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Abstract
In this paper, we introduce a new frame-
work for recognizing textual entailment
(RTE) which depends on extraction of the
set of publicly-held beliefs – known as dis-
course commitments – that can be ascribed
to the author of a text (t) or a hypothesis
(h). We show that once a set of commit-
ments have been extracted from a t-h pair,
the task of recognizing textual entailment
is reduced to the identification of the com-
mitments from a t which support the infer-
ence of the h. Our system correctly identi-
fied entailment relationships in more than
80% of t-h pairs taken from all three of the
previous PASCAL RTE Challenges, with-
out the need for additional sources of train-
ing data.

1 Introduction
Systems participating in the PASCAL Recogniz-
ing Textual Entailment (RTE) Challenges (Dagan
et al., 2005) have successfully employed a variety
of “shallow” techniques in order to recognize in-
stances of textual entailment, including methods
based on: (1) sets of heuristics (Vanderwende et
al., 2006), (2) measures of term overlap (Jijkoun
and de Rijke, 2005) (or other measures of seman-
tic “relatedness” (Glickman et al., 2005), (3) the
alignment of graphs created from syntactic or se-
mantic dependencies (Haghighi et al., 2005), or (4)
statistical classifiers which leverage a wide range
of features, including the output of paraphrase gen-
eration (Hickl et al., 2006), inference rule genera-
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tion (Szpektor et al., 2007), or model building sys-
tems (Bos and Markert, 2006).

While these relatively “shallow” approaches
have shown much promise in RTE for entailment
pairs where the text and hypothesis remain short,
we expect that performance of these types of sys-
tems will ultimately degrade as longer and more
syntactically complex entailment pairs are consid-
ered. For example, given a “short” t-h pair (as in
(1)), we might expect that a feature-based compar-
ison of the t and the h would be sufficient to iden-
tify that the t textually entailed the h.

(1) Short t-h Pair
a. Text: Mack Sennett was involved in the produc-

tion of “The Extra Girl”.
b. Hypothesis: “The Extra Girl” was produced by

Sennett.

The additional information included in a longer
t (like the one in (2)) can make for a much more
challenging entailment computation. While the ev-
idence supporting the h is included in the t, sys-
tems must be able to establish that (1) Mack Sen-
nett was involved in producing a Mabel Normand
vehicle and (2) that “The Extra Girl” and the Ma-
bel Normand vehicle refer to the same film.

(2) Long t-h Pair
a. Text: “The Extra Girl” (1923) is the story of

a small-town girl, Sue Graham (played by Ma-
bel Normand) who comes to Hollywood to be in
the pictures. This Mabel Normand vehicle, pro-
duced by Mack Sennett, followed earlier films
about the film industry and also paved the way
for later films about Hollywood, such as King Vi-
dor’s “Show People” (1928).

b. Hypothesis: “The Extra Girl” was produced by
Sennett.

In order to remain effective as texts get longer,
we believe that RTE systems will need to employ
techniques that will enable them to enumerate the
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Figure 1: Two Architectures of RTE Systems.

set of propositions which are inferable from a text-
hypothesis pair.

We introduce a new framework for recognizing
textual entailment which depends on extraction of
a subset of the publicly-held beliefs – or discourse
commitments – available from the linguistic mean-
ing of a text or hypothesis. We show that once even
a small set of discourse commitments have been
extracted from a text-hypothesis pair, the task of
RTE can be reduced to the identification of the one
(or more) commitments from the t which are most
likely to support the inference of each commitment
extracted from the h.

We have found that a commitment-based ap-
proach to RTE provides state-of-the-art results on
the PASCAL RTE task even when large external
knowledge resources are not available. While our
approach does depend on a set of specially-tailored
heuristics which makes it possible to enumerate
some of the commitments from a t-h pair, we show
that reasonably high levels of performance are pos-
sible (as much as 84.9% accuracy), given even a
small number of extractors.

The rest of this paper is organized in the fol-
lowing way. Section 2 describes the organization
of most current statistical systems for RTE, while
Sections 3, 4, and 5 describe details of the algo-
rithms we have developed for the RTE system we
discuss in this paper. Section 6 presents our exper-
imental results, and Section 7 presents our conclu-
sions.

