
DIRT- Discovery of Inference Rules from Text
Dekang Lin and Patrick Pantel

University of Alberta
Department of Computing Science

Edmonton, Alberta T6H 2E1 Canada

{lindek, ppantel}@cs.ualberta.ca

ABSTRACT
In this paper, we propose an unsupervised method for discovering
inference rules from text, such as "Xis author o f Y ~.Xwrote ~",
"'X solved Y ~](found a solution to Y", and "X caused Y ~ Y is
triggered by X". Inference rules are extremely important in many
fields such as natural language processing, information retrieval,
and artificial intelligence in general. Our algorithm is based on an
extended version of Harris' Distributional Hypothesis, which
states that words that occurred in the same contexts tend to be
similar. Instead of using this hypothesis on words, we apply it to
paths in the dependency trees of a parsed corpus.

1. INTRODUCTION
Text is the most significant repository of human knowledge.
Many algorithms have been proposed to mine textual data. Most
of them focus on document clustering [13], identifying
prototypical documents [20], or finding term associations [14] and
hyponym relationships [9]. We propose an unsupervised method
for discovering inference rules, such as "X is author o f Y ~-. X
wrote Y", "'?(solved Y ~ X found a solution to T", and "X caused Y

Y is triggered by X". Inference rules are extremely important in
many fields such as natural language processing, information
retrieval, and artificial intelligence in general.

For example, consider the query to an information retrieval
system: "Who is the author o f the 'Star Spangled Banner'?"
Unless the system recognizes the relationship between "X wrote
Y" and "X is the author o f Y", it would not necessarily rank the
sentence

... Francis Scott Key wrote the "Star Spangled Banner" in 1814.

higher than the sentence

...comedian-actress Roseanne Barr sang her famous shrieking
rendition of the "Star Spangled Banner" before a San Diego
Padres-Cincinnati Reds game.

We call "X wrote Y z X is the author o f Y" an inference rule. In
previous work, such relationships have been referred to as
paraphrases or variants [24]. In this paper, we use the term

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
arc not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD I)1 San Francisco CA USA
Copyright ACM 2001 1-58113-391-x/01/08...$5.00

inference rule because we also want to include relationships that
are not exactly paraphrases, but are nonetheless related and are
potentially useful to information retrieval systems. For example,
"X caused Y ~ Y is blamed on .,V' is an inference rule even though
the two phrases do not mean exactly the same thing.

Traditionally, knowledge bases containing such inference rules
are created manually. This knowledge engineering task is
extremely laborious. More importantly, building such a
knowledge base is inherently difficult since humans are not good
at generating a complete list of rules. For example, while it is
quite trivial to come up with the rule "'Xwrote Y z X i s the author
o f Y", it seems hard to dream up a rule like "X manufactures Y
X's Y factory", which can be used to infer that "Chr~tien visited
Peugot's newly renovated car factory in the afternoon" contains
an answer to the query "What does Peugot manufacture?"

Most previous efforts on knowledge engineering have focused on
creating tools for helping knowledge engineers transfer their
knowledge to machines [6]. Our goal is to automatically discover
such rules.

In this paper, we present an unsupervised algorithm, DIRT, for
Discovery of Inference Rules from Text. Our algorithm is a
generalization of previous algorithms for finding similar words
[10][15][19]. Algorithms for finding similar words assume the
Distributional Hypothesis, which states that words that occurred
in the same contexts tend to have similar meanings [7]. Instead of
applying the Distributional Hypothesis to words, we apply it to
paths in dependency trees. Essentially, if two paths tend to link
the same sets of words, we hypothesize that their meanings are
similar. Since a path represents a binary relationship, we generate
an inference rule for each pair of similar paths.

The remainder of this paper is organized as follows. In the next
section, we review previous work. In Section 3, we define paths
in dependency trees and describe their extraction from a parsed
corpus. Section 4 presents the DIRT system and a comparison of
our system's output with manually generated paraphrase
expressions is shown in Section 5. Finally, we conclude with a
discussion of future work.

2. Previous Work
Most previous work on variant recognition and paraphrase has
been done in the fields of natural language generation, text
summarization, and information retrieval.

