr>
<tr>
<td>With syntax (CB '08)</td>
<td>61%</td>
<td>68%</td>
<td>55%</td>
</tr>
</tbody>
</table>

C. Bannard & C. Callison-Burch (2005) Paraphrasing with Bilingual Parallel Corpora
C. Callison-Burch (2008) Syntactic Constraints on Paraphrases Extracted from Parallel Corpora
Paraphrase Induction

Lattice-based

MT-based
Paraphrase Induction

Corpus strategy
- Parallel
Paraphrase Induction

Corpus strategy

- Parallel
- Non-parallel
Paraphrase Induction

Lin & Pantel (2001)
Barzilay & Lee (2003)
Quirk et al. (2004)
Barzilay & McKeown (2001)
Pang et al. (2003)
Bannard & Callison-Burch (2005)
Callison-Burch (2008)

Corpus strategy
- Parallel
- Non-parallel

Features used
- Word/POS
Paraphrase Induction

Corpus strategy
- Parallel
- Non-parallel

Features used
- Word/POS
- Syntax

Callison-Burch (2008)
Paraphrase Induction

Lin & Pantel (2001)
Barzilay & Lee (2003)
Quirk et al. (2004)
Barzilay & McKeown (2001)
Pang et al. (2003)
Bannard & Callison-Burch (2005)
Callison-Burch (2008)

Corpus strategy
- Parallel
- Non-parallel

Features used
- Word/POS
- Syntax

Paraphrase type
- Lexical
Paraphrase Induction

Corpus strategy
- Parallel
- Non-parallel

Features used
- Word/POS
- Syntax

Paraphrase type
- Lexical
- Slotted
Sentence Simplification

Chandrasekar & Bangalore (1997)

Siddharthan (2006)

Klebanov et al. (2004)

Hickl (2008)

Enumeration
Sentence Simplification

Chandrasekar & Bangalore (1997)

Siddharthan (2006)

Klebanov et al. (2004)

Hickl (2008)

Simplification rules
Sentence Simplification
Simplification rules

Chandrasekar & Bangalore (1997)

- Supervised approach based on lexicalized TAG
 - Training parsed using a *lightweight dependency analyzer*
 - Transformation rules generalized from tree pairs

Talwinder Singh, who masterminded the 1984 Kanishka crash, was killed in a fierce two-hour encounter.

Talwinder Singh masterminded the 1984 Kanishka crash.
Talwinder Singh was killed in a fierce two-hour encounter.

- No evaluation!

Sentence Simplification

Chandrasekar & Bangalore (1997)

- Supervised approach based on lexicalized TAG
 - Training parsed using a *lightweight dependency analyzer*
 - Transformation rules generalized from tree pairs

Talwinder Singh, who masterminded the 1984 Kanishka crash, was killed in a fierce two-hour encounter.

Talwinder Singh masterminded the 1984 Kanishka crash.
Talwinder Singh was killed in a fierce two-hour encounter.

- No evaluation!
Sentence Simplification
Simplification rules

Siddharthan (2006)

• Local ordering through recursive transformation:
 1. Mr. Anthony, who runs an employment agency, decries program trading, but *he* isn’t sure *it* should be strictly regulated.
 \[\textit{↓}\]
 2. Mr. Anthony, who runs an employment agency, decries program trading. But *he* isn’t sure *it* should be strictly regulated.
 \[\textit{↓}\]
 3. Mr. Anthony runs an employment agency. *He* decries program trading.
 But *he* isn’t sure *it* should be strictly regulated.

• Focus on conjunctive cohesion and anaphoric cohesion

• Knowledge-heavy: anaphora resolution, clause/appositive identification and attachment, RST-based sentence analysis

• Human evaluation on 95 news sentences:
 • High (95%) grammaticality and meaning preservation
Sentence Simplification

Enumerating propositions

Chandrasekar & Bangalore (1997)

Siddharthan (2006)

Klebanov et al. (2004)

Hickl (2008)
Sentence Simplification
Enumerating propositions

Harriet Beecher Stowe is a writer. She was born in Litchfield Connecticut, USA, the daughter of Lyman Beecher. Raised by her severe Calvinist father, she was educated and then taught at the Hartford Female Seminary.

