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ABSTRACT 
In this paper, we propose an unsupervised method for discovering 
inference rules from text, such as "Xis  author o f Y  ~.Xwrote ~", 
"'X solved Y ~ ](found a solution to Y", and "X caused Y ~ Y is 
triggered by X". Inference rules are extremely important in many 
fields such as natural language processing, information retrieval, 
and artificial intelligence in general. Our algorithm is based on an 
extended version of Harris' Distributional Hypothesis, which 
states that words that occurred in the same contexts tend to be 
similar. Instead of  using this hypothesis on words, we apply it to 
paths in the dependency trees of a parsed corpus. 

1. INTRODUCTION 
Text is the most significant repository of human knowledge. 
Many algorithms have been proposed to mine textual data. Most 
of them focus on document clustering [13], identifying 
prototypical documents [20], or finding term associations [14] and 
hyponym relationships [9]. We propose an unsupervised method 
for discovering inference rules, such as "X is author o f  Y ~-. X 
wrote Y", "'?(solved Y ~ X found a solution to T", and "X caused Y 

Y is triggered by X". Inference rules are extremely important in 
many fields such as natural language processing, information 
retrieval, and artificial intelligence in general. 

For example, consider the query to an information retrieval 
system: "Who is the author o f  the 'Star Spangled Banner'?" 
Unless the system recognizes the relationship between "X wrote 
Y" and "X is the author o f  Y", it would not necessarily rank the 
sentence 

... Francis Scott Key wrote the "Star Spangled Banner" in 1814. 

higher than the sentence 

...comedian-actress Roseanne Barr sang her famous shrieking 
rendition of the "Star Spangled Banner" before a San Diego 
Padres-Cincinnati Reds game. 

We call "X wrote Y z X is the author o f  Y" an inference rule. In 
previous work, such relationships have been referred to as 
paraphrases or variants [24]. In this paper, we use the term 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
arc not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
KDD I)1 San Francisco CA USA 
Copyright ACM 2001 1-58113-391-x/01/08...$5.00 

inference rule because we also want to include relationships that 
are not exactly paraphrases, but are nonetheless related and are 
potentially useful to information retrieval systems. For example, 
"X caused Y ~ Y is blamed on .,V' is an inference rule even though 
the two phrases do not mean exactly the same thing. 

Traditionally, knowledge bases containing such inference rules 
are created manually. This knowledge engineering task is 
extremely laborious. More importantly, building such a 
knowledge base is inherently difficult since humans are not good 
at generating a complete list of  rules. For example, while it is 
quite trivial to come up with the rule "'Xwrote Y z X i s  the author 
o f  Y", it seems hard to dream up a rule like "X manufactures Y 
X's  Y factory", which can be used to infer that "Chr~tien visited 
Peugot's newly renovated car factory in the afternoon" contains 
an answer to the query "What does Peugot manufacture?" 

Most previous efforts on knowledge engineering have focused on 
creating tools for helping knowledge engineers transfer their 
knowledge to machines [6]. Our goal is to automatically discover 
such rules. 

In this paper, we present an unsupervised algorithm, DIRT, for 
Discovery of Inference Rules from Text. Our algorithm is a 
generalization of previous algorithms for finding similar words 
[10][15][19]. Algorithms for finding similar words assume the 
Distributional Hypothesis, which states that words that occurred 
in the same contexts tend to have similar meanings [7]. Instead of  
applying the Distributional Hypothesis to words, we apply it to 
paths in dependency trees. Essentially, if  two paths tend to link 
the same sets of words, we hypothesize that their meanings are 
similar. Since a path represents a binary relationship, we generate 
an inference rule for each pair of similar paths. 

The remainder of  this paper is organized as follows. In the next 
section, we review previous work. In Section 3, we define paths 
in dependency trees and describe their extraction from a parsed 
corpus. Section 4 presents the DIRT system and a comparison of 
our system's output with manually generated paraphrase 
expressions is shown in Section 5. Finally, we conclude with a 
discussion of  future work. 

2. Previous Work 
Most previous work on variant recognition and paraphrase has 
been done in the fields of  natural language generation, text 
summarization, and information retrieval. 

The generation community has focused mainly on rule-based text 
transformations in order to meet external constraints such as 
length and readability [11][18][22]. Dras [4] described syntactic 
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paraphrases using a meta-grammar with a synchronous Tree 
Adjoining Grammar (TAG) formalism. 