2 Recognizing Textual Entailment
Recognizing whether the information expressed in
a h can be inferred from the information expressed
in a t can be cast either as (1) a classification prob-
lem or (2) a formal textual inference problem, per-
formed either by theorem proving or model check-
ing. While these approaches apply radically dif-
ferent solutions to the same problem, both meth-

ods involve the translation of natural language into
some sort of suitable meaning representation, such
as real-valued features (in the case of classifica-
tion), or axioms or models (in the case of formal
methods). We argue that performing this transla-
tion necessarily requires systems to acquire forms
of (linguistic and/or real-world) knowledge which
may not be derivable from the surface form of a t
or h. (See Figure 1a for an illustration of the archi-
tecture of a prototypical RTE system.)

In order to acquire forms of linguistic knowl-
edge for RTE, we have developed a novel frame-
work which depends on the extraction of discourse
commitments from a text-hypothesis pair. Follow-
ing (Gunlogson, 2001; Stalnaker, 1979), we as-
sume discourse commitments represent the set of
propositions which can necessarily be inferred to
be true given a conventional reading of a text. (Fig-
ure 2 lists the set of commitments that were ex-
tracted from a t-h pair included in the PASCAL
RTE-3 Test Set.1)

Formally, we assume that given a commitment
set {ct} consisting of the set of discourse commit-
ments inferable from a text t and a hypothesis h,
we define the task of RTE as a search for the com-
mitment c ∈ {ct} which maximizes the likelihood
that c textually entails h.

In our architecture (illustrated in Figure 1b), dis-
course commitments are first extracted from both
the t and the h using the approach described in
Section 3. Once commitment sets have been ex-
tracted for the t and the h, we then use a com-
mitment selection module (described in Section
4) in order to perform a term-based alignment of
each commitment extracted from the t against each
commitment extracted from the h. The top-ranked
pair of commitments (ct i , ch i ) is then sent to an

1Under our approach, commitments are extracted from
both the t and the h. Our system failed to extract any com-
mitments from the h used in this example, however.
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Text: "The Extra Girl" (1923) is a story of a small−town girl, Sue Graham (played by Mabel Normand) who comes to
Hollywood to be in the pictures.  This Mabel Normand vehicle, produced by Mack Sennett, followed earlier
films about the film industry and also paved the way for later films about Hollywood, such as King Vidor’s
"Show People" (1928).
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Hypothesis (4): "The Extra Girl" was produced by Sennett.

T1.  "The Extra Girl" [took place in] 1923.
T2.  "The Extra Girl" is a story of a small−town girl.
T3.  "The Extra Girl" is a story of Sue Graham.

T4.  Sue Graham is a small−town girl.
T5.  Sue Graham [was] played by Mabel Normand.
T6.  Sue Graham comes to Hollywood to be in the pictures.

T9.  "The Extra Girl" was a Mabel Normand vehicle.
10. "The Extra Girl" [was] produced by Mack Sennett.
T11. Mack Sennett is a producer.

T7.  Sue Graham [was located in] Hollywood.
T8.  A Mabel Normand vehicle was produced by Mack Sennett.

T14. [There were] films about the film industry [before] a Mabel Normand vehicle.
T13. A Mabel Normand vehicle paved the way for later films about Hollywood.
T12. A Mabel Normand vehicle followed earlier films about the film industry.

T15. [There were] films about Hollywood [after] a Mabel Normand vehicle.
T16. "The Extra Girl" followed earlier films about the film industry.
T17. "The Extra Girl" paved the way for later films about Hollywood.
T18. [There were] films about the film industry [before] "The Extra Girl".
T19. [There were] films about Hollywood [after] "The Extra Girl".
T20. King Vidor [was associated with] "Show People".
T21. "Show People" [took place in] 1928.
T22. "Show People" was a film about Hollywood.

Figure 2: Text Commitments Extracted from Example 4 (RTE-3).

entailment computation module (described in Sec-
tion 5), which estimates the likelihood that the
selected ct i textually entails the ch i (and by ex-
tension, the likelihood that t textually entails h).
Commitment pairs are considered in ranked order
until a positive judgment is returned, or until no
more commitments above a threshold remain.