The generation community has focused mainly on rule-based text
transformations in order to meet external constraints such as
length and readability [11][18][22]. Dras [4] described syntactic

323

paraphrases using a meta-grammar with a synchronous Tree
Adjoining Grammar (TAG) formalism.

In multi-document summarization, paraphrasing is important to
avoid redundant statements in a summary. Given a collection of
similar sentences (a theme) with different wordings, it is difficult
to identify similar phrases that report the same fact. Barzilay et al.
[3] analyzed 200 two-sentence themes from a corpus and
extracted seven lexico-syntactic paraphrasing rules. These rules
covered 82% of syntactic and lexical paraphrases, which cover
70% of all variants. The rules are subsequently used to identify
common statements in a theme by comparing the predicate-
argument structure of the sentences within the theme.

In information retrieval, it is common to identify phrasal terms
from queries and generate their variants for query expansion. It
has been shown that such query expansion does promote effective
retrieval [1][2]. Morphological variant query expansion was
treated by Sparck Jones and Tait [24] and Jacquemin [12].

In [21], Richardson extracted semantic relationships (e.g.,
hypemym, location, material and purpose) from dictionary
definitions using a parser and constructed a semantic network. He
then described an algorithm that uses paths in the semantic
network to compute the similarity between words. In a sense, our
algorithm is a dual of Richardson's approach. While Richardson
used paths as features to compute the similarity between words,
we use words as features to compute the similarity of paths.

Many text mining algorithms aim at finding association rules
between terms [14]. In contrast, the output of our algorithm is a
set of associations between relations. Term associations usually
require human interpretation. Some of them are considered to be
uninterpretable even by humans [5].

3. Extraction of Paths
The inference rules discovered by DIRT are between paths in
dependency trees. In this section, we introduce dependency trees
and define paths in trees. Finally, we describe an algorithm for
extracting paths from the trees.

3.1 Dependency Trees
A dependency relationship [8] is an asymmetric binary
relationship between a word called head, and another word called
modifier. The structure of a sentence can be represented by a set
of dependency relationships that form a tree. A word in the
sentence may have several modifiers, but each word may modify
at most one word. The root of the dependency tree does not
modify any word. It is also called the head of the sentence.

For example, Figure 1 shows the dependency tree for the sentence
"John found a solution to the problem", generated by a broad-
coverage English parser called Minipar I [16]. The links in the
diagram represent dependency relationships. The direction of a
link is from the head to the modifier in the relationship. Labels
associated with the links represent types of dependency relations.
Table 1 lists a subset of the dependency relations in Minipar
outputs.

IAvailable at www.cs.ualberta.ca/~lindek/minipar.htm.

Table 1. A subset of dependency relations in Minipar outputs.

RELATION DESCRIPTION EXAMPLE

a p p o appositive of a noun the CEO, John

det determiner of a noun the dog

gen genitive modifier of a noun John's dog

mod adjunct modifier of any head tiny hole

nn prenominal modifier of a noun station manager

subj subject of a verb John loves Mary.

• / obj-.. ~ t o ~
ff subj . , ~ ¢. d e t ' ~ g..~ d e ~

John found a solution to the problem.

Figure 1. Example dependency tree.

Minipar parses newspaper text at about 500 words per second on
a Pentium-III 700Mhz with 500MB memory. Evaluation with the
manually parsed SUSANNE corpus [23] shows that about 89% of
the dependency relationships in Minipar outputs are correct.

3.2 Paths in Dependency Trees
In the dependency trees generated by Minipar, each link between
two words in a dependency tree represents a direct semantic
relationship. A path allows us to represent indirect semantic
relationships between two content words. We name a path by
concatenating dependency relationships and words along the path,
excluding the words at the two ends. For the sentence in Figure 1,
the path between John and problem is named:
N:subj:V<-find--)V:obj:N--)solution-->N:to:N (meaning "Xfinds
solution to Y"). The reverse path can be written as:
N:to:N(-solution(--N:obj:V(--find--> V:subj:N. The root of both
paths is find. A path begins and ends with two dependency
relations. We call them the two slots of the path: SlotXon the left-
hand side and SlotY on the right-hand side. The words connected
by the path are the fillers of the slots. For example, John fills the
SlotX of N:subj:V<--find->V:obj:N->solution->N:to:N and
problem fills the SlotY. The reverse is true for
N:to:N('- solution <-N:obj :V (- find --) V:subj :N. In a path,
dependency relations that are not slots are called internal
relations. For example, find--)V:obj:N--)solution is an internal
relation in the previous path.

