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Abstract

Abstract-like text summarisation requires
a means of producing novel summary sen-
tences. In order to improve the grammati-
cality of the generated sentence, we model
a global (sentence) level syntactic struc-
ture. We couch statistical sentence genera-
tion as a spanning tree problem in order to
search for the best dependency tree span-
ning a set of chosen words. We also intro-
duce a new search algorithm for this task
that models argument satisfaction to im-
prove the linguistic validity of the gener-
ated tree. We treat the allocation of modi-
fiers to heads as a weighted bipartite graph
matching (or assignment) problem, a well
studied problem in graph theory. Using
BLEU to measure performance on a string
regeneration task, we found an improve-
ment, illustrating the benefit of the span-
ning tree approach armed with an argu-
ment satisfaction model.

1 Introduction

Research in statistical novel sentence generation
has the potential to extend the current capabili-
ties of automatic text summarisation technology,
moving from sentence extraction to abstract-like
summarisation. In this paper, we describe a new
algorithm that improves upon the grammaticality
of statistically generated sentences, evaluated on a
string regeneration task, which was first proposed
as a surrogate for a grammaticality test by Ban-
galore et al. (2000). In this task, a system must
regenerate the original sentence which has had its
word order scrambled.

As an evaluation task, string regeneration re-
flects the issues that challenge the sentence gen-
eration components of machine translation, para-
phrase generation, and summarisation systems

(Soricut and Marcu, 2005). Our research in sum-
marisation utilises the statistical generation algo-
rithms described in this paper to generate novel
summary sentences.

The goal of the string regeneration task is to re-
cover a sentence once its words have been ran-
domly ordered. Similarly, for a text-to-text gen-
eration scenario, the goal is to generate a sen-
tence given an unordered list of words, typically
using ann-gram language model to select the best
word ordering. N-gram language models appear
to do well at alocal level when examining word
sequences smaller thann. However, beyond this
window size, the sequence is often ungrammati-
cal. This is not surprising as these methods are un-
able to model grammaticality at the sentence level,
unless the size ofn is sufficiently large. In prac-
tice, the lack of sufficient training data means that
n is often smaller than the average sentence length.
Even if data exists, increasing the size ofn corre-
sponds to a higher degree polynomial complexity
search for the best word sequence.

In response, we introduce an algorithm for
searching for the best word sequence in a way
that attempts to model grammaticality at the sen-
tence level. Mirroring the use of spanning tree al-
gorithms in parsing (McDonald et al., 2005), we
present an approach to statistical sentence genera-
tion. Given a set of scrambled words, the approach
searches for the most probable dependency tree, as
defined by some corpus, such that it contains each
word of the input set. The tree is then traversed to
obtain the final word ordering.

In particular, we present two spanning tree al-
gorithms. We first adapt the Chu-Liu-Edmonds
(CLE) algorithm (see Chu and Liu (1965) and Ed-
monds (1967)), used in McDonald et al. (2005),
to include a basic argument model, added to keep
track of linear precedence between heads and
modifiers. While our adapted version of the CLE
algorithm finds an optimal spanning tree, this does
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not always correspond with a linguistically valid
dependency tree, primarily because it does not at-
tempt to ensure that words in the tree have plausi-
ble numbers of arguments.

We propose an alternative dependency-
spanning tree algorithm which uses a more
fine-grained argument model representing argu-
ment positions. To find the best modifiers for
argument positions, we treat the attachment of
edges to the spanning tree as a weighted bipartite
graph matching problem (or theassignment
problem), a standard problem in graph theory.

The remainder of this paper is as follows. Sec-
tion 2 outlines the graph representation of the
spanning tree problem. We describe a standard
spanning tree algorithm in Section 3. Section 4 de-
fines a finer-grained argument model and presents
a new dependency spanning tree search algorithm.
We experiment to determine whether a global de-
pendency structure, as found by our algorithm,
improves performance on the string regeneration
problem, presenting results in Section 5. Related
work is presented in Section 6. Section 7 con-
cludes that an argument model improves the lin-
guistic plausibility of the generated trees, thus im-
proving grammaticality in text generation.