3 Extracting Discourse Commitments
from Natural Language Texts

Work in semantic parsing (Wong and Mooney,
2007; Zettlemoyer and Collins, 2005) has used sta-
tistical and symbolic techniques to convert natural
language texts into a logical meaning representa-
tion (MR) which can be leveraged by formal rea-
soning systems. While this work has explored how
output from syntactic parsers can be used to repre-
sent the meaning of a text independent of its actual
surface form, these approaches have focused on
the propositional semantics explicitly encoded by
predicates and have not addressed other phenom-
ena (such as conversational implicature or linguis-
tic presupposition) – which are not encoded overtly
in the syntax.

Our work focuses on how an approach based on
lightweight extraction rules can be used to enumer-
ating a subset of the discourse commitments that
are inferable from a t-h pair. While heuristically
“unpacking” all of commitments of a t or h may be
(nearly) impossible, we believe that our work rep-
resents an important first step towards determin-
ing the relative value of these additional commit-
ments for textual inference applications, such as
RTE. Our commitment extraction algorithm is pre-
sented in Algorithm 1.

Commitments are extracted from each t and h
using an implementation of the probabilistic finite-
state transducer (FST)-based extraction framework
described in (Eisner, 2002; Eisner, 2003). Given a

Algorithm 1 Extracting Discourse Commitments
1: Input: A set S of sentences from the t or h
2: Output: A set of discourse commitments
3: loop
4: Pre-process the decompositions to identify lexical,

syntactic, semantic, and discourse information
5: Produce syntactic decompositions of the sentences in

S
6: Produce commitments of propositional content
7: Produce commitments for supplemental expressions
8: Extract predefined set of relations
9: Perform coreference resolution for each commitment

10: Generate paraphrases of each commitment
11: Generate a natural-language string for each commit-

ment
12: if any of the generated strings is not in S then
13: Add the generated strings to S
14: else
15: return S
16: end if
17: end loop

syntactically and semantically-parsed input string,
our system returns a series of output representa-
tions which can be mapped (given a set of gen-
eration heuristics) to natural language sentences
which represent each of the individual commit-
ments which can be extracted from that string.
Commitments were extracted using a series of
weighted regular expressions (which we present in
the form of rules for convenience); weights were
learned for each regular expression r ∈ R using
our implementation of (Eisner, 2002). After each
candidate commitment was processed by the FST,
the natural language form of each returned com-
mitment was then resubmitted to the FST for ad-
ditional round(s) of extraction until no additional
commitments could be extracted from the input
string.

Text-hypothesis pairs are initially submitted to a
preprocessing module which performed (1) part-
of-speech tagging, (2) named entity recognition,
(3) syntactic dependency parsing, (4) semantic de-
pendency parsing, (5) normalized temporal expres-
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sions, and (6) coreference resolution.2
Pairs are then submitted to a sentence decom-

position module, which uses a set of heuristics in
order to transform complex sentences containing
subordination, relative clauses, lists, and coordina-
tion into sets of well-formed simple sentences.

Propositional Content: In order to capture as-
sertions encoded by predicates and predicate nom-
inals, we used semantic dependency information
output by a predicate-based semantic parser to
generate “simplified” commitments for each possi-
ble combination of their optional and obligatory ar-
guments. (Here, arguments assigned a PropBank-
style role label of ARGm – or ARG2 or higher –
were considered to be optional arguments.)

Supplemental Expressions: Recent work
by (Potts, 2005; Huddleston and Pullum, 2002)
has demonstrated that the class of supplemental
expressions – including appositives, as-clauses,
parentheticals, parenthetical adverbs, non-
restrictive relative clauses, and epithets – trigger
conventional implicatures (CI) whose truth is nec-
essarily presupposed, even if the truth conditions
of a sentence are not satisfied. Rules to extract
supplemental expressions were implemented in
our weighted FST framework; generation heuris-
tics were then used to create new sentences which
specify the CI conveyed by the expression.

(3) “The Extra Girl” (1923) is a story of a small-town girl,
Sue Graham (played by Mabel Normand) who comes
to Hollywood to be in the pictures.
a. “The Extra Girl” [took place in] 1923.
b. “The Extra Girl” is the story of a small-town girl.
c. Sue Graham is a small-town girl.
d. Sue Graham [was] played by Mabel Normand.
e. Sue Graham [came] to Hollywood to be in the

pictures.

Relation Extraction: We used an in-house,
heuristic-based relation extraction system to rec-
ognize six types3 of semantic relations be-
tween named entities, including: (1) artifact
(e.g. OWNER-OF), (2) general affiliation (e.g.