We impose a set of constraints on the paths to be extracted from
text for the following reasons:

• most meaningful inference rules involve only paths that
satisfy these conditions;

• the constraints significantly reduce the number of distinct
paths and, consequently, the amount of computation required
for computing similar paths (described in Section 4.3); and

• the constraints alleviate the sparse data problem because
long paths tend to have very few occurrences.

The constraints we impose are:

324

• slot fillers must be nouns because slots correspond to
variables in inference rules and we expect the variables to be
instantiated by entities;

• any dependency relation that does not connect two content
words (i.e. nouns, verbs, adjectives or adverbs) is excluded
from a path. E.g. in Figure 1, the relation between a and
solution is excluded;

• the frequency count of an internal relation must exceed a
threshold; and

Consider the following sentence:

havo~.\ ~-obj~

They had previously bought bighorn sheep from Comstock.

The paths extracted from this sentence and their meanings are:

(a) N:subj :V (-buy->V: from:N

Xbuys something from Y

(b) N:subj :V(- buy -) V:obj:N

--- Xbuys Y

(c) N: subj :V ('- buy -') V:obj :N -') sheep --) N:nn:N

--- Xbuys Y sheep

(d) N:nn:N (-- sheep (--N:obj :V (- buy'-) V: from:N

-=Xsheep is bought from Y

(e) N:obj :V(-buy'->V: from:N

-=Xis bought from Y

An inverse path is also added for each one above.

4. Discovering Inference Rules from Text
A path is a binary relation between two entities. In this section,
we present an algorithm, called DIRT, to automatically discover
the inference relations between such binary relations.

4.1 Underlying Assumption
Most algorithms for computing word similarity from text corpus
are based on a principle known as the Distributional Hypothesis
[7]. The idea is that words that tend to occur in the same contexts
tend to have similar meanings. Previous efforts differ in their
representation of the context and in their formula for computing
the similarity between two sets of contexts. Some algorithms use
the words that occurred in a fixed window of a given word as its
context while others use the dependency relationships of a given
word as its context [15]. Consider the words duty and
responsibility. There are many contexts in which both of these
words can fit. For example,

• duty can be modified by adjectives such as additional,
administrative, assigned, assumed, collective, congressional,
constitutional so can responsibility;

• duty can be the object of verbs such as accept, articulate,
assert, assign, assume, attend to, avoid, become, breach, ...,
so can responsibility.

Table 2. Sample slot fillers for two paths extracted from a
newspaper corpus.

"'Xfinds a solution to I/" "Xsolves Y"

SLOT)(SLOTY SLorX SLoTY

commission strike committee problem

committee civil war clout crisis

committee crisis government problem

government crisis he mystery

government problem she problem

he problem petition woe

legislator budget deficit researcher mystery

sheriff dispute sheriff murder

Based on these common contexts, one can statistically determine
that duty and responsibility have similar meanings.

In the algorithms for finding word similarity, dependency links
are treated as contexts of words. In contrast, our algorithm for
finding inference rules treats the words that fill the slots of a path
as a context for the path. We make an assumption that this is an
extension to the Distributional Hypothesis:

Extended Distributional Hypothesis:

If two paths tend to occur in similar contexts, the
meanings of the paths tend to be similar.

For example, Table 2 lists a set of example pairs of words
connected by the paths N:subj:V(--find--)V:obj:N'-)solution---)
N:to:N ("X finds a solution to F9 and N:subj:V(--solve--)
V:obj:N (")(solves T'). As it can be seen from the table, there are
many overlaps between the corresponding slot fillers of the two
paths. By the Extended Distributional Hypothesis, we can then
claim that the two paths have similar meaning.

4.2 Triples
To compute the path similarity using the Extended Distributional
Hypothesis, we need to collect the frequency counts of all paths in
a corpus and the slot fillers for the paths. For each instance of a
path p that connects two words w~ and w2, we increase the
frequency counts of the two triples (p, Slot)(, wl) and (p, SlotY,
w2). We call (SlotX, wl) and (SlotY, w2) features of path p.
Intuitively, the more features two paths share, the more similar
they are.