2 A Graph Representation of
Dependencies

In couching statistical generation as a spanning
tree problem, this work is the generation analog
of the parsing work by McDonald et al. (2005).
Given a bag of words with no additional con-
straints, the aim is to produce a dependency tree
containing the given words. Informally, as all de-
pendency relations between each pair of words are
possible, the set of all possible dependencies can
be represented as a graph, as noted by McDon-
ald et al. (2005). Our goal is to find the subset of
these edges corresponding to a tree with maximum
probability such that each vertex in the graph is
visited once, thus including each word once. The
resulting tree is a spanning tree, an acyclic graph
which spans all vertices. The best tree is the one
with an optimal overall score. We use negative log
probabilities so that edge weights will correspond
to costs. The overall score is the sum of the costs
of the edges in the spanning tree, which we want
to minimise. Hence, our problem is the minimum
spanning tree (MST) problem.

We define a directed graph (digraph) in a stan-

dard way,G = (V, E) whereV is a set of vertices
andE ⊆ {(u, v)|u, v ∈ V } is a set of directed
edges. For each sentencew = w1 . . . wn, we de-
fine the digraphGw = (Vw, Ew) whereVw =
{w0, w1, . . . , wn}, with w0 a dummy root vertex,
andEw = {(u, v)|u ∈ Vw, v ∈ Vw \ {w0}}.

The graph is fully connected (except for the root
vertexw0 which is only fully connected outwards)
and is a representation of possible dependencies.
For an edge(u, v), we refer tou as the head andv
as the modifier.

We extend the original formulation of McDon-
ald et al. (2005) by adding a notion ofargument
positions for a word, providing points to attach
modifiers. Adopting an approach similar to John-
son (2007), we look at the direction (left or right)
of the head with respect to the modifier; we con-
sequently define a setD = {l, r} to represent
this. SetD represents the linear precedence of the
words in the dependency relation; consequently,
it partially approximates the distinction between
syntactic roles likesubjectandobject.

Each edge has a pair of associated weights, one
for each direction, defined by the functions :
E×D → R, based on a probabilistic model of de-
pendency relations. To calculate the edge weights,
we adapt the definition of Collins (1996) to use di-
rection rather than relation type (represented in the
original as triples of non-terminals). Given a cor-
pus, for some edgee = (u, v) ∈ E and direction
d ∈ D, we calculate the edge weight as:

s((u, v), d) = −log probdep(u, v, d) (1)

We define the set of part-of-speech (PoS) tagsP
and a functionpos: V → P, which maps vertices
(representing words) to their PoS, to calculate the
probability of a dependency relation, defined as:

probdep(u, v, d)

=
cnt((u, pos(u)), (v, pos(v)), d)

co-occurs((u, pos(u)), (v, pos(v)))
(2)

wherecnt((u, pos(u)), (v, pos(v)), d) is the num-
ber of times where(v, pos(v)) and (u, pos(u))
are seen in a sentence in the training data, and
(v, pos(v)) modifies (u, pos(u)) in direction d.
The function co-occurs((u, pos(u)), (v, pos(v)))
returns the number of times that(v, pos(v)) and
(u, pos(u)) are seen in a sentence in the training
data. We adopt the same smoothing strategy as
Collins (1996), which backs off to PoS for unseen
dependency events.

853



3 Generation via Spanning Trees

3.1 The Chu-Liu Edmonds Algorithm

Given the graphGw = (Vw, Ew), the Chu-Liu
Edmonds (CLE) algorithm finds a rooted directed
spanning tree, specified byTw, which is an acyclic
set of edges inEw minimising

∑

e∈Tw,d∈D s(e, d).
The algorithm is presented as Algorithm 1.1

There are two stages to the algorithm. The first
stage finds the best edge for each vertex, connect-
ing it to another vertex. To do so, alloutgoing
edges ofv, that is edges wherev is a modifier, are
considered, and the one with the best edge weight
is chosen, where best is defined as the smallest
cost. This minimisation step is used to ensure that
each modifier has only one head.