2We used publicly-available software when possible to
facilitate comparison with other researchers’ work in this
area. We used the C&C Tools (Curran et al., 2007) to per-
form part-of-speech tagging and parsing and a version of the
alias-i LingPipe named entity recognizer in conjunction with
Language Computer Corporation’s own systems for syntac-
tic and semantic dependency parsing, named entity recog-
nition (CiceroLite), temporal normalization, and coreference
resolution.

3These six types were selected because they performed at
better than than 70% F-Measure on a sample of t-h pairs se-
lected from the PASCAL RTE datasets. Other relation types
with lesser performance were not used in our experiments.

LOCATION-OF), (3) organization affiliation (e.g.
EMPLOYEE-OF), (4) part-whole, (5) social affilia-
tion (e.g. RELATED-TO), and (6) physical location
(e.g. LOCATED-NEAR) relations.

(4) Sue Graham [came] to Hollywood to be in the pic-
tures.
a. location-of: Sue Graham [was located in] Holly-

wood.
b. location-of: The pictures [were located in] Hol-

lywood.

Coreference Resolution: We use our own im-
plementation of (Ng, 2005) to resolve instances
of pronominal and nominal coreference in order
to expand the number of commitments available
to the system. After a set of co-referential entity
mentions were detected (e.g. “The Extra Girl”,
this Mabel Normand vehicle), new commitments
were generated from the existing set of commit-
ments which incorporated each co-referential men-
tion.

(5) Coreference: (“The Extra Girl”,this Mabel Normand
vehicle)
a. [“The Extra Girl”] [was] produced by Mack Sen-

nett.
b. [“The Extra Girl”] followed earlier films about

the film industry.
c. [“The Extra Girl”] also paved the way for later

films about Hollywood.

Paraphrasing: We used a lightweight,
knowledge-lean paraphrasing approach in or-
der to expand the set of commitments considered
by our system.

In order to identify other possible linguistic en-
codings for each commitment – without generat-
ing a large number of spurious paraphrases which
could introduce errorful knowledge into a commit-
ment set – we focused only on generating para-
phrases of two-place predicates (i.e. predicates
which encode a semantic dependency between two
arguments).

The algorithm we use is presented in Al-
gorithm 2. Under this method, a semantic
parser (trained on the semantic dependencies in
PropBank and NomBank) was used to iden-
tify pairs of arguments (〈ai , aj 〉) (where i, j ∈
{a0 , a1 , a2 , am}) from each c; each pair of ar-
guments identified in c are then used to generate
paraphrases from sets of sentences containing both
a0 and ai .4 The top 1000 sentences containing
each pair of arguments were then retrieved from

4Arguments in PropBank and NomBank are assigned an
index corresponding to their semantic role.
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the WWW; sentences containing both arguments
were then filtered and clustered into sets that were
presumed to be likely paraphrases.

Algorithm 2 Paraphrase Clustering
1: Input: Pairs of arguments, 〈ai , aj 〉, where i, j ∈

{a0 , a1 , a2 , am}
2: Output: Sets of paraphrased sentences, {scl i ...cln }
3: for all pairs 〈ai , aj 〉 do
4: Retrieve 1000 s containing 〈ai , aj 〉 from WWW
5: Compute token distance between a0 ,ai

(span(ai , aj ))
6: Filter each s with 2 ≤ span(ai , aj ) ≤ 8
7: Complete-link cluster {s} into clusters {cl}
8: Filter cl with size (size(cl)) ≤ 10
9: return All sentences {scl i ...cln }

10: Add all sentences {scl i ...cln } to commitment set C
11: end for

Parameters were computed using maximum
likelihood estimation (and normalized to sum to
1), based on a linear interpolation of three mea-
sures of the “goodness” of p (as compared to the
original input sentence, s).

para(p|s) = λwnpara(p|s)+λfreqpara(p|s)+λdistpara(p|s)
(1)

Each candidate paraphrase was then assigned
a paraphrase score as in (Glickman and Dagan,
2005). The likelihood that a word wp from a para-
phrase was a valid paraphrase of a word from an
original commitment wc was computed as in (2),
where p(wp) and p(wo) computed from the rela-
tive frequency of the occurrence of wp and wo in
the set of clusters generated for c, and p(k) was
computed from the frequency of each “overlap-
ping” term found in the paraphrase and the orig-
inal c. The top 5 paraphrases generated for each
c were then used to generate new versions of each
commitment.

ppara(wp |wo) = p(wp)p(wo)
∏

i=1
np(ki) (2)

4 Commitment Selection
Following Commitment Extraction, we used a lex-
ical alignment technique first introduced in (Taskar
et al., 2005b) in order to select the commitment ex-
tracted from t (henceforth, ct ) which represents the
best alignment for each of the individual commit-
ments extracted from h (henceforth, ch ).