In multi-document summarization, paraphrasing is important to 
avoid redundant statements in a summary. Given a collection of  
similar sentences (a theme) with different wordings, it is difficult 
to identify similar phrases that report the same fact. Barzilay et al. 
[3] analyzed 200 two-sentence themes from a corpus and 
extracted seven lexico-syntactic paraphrasing rules. These rules 
covered 82% of syntactic and lexical paraphrases, which cover 
70% of all variants. The rules are subsequently used to identify 
common statements in a theme by comparing the predicate- 
argument structure of  the sentences within the theme. 

In information retrieval, it is common to identify phrasal terms 
from queries and generate their variants for query expansion. It 
has been shown that such query expansion does promote effective 
retrieval [1][2]. Morphological variant query expansion was 
treated by Sparck Jones and Tait [24] and Jacquemin [12]. 

In [21], Richardson extracted semantic relationships (e.g., 
hypemym, location, material and purpose) from dictionary 
definitions using a parser and constructed a semantic network. He 
then described an algorithm that uses paths in the semantic 
network to compute the similarity between words. In a sense, our 
algorithm is a dual of Richardson's approach. While Richardson 
used paths as features to compute the similarity between words, 
we use words as features to compute the similarity of paths. 

Many text mining algorithms aim at finding association rules 
between terms [14]. In contrast, the output of  our algorithm is a 
set of associations between relations. Term associations usually 
require human interpretation. Some of them are considered to be 
uninterpretable even by humans [5]. 

3. Extraction of Paths 
The inference rules discovered by DIRT are between paths in 
dependency trees. In this section, we introduce dependency trees 
and define paths in trees. Finally, we describe an algorithm for 
extracting paths from the trees. 

3.1 Dependency Trees 
A dependency relationship [8] is an asymmetric binary 
relationship between a word called head, and another word called 
modifier. The structure of a sentence can be represented by a set 
of dependency relationships that form a tree. A word in the 
sentence may have several modifiers, but each word may modify 
at most one word. The root of the dependency tree does not 
modify any word. It is also called the head of the sentence. 

For example, Figure 1 shows the dependency tree for the sentence 
"John found a solution to the problem", generated by a broad- 
coverage English parser called Minipar I [16]. The links in the 
diagram represent dependency relationships. The direction of a 
link is from the head to the modifier in the relationship. Labels 
associated with the links represent types of dependency relations. 
Table 1 lists a subset of the dependency relations in Minipar 
outputs. 

IAvailable at www.cs.ualberta.ca/~lindek/minipar.htm. 

Table 1. A subset of  dependency relations in Minipar outputs. 

RELATION DESCRIPTION EXAMPLE 

a p p o  appositive of a noun the CEO, John 

det determiner of a noun the dog 

gen genitive modifier of a noun John's dog 

mod adjunct modifier of any head tiny hole 

nn prenominal modifier of a noun station manager 

subj subject of a verb John loves Mary. 

• / obj-.. ~ t o ~  
ff subj . , ~  ¢. d e t ' ~  g..~ d e ~  

John found a solution to the problem. 

Figure 1. Example dependency tree. 

Minipar parses newspaper text at about 500 words per second on 
a Pentium-III 700Mhz with 500MB memory. Evaluation with the 
manually parsed SUSANNE corpus [23] shows that about 89% of 
the dependency relationships in Minipar outputs are correct. 

3.2 Paths in Dependency Trees 
In the dependency trees generated by Minipar, each link between 
two words in a dependency tree represents a direct semantic 
relationship. A path allows us to represent indirect semantic 
relationships between two content words. We name a path by 
concatenating dependency relationships and words along the path, 
excluding the words at the two ends. For the sentence in Figure 1, 
the path between John and problem is named: 
N:subj:V<-find--)V:obj:N--)solution-->N:to:N (meaning "Xfinds 
solution to Y"). The reverse path can be written as: 
N:to:N(-solution(--N:obj:V(--find--> V:subj:N. The root of both 
paths is find. A path begins and ends with two dependency 
relations. We call them the two slots of the path: SlotXon the left- 
hand side and SlotY on the right-hand side. The words connected 
by the path are the fillers of the slots. For example, John fills the 
SlotX of N:subj:V<--find->V:obj:N->solution->N:to:N and 
problem fills the SlotY. The reverse is true for 
N:to:N('- solution <-N:obj :V ( -  find --) V:subj :N. In a path, 
dependency relations that are not slots are called internal 
relations. For example, find--)V:obj:N--)solution is an internal 
relation in the previous path. 