If the chosen edgesTw produce a strongly con-
nected subgraphGm

w = (Vw, Tw), then this is the
MST. If not, a cycle amongst some subset ofVw

must be handled in the second stage. Essentially,
one edge in the cycle is removed to produce a sub-
tree. This is done by finding the best edge to join
some vertex in the cycle to the main tree. This has
the effect of finding an alternative head for some
word in the cycle. The edge to the original head
is discarded (to maintain one head per modifier),
turning the cycle into a subtree. When all cycles
have been handled, applying a greedy edge selec-
tion once more will then yield the MST.

3.2 Generating a Word Sequence

Once the tree has been generated, all that remains
is to obtain an ordering of words based upon it.
Because dependency relations in the tree are either
of leftward or rightward direction, it becomes rel-
atively trivial to order child vertices with respect
to a parent vertex. The only difficulty lies in find-
ing a relative ordering for the leftward (to the par-
ent) children, and similarly for the rightward (to
the parent) children.

We traverseGm
w using a greedy algorithm to or-

der the siblings using ann-gram language model.
Algorithm 2 describes the traversal in pseudo-
code. The generated sentence is obtained by call-
ing the algorithm withw0 andTw as parameters.
The algorithm operates recursively if called on an

1Adapted from (McDonald et al., 2005) and
http://www.ce.rit.edu/ ˜ sjyeec/dmst.html . The dif-
ference concerns the direction of the edge and the edge
weight function. We have also folded the function ‘contract’
in McDonald et al. (2005) into the main algorithm. Again
following that work, we treat the functions as a data
structure permitting storage of updated edge weights.

/ * initialisation * /
Discard the edgesexitingthew0 if any.1

/ * Chu-Liu/Edmonds Algorithm * /
begin2

Tw ← (u, v) ∈ E : ∀v∈V,d∈Darg min
(u,v)

s((u, v), d)
3

if Mw = (Vw, Tw) has no cyclesthen returnMw4
forall C ⊂ Tw : C is a cycle inMw do5

(e, d)← arg min
e∗,d∗

s(e∗, d∗) : e ∈ C
6

forall c = (vh, vm, ) ∈ C anddc ∈ D do7
forall e′ = (vi, vm) ∈ E andd′ ∈ D do8

s(e′, d′)← s(e′, d′)− s(c, dc)− s(e, d)9
end10

end11
s(e, d)← s(e, d) + 112

end13
Tw ← (u, v) ∈ E : ∀v∈V,d∈Darg min

(u,v)

s((u, v), d)
14

returnMw15
end16

Algorithm 1 : The pseudo-code for the Chu-Liu
Edmonds algorithm with our adaptation to in-
clude linear precedence.

inner node. If a vertexv is a leaf in the dependency
tree, its string realisationrealise(v) is returned.

We keep track of ordered siblings with two lists,
one for each direction. If the sibling set is left-
wards, the ordered list,Rl, is initialised to be the
singleton set containing a dummy start token with
an empty realisation. If the sibling set is right-
wards then the ordered list,Rr is initialised to be
the realisation of the parent.

For some sibling setC ⊆ Vw to be ordered, the
algorithm chooses the next vertex,v ∈ C, to insert
into the appropriate ordered list,Rx, x ∈ D, by
maximising the probability of the string of words
that would result if the realisation,realise(v), were
concatenated withRx.

The probability of the concatenation is calcu-
lated based on a window of words around the join.
This window length is defined to be2×floor(n/2),
for somen, in this case,4.