We use a triple database (a hash table) to accumulate the
frequency counts of all features of all paths extracted from a
parsed corpus. An example entry in the triple database for the
path

N:subj:V(--pull--)V:obj:N--)body--)N:from:N

=- "X pulls body from T'

is shown in Figure 2. The first column of numbers in Figure 2
represents the frequency counts of a word filling a slot of the path
and the second column of numbers is the mutual information

325

X pulls body from Y:
SlotX:

diver 1 2.45
equipment 1 1.65
police 2 2.24
rescuer 3 4.84
resident 1 1.60
who 2 1.32
worker 1 1.37

Slot Y:
bus 2 3.09
coach I 2.05
debris 1 2.36
feet 1 1.75
hut 1 2.73
landslide l 2.39
metal 1 2.09
wreckage 3 4.81

Figure 2. An example entry in the triple database for the path
"X pulls body from Y".

between a slot and a slot filler. Mutual information measures the
strength of the association between a slot and a filler. We explain
mutual information in detail in Section 4.3. The triple database
records the fillers of SlotX and SlotY separately. Looking at the
database, one would be unable to tell which Slot)(filler occurred
with which SlotY filler in the corpus.

4.3 Similarity between Two Paths
Once the triple database is created, the similarity between two
paths can be computed in the same way that the similarity
between two words is computed in [15]. Essentially, two paths
have high similarity if there are a large number of common
features. However, not every feature is equally important. For
example, the word he is much more frequent than the word
sheriff. Two paths sharing the feature (SlotY, he) is less indicative
of their similarity than if they shared the feature (SlotX, sheriffi.
The similarity measure proposed in [15] takes this into account by
eomputing the mutual information between a feature and a path.

We use the notation ~p, Slot)(, w I to denote the frequency count of

the triple (p, Slot)(, w), ~o, SlotX, *1 to denote Z l P , S l o t S , ~ ,
w

and I*, *, *[to denote Z I p , s , I ~ .
p,$,W

Following [15], the mutual information between a path slot and its
filler can be computed by the formula:

.t ~ , . ~ , ([p ,S lo t ,~xl* ,S lo t ,~ (1)
tulip, blot, w] = IOP-.I ~ /

-~ [p, Slot,*[×[% Slot, ~q)

The similarity between a pair of slots: slotl = (Pl, s) and slot2 =
(P2, s), is defined as:

sim(slot,,slot2) = ~'~r(~)~r(m.,)mi(pl,s, w)+ mi(p2,s, TM) (2)
Z,~r(~..,)mi(pt,s,w)+ Z,,r(p,,,)mi(p2,s, w)

Table 3. The top-20 most similar paths to "X solves Y' .

Y is solved by X
Xresolves Y
X finds a solution to Y
Xtries to solve Y
Xdeals with Y
Y is resolved by X
X addresses Y
X seeks a solution to Y

X do something about Y
Xsolution to Y

Y is resolved in X
Yis solved throughX
X rectifies Y
Xcopes with Y
X overcomes Y
X eases Y
Xtackles Y
Xalleviates Y

Xcorrects Y

X is a solution to Y

where Pl and P2 are paths, s is a slot, T(pi, s) is the set of words
that fill in the s slot ofpathpi.

The similarity between a pair of paths Pt and P2 is defined as the
geometric average of the similarities of their SloO(and SlotY
slots:

S(pt, P2) = ~sim(SlotXl, SloL~2)× sim(SlotY~, SlotY 2) (3)

where Slot~i and SlotYi are path i 's SlotX and SlotY slots.

4.4 Finding the Most Similar Paths
The discovery of inference rules is made by finding the most
similar paths of a given path. The challenge here is that there are a
large number of paths in the triple database. The database used in
our experiments contains over 200,000 distinct paths. Computing
the similarity between every pair of paths is obviously
impractical.

Given a pathp, our algorithm for finding the most similar paths of
p takes three steps:

(a) Retrieve all the paths that share at least one feature with p
and call them candidate paths. This can be done efficiently
by storing for each word the set of slots it fills in.