We assume that the alignment of two discourse
commitments can be cast as a maximum weighted
matching problem in which each pair of words
(ti ,hj ) in an commitment pair (ct ,ch ) is assigned
a score sij (t, h) corresponding to the likelihood

that ti is aligned to hj .5 As with (Taskar et al.,
2005b), we use the large-margin structured predic-
tion model introduced in (Taskar et al., 2005a) in
order to compute a set of parameters w (computed
with respect to a set of features f ) which maxi-
mize the number of correct alignment predictions
(ȳi ) made given a set of training examples (xi ), as
in Equation (3).

yi = arg max ȳ i∈Y w>f(xi , ȳi), ∀i (3)

We used three sets of features in our model:
(1) string features (including Levenshtein edit dis-
tance, string equality, and stemmed string equal-
ity), (2) lexico-semantic features (including Word-
Net Similarity (Pedersen et al., 2004)), and (3)
word association features (computed using the
Dice coefficient (Dice, 1945)6). Training data
came from hand-annotated token alignments for
each of the 800 entailment pairs included in the
RTE-3 Development Set

Following alignment, we used the sum of the
edge scores (

∑
i ,j=1

nsij (ti , hj )) computed for
each of the possible (ct , ch ) pairs in order to search
for the ct which represented the reciprocal best
hit (Mushegian and Koonin, 1996) of each ch ex-
tracted from the hypothesis. This was performed
by selecting a commitment pair (ct , ch ) where ct

was the top-scoring alignment candidate for ch and
ch was the top-scoring alignment candidate for ct .
If no reciprocal best-hit could be found for any of
the commitments extracted from the h, the system
automatically returned a TE judgment of NO.

5 Entailment Classification
We used a decision tree to estimate the likelihood
that a commitment pair represented a valid in-
stance of textual entailment. Confidence values as-
sociated with each leaf node (i.e. YES or NO) were
normalized and used to rank examples for the of-
ficial submission. Features were selected manu-
ally by performing ten-fold cross validation on the
combined development sets from the three previ-
ous PASCAL RTE Challenges (2400 examples).

5In order to ensure that content from the h is reflected in
the t, we assume that each word from the h is aligned to ex-
actly one or zero words from the t.

6The Dice coefficient was computed as Dice(i) =
2Cth (i)

Ct (i)Ch (i)
, where Cth is equal to the number of times a word

i was found in both the t and an h of a single entailment pair,
while Ct and Ch were equal to the number of times a word
was found in any t or h, respectively. A hand-crafted corpus
of 100,000 entailment pairs was used to compute values for
Ct , Ch , and Cth .
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Features used in our classifier were selected from
a number of sources, including (Hickl et al., 2006;
Zanzotto et al., 2006; Glickman and Dagan, 2005).

A partial list of the features used in the Entail-
ment Classifier used in our system is provided in
Figure 3.

ALIGNMENT FEATURES: Derived from the results of the alignment
of each pair of commitments performed during Commitment Selec-
tion.
�1� LONGEST COMMON STRING: This feature represents the longest
contiguous string common to both texts.
�2� UNALIGNED CHUNK: This feature represents the number of
chunks in one text that are not aligned with a chunk from the other
�3� LEXICAL ENTAILMENT PROBABILITY: Defined as in (Glickman
and Dagan, 2005).

DEPENDENCY FEATURES: Computed from the semantic depen-
dencies identified by the PropBank- and NomBank-based semantic
parsers.
�1� ENTITY-ARG MATCH: This is a boolean feature which fires when
aligned entities were assigned the same argument role label.
�2� ENTITY-NEAR-ARG MATCH: This feature is collapsing the ar-
guments Arg1 and Arg2 (as well as the ArgM subtypes) into single
categories for the purpose of counting matches.
�3� PREDICATE-ARG MATCH: This boolean feature is flagged when
at least two aligned arguments have the same role.
�4� PREDICATE-NEAR-ARG MATCH: This feature is collapsing the ar-
guments Arg1 and Arg2 (as well as the ArgM subtypes) into single
categories for the purpose of counting matches.