If the siblings are leftwards, the window con-
sists of the lastmin(n − 1, |Rl|) previously cho-
sen words concatenated with the firstmin(n −
1, |realise(v)|). If the siblings are rightwards, the
window consists of the lastmin(n−1, |realise(v)|)
previously chosen words concatenated with the
first min(n − 1, |Rr|). The probability of a win-
dow of words,w0 . . . wj , of lengthj +1 is defined
by the following equation:

probLMO(w0 . . . wj)

=

j−k−1
∏

i=0

probMLE(wi+k|wi . . . wi+k−1)

(3)
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/ * LMO Algorithm * /
input : v, Tw wherev ∈ Vw

output: R ⊆ Vw

begin1
if isLeaf(v) then2

return{realise(v)}3
end4
else5

Cl ← getLeftChildren(v, Tw)6
Cr ← getRightChildren(v, Tw)7
Rl ← {start}8
Rr ← {realise(v)}9
while Cl 6= {} do10

c← arg max
c∈Cl

probngram(LMO(c, Tw) ∪ Rl)
11

Rl ← realise(c, Tw) ∪ Rl12
Cl ← Cl \ {c}13

end14
while Cr 6= {} do15

c← arg max
c∈Cr

probngram(Rr ∪ LMO(c, Tw))
16

Rr ← Rr ∪ realise(c, Tw)17
Cr ← Cr \ {c}18

end19
returnRl ∪ Rr20

end21
end22

Algorithm 2 : The Language Model Ordering al-
gorithm for linearising anTw.

wherek = min(n − 1, j − 1), and,

probMLE(wi+k|wi . . . wi+k−1)

=
cnt(wi . . . wi+k)

cnt(wi . . . wi+k−1)
(4)

whereprobMLE(wi+k|wi . . . wi+k−1) is the max-
imum likelihood estimaten-gram probability. We
refer to this tree linearisation method as theLan-
guage Model Ordering(LMO).

4 Using an Argument Satisfaction Model

4.1 Assigning Words to Argument Positions

One limitation of using the CLE algorithm for
generation is that the resulting tree, though max-
imal in probability, may not conform to basic lin-
guistic properties of a dependency tree. In partic-
ular, it may not have the correct number of argu-
ments for each head word. That is, a word may
have too few or too many modifiers.

To address this problem, we can take into ac-
count the argument position when assigning a
weight to an edge. When attaching an edge con-
necting a modifier to a head to the spanning tree,
we count how many modifiers the head already
has. An edge is penalised if it is improbable that
the head takes on yet another modifier, say in the
example of an attachment to a preposition whose
argument position has already been filled.

However, accounting for argument positions
makes an edge weight dynamic and dependent on

surrounding tree context. This makes the search
for an optimal tree an NP-hard problem (McDon-
ald and Satta, 2007) as all possible trees must be
considered to find an optimal solution.

Consequently, we must choose a heuristic
search algorithm for finding the locally optimum
spanning tree. By representing argument positions
that can be filled only once, we allow modifiers
to compete for argument positions and vice versa.
The CLE algorithm only considers this competi-
tion in one direction. In line 3 of Algorithm 1,
only heads compete for modifiers, and thus the so-
lution will be sub-optimal. In Wan et al. (2007),
we showed that introducing a model of argument
positions into a greedy spanning tree algorithm
had little effect on performance. Thus, to consider
both directions of competition, we design a new
algorithm for constructing (dependency) spanning
trees that casts edge selection as a weighted bipar-
tite graph matching (or assignment) problem.

This problem is to find a weighted alignments
between objects of two distinct sets, where an ob-
ject from one set is uniquely aligned to some ob-
ject in the other set. The optimal alignment is one
where the sum of alignment costs is minimal. The
graph of all possible assignments is a weighted bi-
partite graph. Here, to discuss bipartite graphs, we
will extend our notation in a fairly standard way,
to writeGp = (U, V, Ep), whereU, V are the dis-
joint sets of vertices andEp the set of edges.

In our paper, we treat the assignment between
attachment positions and words as an assignment
problem. The standard polynomial-time solution
to the assignment problem is the Kuhn-Munkres
(or Hungarian) algorithm (Kuhn, 1955).2

4.2 A Dependency-Spanning Tree Algorithm

Our alternative dependency-spanning tree algo-
rithm, presented as Algorithm 3, incrementally
adds vertices to a growing spanning tree. At
each iteration, the Kuhn-Munkres method assigns
words that are as yet unattached to argument posi-
tions already available in the tree. We focus on the
bipartite graph in Section 4.3.