(b) For each candidate path c, count the number of features
shared by c and p. Filter out c if the number of its eomrnon
features withp is less than a fixed percent (we used I%) of
the total number of features for p and c. This step
effectively uses a simpler similarity formula to filter out
some of the paths since computing mutual information is
more costly than counting the number of features. This
idea has previously been used in Canopy [17].

(c) Compute the similarity between p and the candidates that
passed the filter using equation (2) and output the paths in
descending order of their similarity to p.

Table 3 lists the Top-50 most similar paths to "X solves Y"
generated by DIRT. Most of the paths can be considered as
paraphrases of the original expression.

5. Experimental Results
We performed an evaluation of our algorithm by comparing the
inference rules it generates with a set of human-generated
paraphrases of the first six questions in the TREC-8 Question-

326

Table 4. First six questions from TREC-8.

Q# QUESTION

Q, Who is the author of the book, "The Iron Lady: A Biography of

Margaret Thatcher"?

Q2 What was the monetary value of the Nobel Peace Prize in 1989?

Q3 What does the Peugeot company manufacture?

Q4 How much did Mercury spend on advertising in 1993?

Q5 What is the name of the managing director of Apricot Computer?

Q6 Why did David Koresh ask the FBI for a word processor?.

Answering Track, listed in Table 4. TREC (Text REtrievial
Conference) is a U.S. government sponsored competition on
information retrieval held annually since 1992. In the Question-
Answering Track, the task for participating systems is to find
answers to natural-language questions like those in Table 4.

5.1 Results
We used Minipar to parse about 1GB of newspaper text (AP
Newswire, San Jose Mercury, and Wall Street Journal). Using the
methods discussed in Section 3, we extracted 7 million paths from
the parse trees (231,000 unique) and stored them in a triple
database.

The second column of Table 5 shows the paths that we identified
from the TREC-8 questions. For some questions, more than one
path was identified. For others, no path was found. We compare
the output of our algorithm with a set of manually generated
paraphrases of the TREC-8 questions made available at ISI 2.

We also extracted paths from the manually generated paraphrases.
For some paraphrases, an identical path is extracted. For example,
"What things are manufactured by Peugeot?" and "What products
are manufactured by Peugeot?" both map to the path "X is
manufactured by Y". The number of paths for the manually
generated paraphrases of TREC-8 questions is shown in the third
column of Table 5.

For each of the paths p in the second column of Table 5, we ran
the DIRT algorithm to compute its Top-40 most similar paths
using the triple database. We then manually inspected the outputs
and classified each extracted path as correct or incorrect. A path
p' is judged correct if a sentence containing p' might contain an
answer to the question from which p was extracted. Consider
question Q3 in Table 4 where we have p = "X manufactures Y"
and we findp' = "X's Y factory" as one ofp ' s Top-40 most similar
paths. Since "Peugeot's car factory" might be found in some
corpus, p' is judged correct. Note that not all sentences containing
p' necessarily contain an answer to Q3 (e.g. "Peugeot's Sochaux
factory" gives the location of a Peugeot factory in France). The
fourth column in Table 5 shows the number of Top-40 most
similar paths classified as correct and the fifth column gives the
intersection between columns three and four. Finally, the last
column in Table 5 gives the percentage of correctly classified
paths.

2 Available at http://www.isi.edu/~gerber/Variations2.txt

Table 5. Evaluation of Top-40 most similar paths.

Q# PATHS MAN. DIRT INT. ACC.

Ql X is author of Y 7 21 2 52.5%

Q2 x is monetary value of Y 6 0 0 N/A

Q3 X manufactures Y 13 37 4 92.5%

Q4 X spend Y 7 16 2 40.0%

spend X on Y 8 15 3 37.5%

Q~ x is managing director of Y 5 14 1 35.0%

Q6 X asks Y 2 23 0 57.5%

asks X for Y 2 14 0 35.0%

X asks for Y 3 21 3 52.5%

5.2 Observations
There is very little overlap between the automatically generated
paths and the paraphrases, even though the percentage of correct
paths in DIRT outputs can be quite high. This suggests that
finding potentially useful inference rules is very difficult for
humans as well as machines. Table 6 shows some of the correct
paths among the Top-40 extracted by our system for two of the
TREC-8 questions. Many of the variations generated by DIRT
that are correct paraphrases are missing from the manually
generated variations. It is difficult for humans to recall a list of
paraphrases. However, given the output of our system, humans
can easily identify the correct inference rules. Hence, at the least,
our system would greatly ease the manual construction of
inference rules for an information retrieval system.