SEMANTIC/PRAGMATIC FEATURES: Extracted during prepro-
cessing.
�1� NAMED ENTITY CLASS: This feature has a different value for
each of the 150 named entity classes.
�2� TEMPORAL NORMALIZATION: This boolean feature is flagged
when the temporal expressions are normalized to the same ISO
8601 equivalents.
�3� MODALITY MARKER: This boolean feature is flagged when the
two texts use the same modal verbs.
�4� SPEECH-ACT: This boolean feature is flagged when the lexicons
indicate the same speech act in both texts.
�5� FACTIVITY MARKER: This boolean feature is flagged when the
factivity markers indicate either TRUE or FALSE in both texts simul-
taneously.
�6� BELIEF MARKER: This boolean feature is set when the belief
markers indicate either TRUE or FALSE in both texts simultaneously.

Figure 3: Features used in the Entailment Classi-
fier

6 Experiments and Results
We evaluated the performance of our commitment-
based system for RTE against the 1600 examples
found in the PASCAL RTE-2 and RTE-3 datasets.7
Table 1 presents results from our system when
trained on the 1600 examples taken from the RTE-
2 and RTE-3 Test Sets.

Accuracy varied significantly (p <0.05) across
each of the four tasks. Performance (in terms of
accuracy and average precision) was highest on the

7Data created for the PASCAL RTE-2 and RTE-3 chal-
lenges was organized into four datasets which sought to ap-
proximate the kinds of inference required by four different
NLP applications: information extraction (IE), information
retrieval (IR), question-answering (QA), and summarization
(SUM). The RTE-3 Test Sets includes 683 “short” examples
and 117 “long” examples; the RTE-2 Test Set includes 800
“short” examples.

Task Length IE IR QA SUM Total
RTE-2 Short 0.753 0.883 0.863 0.855 0.8385
RTE-3 Short 0.784 0.911 0.909 0.869 0.8331
RTE-3 Long 0.789 0.778 0.943 0.778 0.8290
Total – 0.7690 0.8790 0.8890 0.8600 0.8493

Table 1: Performance of Commitment-based RTE.

QA set (88.9% accuracy) and lowest on the IE set
(76.9%). The length of the text (either “short” or
“long”) did not significantly impact performance,
however; in fact, as can be seen in Table 1, average
accuracy was nearly the same for examples featur-
ing “short” or “long” texts.

In order to quantify the impact that additional
sources of training data could have on the perfor-
mance an RTE system (and to facilitate compar-
isons with top systems like (Hickl et al., 2006),
which were trained on tens of thousands of en-
tailment pairs), we used the techniques described
in (Bensley and Hickl, 2008) to generate a large
training set of 100,000 text-hypothesis pairs in or-
der to train our entailment classifier. Table 2 sum-
marizes the performance of our RTE system on the
RTE-2 and RTE-3 Test Sets when trained on in-
creasing amounts of training data.8

Training Corpus Accuracy Average Precision
800 pairs (RTE-2 Dev) 0.8493 0.8611

10,000 pairs 0.8550 0.8742
25,000 pairs 0.8489 0.8322
50,000 pairs 0.8575 0.8505

100,000 pairs 0.8850 0.8785

Table 2: Impact of Training Corpus Size.
Unlike (Hickl et al., 2006), we experienced only

a small increase (3%) in overall accuracy when
training on increasingly larger corpora of exam-
ples. While large training corpora may provide
an important source of knowledge for RTE, these
results suggest that our commitment extraction-
based approach may nullify the gains in per-
formance seen by pure classification-based ap-
proaches. We believe that by training an entail-
ment classification model based on the output of
a commitment extraction module, we can reduce
the number of deleterious features included in the
model – and thereby, reduce the overall number of
training examples needed to achieve the same level
of performance.