Let the sentencew have the dependency graph
Gw = (Vw, Ew). At some arbitrary iteration of the
algorithm (see Figure 1), we have the following:

• Tw ⊆ Ew, the set of edges in the spanning
tree constructed so far;

2GPL code:http://sites.google.com/site/garybaker/

hungarian-algorithm/assignment
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Partially determined spanning tree:

w0

made

john

↓ l0

↓ r1 cups

of

↓ l0

↓ l1

for

↓ l0

↓ l3

johnl0 mader1 ofl0 cupsl1 forl0 madel3

Hw1
Hw2

Hw3
Hw4

Hw5
Hw6

Mw1
Mw2

Mw3
Mw4

Mw5
Mw6

coffee everyone yesterday ǫ1 ǫ2 ǫ3

Figure 1: A snapshot of the generation process.
Each word in the tree has argument positions to
which we can assign remaining words. Padding
Mw with ǫ is described in Section 4.3.

• Hw = {u, v | (u, v) ∈ Tw}, the set of ver-
tices inTw, or ‘attached vertices’, and there-
fore potential heads; and

• Mw = Vw\Hw, the set of ‘unattached ver-
tices’, and therefore potential modifiers.

For the potential heads, we want to define the set
of possible attachment positions available in the
spanning tree where the potential modifiers can at-
tach. To talk about these attachment positions, we
define the set of labelsL = {(d, j)|d ∈ D, j ∈
N}, an element(d, j) representing an attachment
point in directiond, positionj. Valid attachment
positions must be in sequential order and not miss-
ing any intermediate positions (e.g. if position 2
on the right is specified, position 1 must be also):
so we define for somei ∈ N, 0 ≤ i < N , a set
Ai ⊆ L such that if the label(d, j) ∈ Ai then the
label(d, k) ∈ Ai for 0 ≤ k < j. Collecting these,
we defineA = {Ai | 0 ≤ i < N}.

To map a potential head onto the set of attach-
ment positions, we define a functionq : Hw → A.
So, given somev ∈ Hw, q(v) = Ai for some
0 ≤ i < N . In talking about an individual attach-
ment point(d, j) ∈ q(v) for potential headv, we

/ * initialisation * /
Hw ← {w0}1
Mw ← V ′2
Uw ← {w0R1

}3
U ′

w ← {}4
Tw ← {}5

/ * The Assignment-based Algorithm * /
begin6

while Mw 6= {} andU ′

w 6= Uw do7
U ′

w ← Uw8
foreach〈u, (d, j)), v〉 ∈ Kuhn-Munkres(Gp

w =9
(Uw, Mǫ

w, Ep
w)) do

Tw ← Tw ∪ {(u, v)}10
if u ∈ Hw then11

Uw ← Uw \ {u}12
end13
Uw ← Uw ∪ next(q(u))14
Uw ← Uw ∪ next(q(m))15
q(m)← q(m) \ next(q(m))16
q(h)← q(h) \ next(q(h))17
Mw ←Mw \ {m}18
Hw ← Hw ∪ {m}19

end20
end21

end22

Algorithm 3 : The Assignment-based Depen-
dency Tree Building algorithm.

use the notationvdj . For example, when referring
to the second argument position on the right with
respect tov, we usevr2.

For the implementation of the algorithm, we
have definedq, to specify attachment points, as
follows, given somev ∈ Hw:

q(v) =















{vr1} if v = w0, the root
{vl1} if pos(v) is a preposition
L if pos(v) is a verb
{vlj |j ∈ N} otherwise

Defining q allows one to optionally incorporate
linguistic information if desired.

We define the functionnext : q(v) → A, v ∈
Hw that returns the position(d, j) with the small-
est value ofj for directiond. Finally, we write the
set of available attachment positions in the span-
ning tree asU ⊆ {(v, l) | v ∈ Hw, l ∈ q(v)}.