The performance of DIRT varies a great deal for different paths.
Usually, the performance for paths with verb roots is much better
than for paths with noun roots. A verb phrase typically has more
than one modifier, whereas nouns usually take a smaller number
of modifiers. When a word takes less than two modifiers, it will
not be the root of any path. As a result, paths with noun roots
occur less often than paths with verb roots, which explains the
lower performance with respect to paths with noun roots.

In Table 5, DIRT found no correct inference rules for Q2. This is
due to the fact that Q2 does not have any entries in the triple
database.

6. Conclusion and Future Work
Better tools are necessary to tap into the vast amount of textual
data that is growing at an astronomical pace. Knowledge about
inference relationships in natural language expressions would be
extremely useful for such tools. To the best of our knowledge, this
is the first attempt to discover such knowledge automatically from
a large corpus of text. We introduced the Extended Distributional
Hypothesis, which states that paths in dependency trees have
similar meanings if they tend to connect similar sets of words.
Treating paths as binary relations, our algorithm is able to
generate inference rules by searching for similar paths. Our
experimental results show that the Extended Distributional
Hypothesis can indeed be used to discover very useful inference

327

Table 6. Paths found for two of the six questions in TREC-8
and the variations discovered manually and by DIRT.

Oi Q3

PATHS

MANUAL

VARIATIONS

DIRT

VARIATIONS

Xis author of Y

Y is the work of

3(; X is the writer

of Y; X penned Y;

Xprodueed Y; X

authored Y; X

chronicled Y; X

wrote Y

X co-authors Y;

X is co-author of

Y; X writes Y; X

edits Y; Y is co-

authored by X; Y

is authored by X;

X tells story in

Y; X translates

Y; X writes in Y;

X notes in Y; ...

X manufactures Y

Xmakes Y; Xproduce Y; Xis in Y

business; Y is manufactured by X; Y is

provided by X; Y is X's product; Y is

product fromA~ YisXproduct; Yis

product made by X; Yis example of X

product; Xis manufacturer of Y;

find YinX's product line; find YinX

catalog

X produces Y; X markets Y; X

develops Y; X is supplier of Y; X

ships Y; X supplies Y; Y is

manufactured by X; X is maker of Y;

X introduces Y; X exports Y; X

makes Y; X builds Y; X's production

of Y; X unveils Y; Y is bought from

X; X's line of Y; X assembles Y; X is

Y maker; X's Y factory; X's Y

production; X is manufacturer of Y;

X's Y division; X meets demand for

Y; ...

roles, many of which, though easily recognizable, are difficult for
humans to recall.

Many questions remain to be addressed. One is to recognize the
polarity in inference relationships. High similarity values are
often assigned to relations with opposite polarity. For example, "X
worsens Y" has one of the highest similarity to "X solves Y"
according to equation (2). In some situations, this may be helpful
while for others it may cause confusion.

Another is to extend paths with constraints on the inference rule's
variables. For example, instead of generating a rule "X
manufactures Y ~ X ' s Y factory", we may want to generate a rule
with an additional clause: "X manufactures Y ~ X's Y factory,
where Y is an artifact". The "'where" clause can be potentially
discovered by generalizing the intersection of the SlotY fillers of
the two relations.

7. A C K N O W L E D G M E N T S
The authors wish to thank the reviewers for their helpful
comments. This research was partly supported by Natural
Sciences and Engineering Research Council of Canada grant
OGPI 21338 and scholarship PGSB207797.

8. R E F E R E N C E S
[1] Aniek, P.G. and Tipimeni, S. 1999. The Paraphrase Search Assistant:

Terminological Feedback for Iterative Information Seeking. In Proceedings of
SIGIR-99. pp. 153-159. Berkeley, CA.

[2] Arampatzis, A. T., Tsoris, T., Koster, C. H. A., and van der Weide, T. P. 1998.
Phrase-based infase-bas retrieval. Information Processing & Management,
34(6):693-707.