We impose a set of constraints on the paths to be extracted from 
text for the following reasons: 

• most meaningful inference rules involve only paths that 
satisfy these conditions; 

• the constraints significantly reduce the number of  distinct 
paths and, consequently, the amount of computation required 
for computing similar paths (described in Section 4.3); and 

• the constraints alleviate the sparse data problem because 
long paths tend to have very few occurrences. 

The constraints we impose are: 
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• slot fillers must be nouns because slots correspond to 
variables in inference rules and we expect the variables to be 
instantiated by entities; 

• any dependency relation that does not connect two content 
words (i.e. nouns, verbs, adjectives or adverbs) is excluded 
from a path. E.g. in Figure 1, the relation between a and 
solution is excluded; 

• the frequency count of an internal relation must exceed a 
threshold; and 

Consider the following sentence: 

havo~.\ ~-obj~ 

They had previously bought bighorn sheep from Comstock. 

The paths extracted from this sentence and their meanings are: 

(a) N:subj :V (-buy->V: from:N 

Xbuys something from Y 

(b) N:subj :V(- buy -)  V:obj:N 

--- Xbuys Y 

(c) N: subj :V ('- buy -') V:obj :N -') sheep --) N:nn:N 

--- Xbuys Y sheep 

(d) N:nn:N (-- sheep (--N:obj :V ( -  buy'-) V: from:N 

-=Xsheep is bought from Y 

(e) N:obj :V(-buy'->V: from:N 

-=Xis bought from Y 

An inverse path is also added for each one above. 

4. Discovering Inference Rules from Text 
A path is a binary relation between two entities. In this section, 
we present an algorithm, called DIRT, to automatically discover 
the inference relations between such binary relations. 

4.1 Underlying Assumption 
Most algorithms for computing word similarity from text corpus 
are based on a principle known as the Distributional Hypothesis 
[7]. The idea is that words that tend to occur in the same contexts 
tend to have similar meanings. Previous efforts differ in their 
representation of  the context and in their formula for computing 
the similarity between two sets of contexts. Some algorithms use 
the words that occurred in a fixed window of a given word as its 
context while others use the dependency relationships of a given 
word as its context [15]. Consider the words duty and 
responsibility. There are many contexts in which both of these 
words can fit. For example, 

• duty can be modified by adjectives such as additional, 
administrative, assigned, assumed, collective, congressional, 
constitutional . . . . .  so can responsibility; 

• duty can be the object of  verbs such as accept, articulate, 
assert, assign, assume, attend to, avoid, become, breach, ..., 
so can responsibility. 

Table 2. Sample slot fillers for two paths extracted from a 
newspaper corpus. 

"'Xfinds a solution to I/" "Xsolves Y" 

SLOT)( SLOTY SLorX SLoTY 

commission strike committee problem 

committee civil war clout crisis 

committee crisis government problem 

government crisis he mystery 

government problem she problem 

he problem petition woe 

legislator budget deficit researcher mystery 

sheriff dispute sheriff murder 

Based on these common contexts, one can statistically determine 
that duty and responsibility have similar meanings. 

In the algorithms for finding word similarity, dependency links 
are treated as contexts of words. In contrast, our algorithm for 
finding inference rules treats the words that fill the slots of a path 
as a context for the path. We make an assumption that this is an 
extension to the Distributional Hypothesis: 

Extended Distributional Hypothesis: 

If two paths tend to occur in similar contexts, the 
meanings of the paths tend to be similar. 

For example, Table 2 lists a set of example pairs of  words 
connected by the paths N:subj:V(--find--)V:obj:N'-)solution---) 
N:to:N ("X finds a solution to F9 and N:subj:V(--solve--) 
V:obj:N (")(solves T'). As it can be seen from the table, there are 
many overlaps between the corresponding slot fillers of  the two 
paths. By the Extended Distributional Hypothesis, we can then 
claim that the two paths have similar meaning. 