4.3 Finding an Assignment

To construct the bipartite graph used for the as-
signment problem at line 9 of Algorithm 3, given
our original dependency graphGw = (Vw, Ew),
and the variables defined from it above in Sec-
tion 4.2, we do the following. The first set of
vertices, of possible heads and their attachment
points, is the setUw. The second set of ver-
tices is the set of possible modifiers augmented
by dummy verticesǫi (indicating no modifica-
tion) such that this set is at least as large asUw :
M ǫ

w = Mw∪{ǫ0, . . . , ǫmax(0,|Uw|−|Mw|)}. The bi-
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partite graph is thenGp
w = (Uw, M ǫ

w, Ep
w), where

Ep
w = {(u, v) |u ∈ Uw, v ∈ M ǫ

w}.
The weights on the edges of this graph incor-

porate a model of argument counts. The weight
function is of the formsap : Ep → R. We
consider somee ∈ Ep

w: e = (v′, v) for some
v′ ∈ Uw, v ∈ M ǫ

w; andv′ = (u, (d, j)) for some
u ∈ Vw, d ∈ D, j ∈ N. s(u, M ǫ

w) is defined to re-
turn the maximum cost so that the dummy leaves
are only attached as a last resort. We then define:

sap(e)

= −log(probdep(u, v, d) × probarg(u, d, j))

(5)

whereprobdep(u, v, d) is as in equation 2, using
the original dependency graph defined in Section
2; andprobarg(u, d, j), an estimate of the prob-
ability that a wordu with i arguments assigned
already can take on more arguments, is defined as:

probarg(u, d, j)

=

∑∞
i=j+1 cntarg(u, d, i)

cnt(u, d)
(6)

wherecntarg(u, d, i) is the number of times word
u has been seen withi arguments in direction
d; andcnt(u, d) =

∑

i∈N
cntarg(u, d, i). As the

probability of argument positions beyond a certain
value fori in a given direction will be extremely
small, we approximate this sum by calculating the
probability density up to a fixed maximum, in this
case7 argument positions, and assume zero prob-
ability beyond that.

5 Evaluation

5.1 String Generation Task

The best-performing word ordering algorithm is
one that makes fewest grammatical errors. As a
surrogate measurement of grammaticality, we use
the string regeneration task. Beginning with a
human-authored sentence with its word order ran-
domised, the goal is to regenerate the original sen-
tence. Success is indicated by the proportion of the
original sentence regenerated, as measured by any
string comparison method: in our case, using the
BLEU metric (Papineni et al., 2002). One benefit
to this evaluation is that content selection, as a fac-
tor, is held constant. Specifically, the probability
of word selection is uniform for all words.

The string comparison task and its associated
metrics like BLEU are not perfect.3 The evalu-
ation can be seen as being overly strict. It as-
sumes that theonlygrammatical order is that of the
original human authored sentence, referred to as
the ‘gold standard’ sentence. Should an approach
chance upon an alternative grammatical ordering,
it would penalised. However, all algorithms and
baselines compared would suffer equally in this
respect, and so this will be less problematic when
averaging across multiple test cases.

5.2 Data Sets and Training Procedures

The Penn Treebank corpus (PTB) was used to pro-
vide a model of dependency relations and argu-
ment counts. It contains about 3 million words
of text from the Wall Street Journal (WSJ) with
human annotations of syntactic structures. Depen-
dency events were sourced from the events file of
the Collins parser package, which contains the de-
pendency events found in training sections 2-22 of
the corpus. Development was done on section 00
and testing was performed on section 23.

A 4-gram language model (LM) was also ob-
tained from the PTB training data, referred to as
PTB-LM. Additionally, a 4-gram language model
was obtained from a subsection of the BLLIP’99
Corpus (LDC number: LDC2000T43) containing
three years of WSJ data from 1987 to 1989 (Char-
niak et al., 1999). As in Collins et al. (2004),
the 1987 portion of the BLLIP corpus containing
20 million words was also used to create a lan-
guage model, referred to here as BLLIP-LM.N-
gram models were smoothed using Katz’s method,
backing off to smaller values ofn.