↓

Harriet Beecher Stowe is a writer.
Harriet Beecher Stowe was born in Litchfield, Connecticut.
Harriet Beecher Stowe was the daughter of Lyman Beecher.
Harriet Beecher Stowe was raised by her severe Calvinist father.
Harriet Beecher Stowe was raised by Lyman Beecher.
Lyman Beecher is Harriet Beecher Stowe’s father.
Harriet Beecher Stowe was educated at the Hartford Female Seminary.
Harriet Beecher Stowe taught at the Hartford Female Seminary.
Sentence Simplification
Enumerating propositions

Klebanov et al. (2004)

1. Easy-access sentences: grammatical, single verb, NEs
2. Useful for information-seeking applications like QA
3. Relies on rules over dependency parses from MINIPAR
4. Human evaluation on 123 sentences:
 - 55% accuracy; nearly all errors in information maintenance

Hickl (2008)

1. Discourse commitments: lightweight propositions that can be inferred as true
2. Applied to textual entailment
3. Uses syntactic and semantic parsing, relation extraction, coreference resolution
4. Entailment evaluation over RTE-2 and RTE-3:
 - 83% correct; state of the art performance by far

Sentence Simplification

Chandrasekar & Bangalore (1997)

Siddharthan (2006)

Klebanov et al. (2004)

Hickl (2008)

Enumeration
Sentence Simplification

- Chandrasekar & Bangalore (1997)
- Siddharthan (2006)
- Klebanov et al. (2004)
- Hickl (2008)

• Just simplification
Sentence Simplification

- Just simplification
- Readability

Chandrasekar & Bangalore (1997)

Klebanov et al. (2004)

Siddharthan (2006)

Enumeration

Hickl (2008)
Sentence Simplification

- Just simplification
- Readability
- Information extraction

Chandrasekar & Bangalore (1997)
Siddharthan (2006)
Klebanov et al. (2004)
Hickl (2008)
Sentence Simplification

- Chandrasekar & Bangalore (1997)
- Siddharthan (2006)
- Klebanov et al. (2004)
- Hickl (2008)

• Just simplification
• Readability

• Information extraction
• Meaning representation
Sentence Compression

Jing (2000)

Noisy-channel

Discourse
Sentence Compression

Jing (2000)

Noisy-channel

Discourse

Sentence reduction
Jing (2000)

- Introduced sentence compression for summarization
- Probabilities of dropping particular subtrees estimated using
 - Corpus of human abstracts; sentences aligned to reduced forms
 - Large-scale syntactic lexicon to find obligatory verb arguments
 - Topicality from local context through Wordnet, heuristics
- Evaluation over 100 sentences:
 - Algorithm made same choice as humans 81.3% of the time
 - Compression rate 67% versus 58% for humans
Sentence Compression

Noisy-channel models

Sentence Compression

Noisy-channel models

Goal: retrieve compressed **source** string from “noisy” **target** string

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PCFG expansions + bigrams</td>
<td>Syntactic LM</td>
<td></td>
</tr>
<tr>
<td>Channel model</td>
<td>Stochastic parse tree rules from aligned ZD corpus</td>
<td>+ unsupervised PCFG expansions from WSJ</td>
</tr>
<tr>
<td>Generation</td>
<td>NLG system</td>
<td>Direct</td>
</tr>
<tr>
<td>Evaluation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Grammar</td>
<td>4.57</td>
<td>4.79</td>
</tr>
<tr>
<td>- Importance</td>
<td>3.85</td>
<td>4.18</td>
</tr>
<tr>
<td>- Comp. rate</td>
<td>70.4%</td>
<td>81.2%</td>
</tr>
</tbody>
</table>

Noisy-channel model not well suited to compression:

- Expansions required to be more likely in the channel model
- Most probable compressed sentence will be almost like the original

J. Turner & E. Charniak (2005) *Supervised and Unsupervised Learning for Sentence Compression*
Sentence Compression

Discriminative approaches

Noisy-channel

Discourse
Sentence Compression
Discriminative approaches

McDonald (2006)

- Uses potentially-noisy parse features as “soft syntactic evidence”
- 78923 features including:
 - POS features for retained & dropped words
 - Dependency features
 - Phrase-structure features for dropped productions
 - ... but no lexical features except dropped verbs/negations
- Human evaluation on Ziff-Davis corpus:
 - Improvements in grammaticality and importance against the decision-tree model in Knight & Marcu (2002)
 - Better importance score than humans, perhaps because of compression rate

R. McDonald (2006) Discriminative Sentence Compression with Soft Syntactic Evidence
Sentence Compression

Discriminative approaches

Cohn & Lapata (2008)

- Allows rewriting, substitutions and insertions
- Synchronous tree substitution grammar (STSG) learns rules for rewriting tree fragments, like Chandrasekar & Bangalore (1997)
 - Compression rules from abstractive corpus of 575 sentences
- Grammaticality maintained with language model (LM)
- Human evaluation on abstractive corpus:
 - Gain in importance score over extractive version; implicitly beats McDonald (2006)
 - Proportion of deletions, substitutions and insertions closely mirrors human summarizers

C. Bannard & C. Callison-Burch (2005) Paraphrasing with Bilingual Parallel Corpora
R. McDonald (2006) Discriminative Sentence Compression with Soft Syntactic Evidence
Sentence Compression

Considering discourse

Noisy-channel Discourse
Sentence Compression
Considering discourse

Clarke & Lapata (2007)

- Doesn’t require aligned corpus of compressed sentences
- Integer linear programming (ILP) with discourse constraints
 1. **Centering theory**: single entity salient in an utterance
 2. **Lexical chains**: sequences of related words indicate cohesion across utterances
- Automatic evaluation over manually compressed corpus using grammatical relations:
 - Significantly outperforms McDonald (2006)
- Novel QA evaluation over 6 documents:
 - Significant advantage over McDonald (2006); non-significant difference with gold standard
Sentence Compression
Considering discourse

Daumé III & Marcu (2002)
Application of Knight & Marcu (2002) to discourse trees

- Compresses *across sentence boundaries*
- Human evaluation over WSJ and small Mitre corpus:
 - Outperforms Knight & Marcu (2002) baseline
 - Better compression rate than Clarke & Lapata (2007)

Sentence Compression

Jing (2000)
Knight & Marcu (2002)
Daumé III & Marcu (2002)

Noisy-channel

Cohn & Lapata (2008)
McDonald (2006)
Clarke & Lapata (2007)

Discourse
Sentence Compression

- Handle parse errors
Sentence Compression

- Handle parse errors
- Rewrite sentences

Jing (2000)
Knight & Marcu (2002)
Turner & Charniak (2005)
Daumé III & Marcu (2002)
Cohn & Lapata (2008)
McDonald (2006)
Clarke & Lapata (2007)
Sentence Compression

- Handle parse errors
- Rewrite sentences
- No aligned corpus
Sentence Compression

- Handle parse errors
- Rewrite sentences
- No aligned corpus
- Collapse sentences

Jing (2000)
Knight & Marcu (2002)
Turner & Charniak (2005)
Cohn & Lapata (2008)
McDonald (2006)
Clarke & Lapata (2007)
Daumé III & Marcu (2002)
Sentence Fusion

Summarization

Jing & McKeown (2000)

Barzilay & McKeown (2005)

Marsi & Krahmer (2005)

Filippova & Strube (2008)

Krahmer et al. (2008)

Agreement?
Sentence Fusion

Summarization

Jing & McKeown (2000)
Barzilay & McKeown (2005)