4.2 Triples 
To compute the path similarity using the Extended Distributional 
Hypothesis, we need to collect the frequency counts of  all paths in 
a corpus and the slot fillers for the paths. For each instance of  a 
path p that connects two words w~ and w2, we increase the 
frequency counts of the two triples (p, Slot)(, wl) and (p, SlotY, 
w2). We call (SlotX, wl) and (SlotY, w2) features of  path p. 
Intuitively, the more features two paths share, the more similar 
they are. 

We use a triple database (a hash table) to accumulate the 
frequency counts of  all features of all paths extracted from a 
parsed corpus. An example entry in the triple database for the 
path 

N:subj:V(--pull--)V:obj:N--)body--)N:from:N 

=- "X pulls body from T' 

is shown in Figure 2. The first column of numbers in Figure 2 
represents the frequency counts of  a word filling a slot of  the path 
and the second column of numbers is the mutual information 

325 



X pulls body from Y: 
SlotX: 

diver 1 2.45 
equipment 1 1.65 
police 2 2.24 
rescuer 3 4.84 
resident 1 1.60 
who 2 1.32 
worker 1 1.37 

Slot Y: 
bus 2 3.09 
coach I 2.05 
debris 1 2.36 
feet 1 1.75 
hut 1 2.73 
landslide l 2.39 
metal 1 2.09 
wreckage 3 4.81 

Figure 2. An example entry in the triple database for the path 
"X pulls body from Y". 

between a slot and a slot filler. Mutual information measures the 
strength of the association between a slot and a filler. We explain 
mutual information in detail in Section 4.3. The triple database 
records the fillers of SlotX and SlotY separately. Looking at the 
database, one would be unable to tell which Slot)( filler occurred 
with which SlotY filler in the corpus. 

4.3 Similarity between Two Paths 
Once the triple database is created, the similarity between two 
paths can be computed in the same way that the similarity 
between two words is computed in [15]. Essentially, two paths 
have high similarity if there are a large number of common 
features. However, not every feature is equally important. For 
example, the word he is much more frequent than the word 
sheriff. Two paths sharing the feature (SlotY, he) is less indicative 
of their similarity than if they shared the feature (SlotX, sheriffi. 
The similarity measure proposed in [15] takes this into account by 
eomputing the mutual information between a feature and a path. 

We use the notation ~p, Slot)(, w I to denote the frequency count of 

the triple (p, Slot)(, w), ~o, SlotX, *1 to denote Z l P , S l o t S ,  ~ , 
w 

and I*, *, *[ to denote Z I p , s , I ~ .  
p,$,W 

Following [15], the mutual information between a path slot and its 
filler can be computed by the formula: 

.t ~ , .  ~ , ( [p ,S lo t ,~xl* ,S lo t ,~  (1) 
tulip, blot, w] = IOP-.I ~ /  

-~ [ p, Slot,*[ ×[% Slot, ~q ) 

The similarity between a pair of slots: slotl = (Pl, s) and slot2 = 
(P2, s), is defined as: 

sim(slot,,slot2) = ~'~r(~)~r(m.,)mi(pl,s, w)+ mi(p2,s, TM) (2) 
Z,~r(~..,)mi(pt,s,w)+ Z,,r(p,,,)mi(p2,s, w) 

Table 3. The top-20 most similar paths to "X solves Y' .  

Y is solved by X 
Xresolves Y 
X finds a solution to Y 
Xtries to solve Y 
Xdeals with Y 
Y is resolved by X 
X addresses Y 
X seeks a solution to Y 

X do something about Y 
Xsolution to Y 

Y is resolved in X 
Yis solved throughX 
X rectifies Y 
Xcopes with Y 
X overcomes Y 
X eases Y 
Xtackles Y 
Xalleviates Y 

Xcorrects Y 

X is a solution to Y 

where Pl and P2 are paths, s is a slot, T(pi, s) is the set of words 
that fill in the s slot ofpathpi. 

The similarity between a pair of paths Pt and P2 is defined as the 
geometric average of the similarities of their SloO( and SlotY 
slots: 

S(pt, P2 ) = ~sim(SlotXl, SloL~2 )× sim(SlotY~, SlotY 2 ) (3) 

where Slot~i and SlotYi are path i 's SlotX and SlotY slots. 

4.4 Finding the Most Similar Paths 
The discovery of inference rules is made by finding the most 
similar paths of a given path. The challenge here is that there are a 
large number of paths in the triple database. The database used in 
our experiments contains over 200,000 distinct paths. Computing 
the similarity between every pair of paths is obviously 
impractical. 