In a second experiment, we investigated the
performance gains that could be attributed to the
choice of weighting function used to select com-
mitments from a commitment set. In order to

8In the RTE evaluations, accuracy is defined as the per-
centage of entailment judgments correctly identified by the
system. Average precision is defined as “the average of the
system’s precision values at all points in the ranked list in
which recall increases”.
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Approach Without Paraphrasing With Paraphrasing ∆
Term overlap (Zanzotto et al., 2006) 0.5950 0.6750 +0.0800
Approximate Tree Edit Distance (Schilder and McInnes, 2006) 0.6550 0.5933 -0.0617
LEP (Glickman et al., 2005) 0.6000 0.6800 +0.0800
Lexical Similarity (Adams, 2006) 0.6200 0.6788 +0.0588
Graph Matching (MacCartney et al., 2006) 0.6433 0.6533 +0.0100
Classification-Based Alignment (Hickl et al., 2006) 0.7650 0.7700 + 0.0050
Structured Prediction-Based Alignment (Taskar et al., 2005a) 0.7900 0.8493 + 0.0593

Table 3: Impact of Commitment Selection Learning.

perform this comparison, we implemented a total
of 7 different functions previously investigated by
teams participating in the previous PASCAL RTE
Challenges, including (1) a simple term-overlap
measure introduced as a baseline in (Zanzotto et
al., 2006), (2) the approximate tree edit distance
metric used by (Schilder and McInnes, 2006),
(3) (Glickman et al., 2005)’s measure of lexical en-
tailment probability (LEP), (4) the lexical similar-
ity measure described in (Adams, 2006), (5) our
interpretation of the semantic graph-matching ap-
proach described in (MacCartney et al., 2006), (6)
the classification-based term alignment approach
described in (Hickl et al., 2006), and (7) the struc-
tured prediction-based alignment approach intro-
duced in this paper. Results from this 7-way com-
parison are presented in Table 3.

While we found that the choice of mechanism
used to weight commitments did significantly im-
pact RTE performance (p < 0.05), the inclusion
of generated paraphrases appeared to only have
a slight positive impact on overall performance,
boosting RTE accuracy by an average of 3.1%
(across the 7 methods), and by a total of 5.9%
in the approach we describe in this paper. While
paraphrasing can be used to enhance the perfor-
mance of some current RTE systems (see perfor-
mance of the Tree Edit Distance-based RTE sys-
tem for a case where paraphrasing negatively im-
pacted performance), realized gains are still rela-
tively modest across most approaches.

In a third experiment, we found that RTE perfor-
mance depended on both the type – and the num-
ber – of commitments extracted from a t-h pair,
regardless of the learning algorithm used in com-
mitment selection. Table 4 presents results from
experiments when (1) no commitment extraction
was conducted, (2) extraction strategies were run
in isolation9, (3) combinations of extraction strate-
gies were considered, or (4) all of possible extrac-
tion strategies (listed in Section 3) were consid-
ered. The best-performing condition for each RTE

9Four strategies were considered: (1) syntactic decompo-
sition (SD), (2) supplemental expression (SE) extraction, (3)
coreference resolution (Coref), (4) and paraphrasing (Para).

strategy is presented in bold.
Increasing the amount of linguistic knowledge

available from a commitment set did significantly
(p < 0.05) impact the performance of RTE, regard-
less of the actual learning algorithm used to com-
pute the likelihood of an entailment relationship.
Combining all four extraction strategies proved
best for four RTE approaches (Term Overlap, Lex-
ical Entailment Probability, Graph Matching, and
Structured Prediction-based Alignment). Includ-
ing coreference-based commitments reduced the
accuracy of two RTE strategies (Lexical Similarity
and Classification-based Alignment). This is most
likely due to the fact that coreference-based com-
mitments reincorporate the antecedent of pronouns
and other referring expressions into the generated
commitments, thereby adding additional lexical
information to the sets of features used in comput-
ing entailment.

7 Conclusions
This paper introduced a new framework for rec-
ognizing textual entailment which depends on the
extraction of the discourse commitments that can
be inferred from a conventional interpretation of a
text passage. By explicitly enumerating the set of
inferences that can be drawn from a t or h, our ap-
proach is able to reduce the task of RTE to the iden-
tification of the set of commitments that support
the inference of each corresponding commitment
extracted from a hypothesis. This approach cor-
rectly classified more than 80% of examples from
the PASCAL RTE Test Sets, without the need for
additional sources of training data.
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