For this evaluation, tokenisation was based on
that provided by the PTB data set. This data
set also delimits base noun phrases (noun phrases
without nested constituents). Base noun phrases
were treated as single tokens, and the rightmost
word assumed to be the head. For the algorithms
tested, the input set for any test case consisted of
the single tokens identified by the PTB tokenisa-
tion. Additionally, the heads of base noun phrases
were included in this input set. That is, we do not
regenerate the base noun phrases.4

3Alternative grammaticality measures have been devel-
oped recently (Mutton et al., 2007). We are currently explor-
ing the use of this and other metrics.

4This would correspond to the use of a chunking algo-
rithm or a named-entity recogniser to find noun phrases that
could be re-used for sentence generation.
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Algorithms PTB-LM BLLIP-LM

Viterbi baseline 14.9 18.0
LMO baseline 24.3 26.0
CLE 26.4 26.8
AB 33.6 33.7

Figure 2: String regeneration as measured in
BLEU points (maximum 100)

5.3 Algorithms and Baselines

We compare the baselines against the Chu-Liu
Edmonds (CLE) algorithm to see if spanning
tree algorithms do indeed improve upon conven-
tional language modelling. We also compare
the Assignment-based (AB) algorithm against the
baselines and CLE to see if, additionally, mod-
elling argument assignments improves the re-
sulting tree and thus the generated word se-
quence. Two baseline generators based onn-
gram language-models were used, representing
approaches that optimise word sequences based on
the local context of then-grams.

The first baseline re-uses theLMO greedy se-
quence algorithm on the same set of input words
presented to the CLE and AB algorithms. We ap-
ply LMO in a rightward manner beginning with
a start-of-sentence token. Note that this baseline
generator, like the two spanning tree algorithms,
will score favourably using BLEU since, mini-
mally, the word order of the base noun phrases will
be correct when each is reinserted.

Since the LMO baseline reduces to bigram gen-
eration when concatenating single words, we test
a second language model baseline which always
uses a 4-gram window size. A Viterbi-like gen-
erator with a 4-gram model and a beam of 100 is
used to generate a sequence. For this baseline, re-
ferred to as theViterbi baseline, base noun phrases
were separated into their constituent words and in-
cluded in the input word set.

5.4 Results

The results are presented in Table 2. Significance
was measured using the sign test and the sampling
method outlined in (Collins et al., 2005). We will
examine the results in the PTB-LM column first.
The gain of 10 BLEU points by the LMO baseline
over the Viterbi baseline shows the performance
improvement that can be gained when reinserting
the base noun phrases.

AB: the dow at this point was down about 35 points
CLE: was down about this point 35 points the dow at
LMO: was this point about at down the down 35 points
Viterbi: the down 35 points at was about this point down

Original: at this point, the dow was down about 35 points

Figure 3: Example generated sentences using the
BLLIP-LM.

The CLE algorithm significantly out-performed
the LMO baseline by 2 BLEU points, from which
we conclude that incorporating a model for global
syntactic structure and treating the search for a
dependency tree as a spanning problem helps for
novel sentence generation. However, the real im-
provement can be seen in the performance of the
AB system which significantly out-performs all
other methods, beating the CLE algorithm by 7
BLEU points, illustrating the benefits of a model
for argument counts and of couching tree building
as an iterative set of argument assignments.

One might reasonably ask if moren-gram data
would narrow the gap between the tree algorithms
and the baselines, which encode global and lo-
cal information respectively. Examining results in
the BLLIP-LM column, all approaches improve
with the better language model. Unsurprisingly,
the improvements are most evident in the base-
lines which rely heavily on the language model.
The margin narrows between the CLE algorithm
and the LMO baseline. However, the AB algo-
rithm still out-performs all other approaches by
7 BLEU points, highlighting the benefit in mod-
elling dependency relations. Even with a language
model that is one order of magnitude larger than
the PTB-LM, the AB still maintains a sizeable lead
in performance. Figure 3 presents sample gener-
ated strings.