Marsi & Krahmer (2005)
Filippova & Strube (2008)
Krahmer et al. (2008)

Sentence combination for summarization

Agreement?
Sentence Fusion
Sentence combination for summarization

Jing & McKeown (2000)

1 Summary revision using Jing (2000) for reduction

2 Human evaluation on 20 documents:
 • Better conciseness and cohesion than extracted summaries
 • Revised summaries 41% shorter

Sentence Fusion
Sentence combination for summarization

Barzilay & McKeown (2005)

- Combination of sentences in a *theme*
- Three components:
 1. Dependency tree alignment
 2. Fusion lattice computation
 - Selection of basis tree
 - Alternative verbalizations
 - Addition of frequent subtrees
 - Pruning of unique subtrees
 3. Linearization with LM
- Comparison on DUC data:
 - Outperforms baselines but beaten by humans on F-measure
 - Errors in grammaticality due to LM; good sentences scored badly
Sentence Fusion

As a standalone task
Sentence Fusion
As a standalone task

Marsi & Krahmer (2005)

- First introduced idea of *union* and *intersection* fusion
- Manual alignment of dependency trees used to compare against automatic alignment of Barzilay & McKeown (2005)
 - Very small dataset: one chapter of parallel Dutch translations of *Le Petit Prince*
 - Automatic alignment has 2x the recall of string-matching baseline
- Aligned node pairs manually labeled for *restatement*, *generalization* and *specification*
 - 50% of restatements and generalizations judged perfect
- LM-based ranking found to be of poor quality

E. Marsi & E. Krahmer (2005) Explorations in Sentence Fusion
Sentence Fusion
As a standalone task

Filippova & Strube (2008)

• ILP over dependency graphs
 ① Simple alignment of dependency trees to create DAG
 ② Pruning using syntactic importance and word informativeness
 ③ Globally optimal tree found with constraints for well-formedness

• Semantic constraints over:
 • Hyponyms and meronyms using GermaNet, taxonomy
 • Unrelated words through WikiRelate

• Manual evaluation over German comparable biographies:
 • Significant readability gain over Barzilay & McKeown (2005);
 insignificant gain in informativity
 • Heavy reliance on parsing quality for good output

K. Filippova & M. Strube (2008) Sentence Fusion via Dependency Graph Compression
Sentence Fusion

Summarization

Jing & McKeown (2000)

Barzilay & McKeown (2005)

Marsi & Krahmer (2005)

Filippova & Strube (2008)

Agreement?

Krahmer et al. (2008)

Human agreement analysis
Sentence Fusion
Human agreement analysis

- 50 sentence pairs each aligned to a single abstract sentence, compared with 3 human fusions and 3 baselines: longer sentence, truncated concatenation, Daumé III & Marcu (2002)
- No agreement of humans with reference under a factoid retrieval approach
 - Lack of document context?
- Longer baseline preferred to Daumé III & Marcu (2002) in absolute/relative ranking; vice versa for factoids
 - Grammaticality?
- Longer baseline outperforms reference in relative ranking
 - Out of context? Also, reference created by trained summarizer

Sentence Fusion
Human agreement analysis

Krahmer et al. (2008)

Dimensions: query-based vs generic fusion
intersection vs union fusion

1 Data collection experiments over 25 medical questions:
 • Q-based fusion has less variation than generic fusion (by lower standard deviations over sentence length; more duplicates)
 • Q-based fusions do consistently better under Rouge metrics

2 Evaluation of preference on fusions of 20 questions:
 • Results show Q-based union > Q-based intersection > generic intersection/union
 • No significant difference between generic fusion types

E. Krahmer, E. Marsi & P. van Pelt (2008) Query-based Sentence Fusion is Better Defined and Leads to More Preferred Results than Generic Sentence Fusion
Sentence Fusion

Summarization

Jing & McKeown (2000)

Barzilay & McKeown (2005)

Marsi & Krahmer (2005)

Filippova & Strube (2008)

Agreement?