Given a pathp, our algorithm for finding the most similar paths of 
p takes three steps: 

(a) Retrieve all the paths that share at least one feature with p 
and call them candidate paths. This can be done efficiently 
by storing for each word the set of slots it fills in. 

(b) For each candidate path c, count the number of features 
shared by c and p. Filter out c if the number of its eomrnon 
features withp is less than a fixed percent (we used I%) of 
the total number of features for p and c. This step 
effectively uses a simpler similarity formula to filter out 
some of the paths since computing mutual information is 
more costly than counting the number of features. This 
idea has previously been used in Canopy [ 17]. 

(c) Compute the similarity between p and the candidates that 
passed the filter using equation (2) and output the paths in 
descending order of their similarity to p. 

Table 3 lists the Top-50 most similar paths to "X solves Y" 
generated by DIRT. Most of the paths can be considered as 
paraphrases of the original expression. 

5. Experimental Results 
We performed an evaluation of our algorithm by comparing the 
inference rules it generates with a set of human-generated 
paraphrases of the first six questions in the TREC-8 Question- 
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Table 4. First six questions from TREC-8. 

Q# QUESTION 

Q, Who is the author of the book, "The Iron Lady: A Biography of 

Margaret Thatcher"? 

Q2 What was the monetary value of the Nobel Peace Prize in 1989? 

Q3 What does the Peugeot company manufacture? 

Q4 How much did Mercury spend on advertising in 1993? 

Q5 What is the name of the managing director of Apricot Computer? 

Q6 Why did David Koresh ask the FBI for a word processor?. 

Answering Track, listed in Table 4. TREC (Text REtrievial 
Conference) is a U.S. government sponsored competition on 
information retrieval held annually since 1992. In the Question- 
Answering Track, the task for participating systems is to find 
answers to natural-language questions like those in Table 4. 

5.1 Results 
We used Minipar to parse about 1GB of newspaper text (AP 
Newswire, San Jose Mercury, and Wall Street Journal). Using the 
methods discussed in Section 3, we extracted 7 million paths from 
the parse trees (231,000 unique) and stored them in a triple 
database. 

The second column of Table 5 shows the paths that we identified 
from the TREC-8 questions. For some questions, more than one 
path was identified. For others, no path was found. We compare 
the output of  our algorithm with a set of manually generated 
paraphrases of the TREC-8 questions made available at ISI 2. 

We also extracted paths from the manually generated paraphrases. 
For some paraphrases, an identical path is extracted. For example, 
"What things are manufactured by Peugeot?" and "What products 
are manufactured by Peugeot?" both map to the path "X is 
manufactured by Y". The number of  paths for the manually 
generated paraphrases of TREC-8 questions is shown in the third 
column of Table 5. 

For each of  the paths p in the second column of Table 5, we ran 
the DIRT algorithm to compute its Top-40 most similar paths 
using the triple database. We then manually inspected the outputs 
and classified each extracted path as correct or incorrect. A path 
p' is judged correct if  a sentence containing p'  might contain an 
answer to the question from which p was extracted. Consider 
question Q3 in Table 4 where we have p = "X manufactures Y" 
and we findp' = "X's Y factory" as one ofp ' s  Top-40 most similar 
paths. Since "Peugeot's car factory" might be found in some 
corpus, p' is judged correct. Note that not all sentences containing 
p'  necessarily contain an answer to Q3 (e.g. "Peugeot's Sochaux 
factory" gives the location of  a Peugeot factory in France). The 
fourth column in Table 5 shows the number of  Top-40 most 
similar paths classified as correct and the fifth column gives the 
intersection between columns three and four. Finally, the last 
column in Table 5 gives the percentage of correctly classified 
paths. 

2 Available at http://www.isi.edu/~gerber/Variations2.txt 

Table 5. Evaluation of Top-40 most similar paths. 

Q# PATHS MAN. DIRT INT. ACC. 