6 Related Work

6.1 Statistical Surface Realisers

The work in this paper is similar to research in
statistical surface realisation (for example, Langk-
ilde and Knight (1998); Bangalore and Rambow
(2000); Filippova and Strube (2008)). These start
with a semantic representation for which a specific
rendering, an ordering of words, must be deter-
mined, often using language models to govern tree
traversal. The task in this paper is different as it is
a text-to-text scenario and does not begin with a
representation of semantics.
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The dependency model and the LMO lineari-
sation algorithm are based heavily on word order
statistics. As such, the utility of this approach is
limited to human languages with minimal use of
inflections, such as English. Approaches for other
language types, for example German, have been
explored (Filippova and Strube, 2007).

6.2 Text-to-Text Generation

As a text-to-text approach, our work is more sim-
ilar to work on Information Fusion (Barzilay et
al., 1999), a sub-problem in multi-document sum-
marisation. In this work, sentences presenting the
same information, for example multiple news arti-
cles describing the same event, are merged to form
a single summary by aligning repeated words and
phrases across sentences.

Other text-to-text approaches for generating
novel sentences also aim to recycle sentence frag-
ments where possible, as we do. Work on phrase-
based statistical machine translation has been
applied to paraphrase generation (Bannard and
Callison-Burch, 2005) and multi-sentence align-
ment in summarisation (Dauḿe III and Marcu,
2004). These approaches typically usen-gram
models to find the best word sequence.

The WIDL formalism (Soricut and Marcu,
2005) was proposed to efficiently encode con-
straints that restricted possible word sequences,
for example dependency information. Though
similar, our work here does not explicitly repre-
sent the word lattice.

For these text-to-text systems, the order of ele-
ments in the generated sentence is heavily based
on the original order of words and phrases in the
input sentences from which lattices are built. Our
approach has the benefit of considering all possi-
ble orderings of words, corresponding to a wider
range of paraphrases, provided with a suitable de-
pendency model is available.

6.3 Parsing and Semantic Role Labelling

This paper presents work closely related to parsing
work by McDonald et al. (2005) which searches
for the best parse tree. Our work can be thought of
as generating projective dependency trees (that is,
without crossing dependencies).

The key difference between parsing and gener-
ation is that, in parsing, the word order is fixed,
whereas for generation, this must be determined.
In this paper, we search across all possible tree

structures whilst searching for the best word or-
dering. As a result, an argument model is needed
to identify linguistically plausible spanning trees.

We treated the alignment of modifiers to head
words as a bipartite graph matching problem. This
is similar to work in semantic role labelling by
Pad́o and Lapata (2006). The alignment of an-
swers to question types as a semantic role labelling
task using similar methods was explored by Shen
and Lapata (2007).

Our work is also strongly related to that of
Wong and Mooney (2007) which constructs sym-
bolic semantic structures via an assignment pro-
cess in order to provide surface realisers with in-
put. Our approach differs in that we do not be-
gin with a fixed set of semantic labels. Addition-
ally, our end goal is a dependency tree that encodes
word precedence order, bypassing the surface re-
alisation stage.

7 Conclusions

In this paper, we presented a new use of spanning
tree algorithms for generating sentences from an
input set of words, a task common to many text-
to-text scenarios. The algorithm finds the best de-
pendency trees in order to ensure that the result-
ing string has grammaticality modelled at a global
(sentence) level. Our algorithm incorporates a
model of argument satisfaction which is treated as
an assignment problem, using the Kuhn-Munkres
assignment algorithm. We found a significant im-
provement using BLEU to measure improvements
on the string regeneration task. We conclude that
our new algorithm based on the assignment prob-
lem and an argument model finds trees that are lin-
guistically more plausible, thereby improving the
grammaticality of the generated word sequence.
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