Krahmer et al. (2008)
Sentence Fusion

1. Alignment
2. Fusion
3. Linearization

Summarization

- Jing & McKeown (2000)
- Barzilay & McKeown (2005)
- Filippova & Strube (2008)
- Marsi & Krahmer (2005)
- Krahmer et al. (2008)

Agreement?
Alignment

Words:
- Filippova & Strube (2008)

Phrases (GIZA++):
- Quirk et al. (2004)
- Bannard & Callison-Burch (2008)
- Bannard & Callison-Burch (2005)

Syntactic parse:
- Pang et al. (2003)

Dependency parse:
- Barzilay & McKeown (2005)
- Marsi & Krahmer (2005)
Alignment

Words:
- Filippova & Strube (2008)

Phrases (GIZA++):
- Quirk et al. (2004)
- Bannard & Callison-Burch (2005)
- Callison-Burch (2008)

Syntactic parse:
- Pang et al. (2003)

Dependency parse:
- Barzilay & McKeown (2005)
- Marsi & Krahmer (2005)
Alignment

Words:
- Filippova & Strube (2008)

Phrases (GIZA++):
- Quirk et al. (2004)
- Bannard & Callison-Burch (2005)
- Callison-Burch (2008)

Syntactic parse:
- Pang et al. (2003)

Dependency parse:
- Barzilay & McKeown (2005)
- Marsi & Krahmer (2005)
Alignment

Words:
- Filippova & Strube (2008)

Phrases (GIZA++):
- Quirk et al. (2004)
- Bannard & Callison-Burch (2005)
- Callison-Burch (2008)

Syntactic parse:
- Pang et al. (2003)

Dependency parse:
- Barzilay & McKeown (2005)
- Marsi & Krahmer (2005)
Alignment

Words:

Phrases (GIZA++):

Syntactic parse:
Pang et al. (2003)

Dependency parse:
MacCartney et al. (2008)

- Exploits monolingual lexical and phrase-based resources for alignment
- MANLI: Phrase-based alignment system
 - Trained on annotated RTE2 alignments with averaged perceptron
 - Decodes alignments using a simulated annealing search for phrase segmentation
 - Uses lexical/phrasal similarity features and contextual features for position
- Human evaluation on RTE2 corpus:
 - Compares favorably to a bag-of-words aligner, GIZA++ and cross-EM MT aligners and the Stanford token-based aligner
 - Generates 21% of gold alignments exactly
 - Error analysis shows poor scoring of aligned phrases and NEs
Linearization

LM-based:
- Barzilay & McKeown (2005)
- Marsi & Krahmer (2005)
- Cohn & Lapata (2008)
Linearization

LM-based:

Barzilay & McKeown (2005)

Marsi & Krahmer (2005)

Cohn & Lapata (2008)
Filippova & Strube (2009)

- Proposes a distinction between phrase level and clause level
 1. Trigram LM to order within phrases
 2. Classifiers to order clause constituents
 - To determine best starting point of a sentence
 - To determine if precedence holds between adjacent constituents

- Evaluation on regenerating sentences from dependency trees:
 - Trigram LM has 76% accuracy at the phrase level but only 49% at the clause level
 - The combined approach has 67% accuracy at the clause level
Linearization
Beyond language models

Wan et al. (2009)

- Linearization of dependency graph using minimum spanning tree (MST) formulation
 - Introduces direction labels in dependency graph; helpful for linearization
 - Approach based on assignment problem for argument satisfaction

- BLEU evaluation on string regeneration over PTB, BLLIP:
 - Argument-based approach beats vanilla MST algorithm by 7 points
 - Noun phrases not regenerated in task; this contributes 8-10 points

Conclusion

Text to text generation:

- Four primary tasks
 1. Paraphrasing
 2. Simplification
 3. Compression
 4. Fusion

- Various components
 1. Alignment
 2. Linearization
 3. Discourse

- Useful applications:
 1. Summarization
 2. Question answering

- Lots of techniques ...