Ql X is author of Y 7 21 2 52.5% 

Q2 x is monetary value of Y 6 0 0 N/A 

Q3 X manufactures Y 13 37 4 92.5% 

Q4 X spend Y 7 16 2 40.0% 

spend X on Y 8 15 3 37.5% 

Q~ x is managing director of Y 5 14 1 35.0% 

Q6 X asks Y 2 23 0 57.5% 

asks X for Y 2 14 0 35.0% 

X asks for Y 3 21 3 52.5% 

5.2 Observations 
There is very little overlap between the automatically generated 
paths and the paraphrases, even though the percentage of correct 
paths in DIRT outputs can be quite high. This suggests that 
finding potentially useful inference rules is very difficult for 
humans as well as machines. Table 6 shows some of the correct 
paths among the Top-40 extracted by our system for two of the 
TREC-8 questions. Many of the variations generated by DIRT 
that are correct paraphrases are missing from the manually 
generated variations. It is difficult for humans to recall a list of 
paraphrases. However, given the output of  our system, humans 
can easily identify the correct inference rules. Hence, at the least, 
our system would greatly ease the manual construction of 
inference rules for an information retrieval system. 

The performance of DIRT varies a great deal for different paths. 
Usually, the performance for paths with verb roots is much better 
than for paths with noun roots. A verb phrase typically has more 
than one modifier, whereas nouns usually take a smaller number 
of  modifiers. When a word takes less than two modifiers, it will 
not be the root of any path. As a result, paths with noun roots 
occur less often than paths with verb roots, which explains the 
lower performance with respect to paths with noun roots. 

In Table 5, DIRT found no correct inference rules for Q2. This is 
due to the fact that Q2 does not have any entries in the triple 
database. 

6. Conclusion and Future Work 
Better tools are necessary to tap into the vast amount of  textual 
data that is growing at an astronomical pace. Knowledge about 
inference relationships in natural language expressions would be 
extremely useful for such tools. To the best of  our knowledge, this 
is the first attempt to discover such knowledge automatically from 
a large corpus of  text. We introduced the Extended Distributional 
Hypothesis, which states that paths in dependency trees have 
similar meanings if  they tend to connect similar sets of  words. 
Treating paths as binary relations, our algorithm is able to 
generate inference rules by searching for similar paths. Our 
experimental results show that the Extended Distributional 
Hypothesis can indeed be used to discover very useful inference 
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Table 6. Paths found for two of the six questions in TREC-8 
and the variations discovered manually and by DIRT. 

Oi Q3 

PATHS 

MANUAL 

VARIATIONS 

DIRT 

VARIATIONS 

Xis  author of Y 

Y is the work of 

3(; X is the writer 

of Y; X penned Y; 

Xprodueed Y; X 

authored Y; X 

chronicled Y; X 

wrote Y 

X co-authors Y; 

X is co-author of 

Y; X writes Y; X 

edits Y; Y is co- 

authored by X; Y 

is authored by X; 

X tells story in 

Y; X translates 

Y; X writes in Y; 

X notes in Y; ... 

X manufactures Y 

Xmakes Y; Xproduce Y; Xis  in Y 

business; Y is manufactured by X; Y is 

provided by X; Y is X's product; Y is 

product fromA~ YisXproduct; Yis 

product made by X; Yis example of X 

product; Xis  manufacturer of Y; 

find YinX's product line; find YinX 

catalog 

X produces Y; X markets Y; X 

develops Y; X is supplier of Y; X 

ships Y; X supplies Y; Y is 

manufactured by X; X is maker of Y; 

X introduces Y; X exports Y; X 

makes Y; X builds Y; X's production 

of Y; X unveils Y; Y is bought from 

X; X's line of Y; X assembles Y; X is 

Y maker; X's Y factory; X's Y 

production; X is manufacturer of Y; 

X's Y division; X meets demand for 

Y; ... 

roles, many of which, though easily recognizable, are difficult for 
humans to recall. 

Many questions remain to be addressed. One is to recognize the 
polarity in inference relationships. High similarity values are 
often assigned to relations with opposite polarity. For example, "X 
worsens Y" has one of the highest similarity to "X solves Y" 
according to equation (2). In some situations, this may be helpful 
while for others it may cause confusion. 

Another is to extend paths with constraints on the inference rule's 
variables. For example, instead of generating a rule "X 
manufactures Y ~ X ' s  Y factory", we may want to generate a rule 
with an additional clause: "X manufactures Y ~ X's  Y factory, 
where Y is an artifact". The "'where" clause can be potentially 
discovered by generalizing the intersection of the SlotY fillers of 
the two relations. 
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