[3] Barzitay, R., McKeewn, K., and Elhadad, M. 1999. Information Fusion in the
Context of Multi-Document Summarization. In Proceedings of ACL-99.
College Park, Maryland.

[4] Dras, M. 1999. A meta-level Grammar: Redefining Synchronous TAGs for
Translation and Paraphrase. In Proceedings of ACL-99. pp. 80-97. College
Park, Maryland.

[5] Feldman, R., Fresko, M., Kinar, Y., Lindell, Y., Liphstat, O., Rajman, M.,
Schler, Y., and Zamir, O. 1998. Text Mining at the Term Level. In
Proceedings of the 2nd European ~raposiura on Principles of Data Mining
and Knowledge Discovery. pp. 65-73. Nantes, France.

[6] Hahn, U. and Schnattinger, K. 1998. Towards Text Knowledge Engineering.
In Proceedings ofAAA1-98/IAAI-98. Menlo Park, CA. pp. 524-531.

[7] Harris, Z. 1985. Distributional Structure. In: Katz, J. J. (ed.) The Philosophy of
Linguistics. New York: Oxford University Press. pp. 26-47.

[8] Hays, D. 1964. Dependency Theory: A Formalism and Some Observations.
Language, 40:511-525.

[9] Hearst, M. 1992. Automatic Acquisition of Hyponyms from Large Text
Corpora. In Proceedings of A CL-92. Nantes, France.

[10] Hindle, D. 1990. Noun Classification from Predicate-Argument Structures. In
Proceedings of ACL-90. pp. 268-275. Pittsburgh.

[11] Iordanskaja, L, Kittredge, R., and Polguere, A. 1991. Natural Language
Generation in Artificial Intelligence and Computational Linguistics. Kluwer.
Boston, MA.

[12] Jacquemin, C., Klavans, J. L., and Tzoukermann, E. 1999. NLP for Term
Variant Extraction: A Synergy of Morphology, Lexicon, and Syntax. Natural
Language Information Retrieval, T. Strzalkowski, editor, pp. 25-74. Kluwer.
Boston, MA.

[13] Larsen, B. and Aone, C. 1999. Fast and effective text mining using linear-time
document clustering. In Proceedings of KDD-99. pp. 16-22. San Diego, CA.

[14] Lin, S. H., Shih, C. S., Chen, M. C., et al. 1998. Extracting Classification
Knowledge of Internet Doeumeuts with Mining Term Associations: A
Semantic Approach. In Proceedings of SIGIR-98. Melbourne, Australia.

[15] Lin, D. 1998. Extracting Collocations from Text Corpora. Workshop on
Computational Terminology. pp. 57-63. Montreal, Canada.

[16] Lin, D. 1993. Principle-Based Parsing Without OverGeneration. In
Proceedings of A CL-93. pp. 112-120. Columbus, OH.

[17] MeCallum, A., Nigam, K., and Ungar, L. H. 2000. Efficient Clustering of
High-Dimensional Data Sets with Application to Reference Matching. In
Proceedings of KDD-2000. Boston, MA.

[18] Mercer, M. M. and Shaked, V. 1988. Strategies for Effective Paraphrasing. In
Proceedings of COLING-88. pp. 431-436 Budapest.

[19] Pereira, F., Tishby, N., and Lee, L. 1993. Distributional Clustering of English
Words. In Proceedings of ACL-93. pp. 183-190. Columbus, Ohio.

[20] Rajman, M. and Besan~:on, R. 1997. Text Mining: Natural Language
Techniques and Text Mining Applications. In Proceedings of the seventh IFIP
2.6 Working Conference on Database Semantics (DS-7).

[21] Richardson, S. D. 1997. Determining Similarity and the Inferring Relations in
a LexicalKnowledge-Base. Ph.D. Thesis. The City University of New York.

[22] Robin, J. 1994. Revision-based Generation of Natural Language Summaries
Providing Historical Background. Ph.D. Dissertation. Columbia University.

[23] Sampson, G. 1995. English for the Computer - The SUSANNE Corpus and
Analytic Scheme. Clarendon Press. Oxford, England.

[24] Sparek Jones, K. and Tait, J. 1. 1984. Automatic Search Term Variant
Generation. Journal of Documentation, 40(1):50-66.

328

