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Abstract

In this paper we generalise the sen-
tence compression task. Rather than sim-
ply shorten a sentence by deleting words
or constituents, as in previous work, we
rewrite it using additional operations such
as substitution, reordering, and insertion.
We present a new corpus that is suited
to our task and a discriminative tree-to-
tree transduction model that can naturally
account for structural and lexical mis-
matches. The model incorporates a novel
grammar extraction method, uses a lan-
guage model for coherent output, and can
be easily tuned to a wide range of compres-
sion specific loss functions.

1 Introduction

Automatic sentence compression can be broadly
described as the task of creating a grammatical
summary of a single sentence with minimal in-
formation loss. It has recently attracted much at-
tention, in part because of its relevance to appli-
cations. Examples include the generation of sub-
titles from spoken transcripts (Vandeghinste and
Pan, 2004), the display of text on small screens
such as mobile phones or PDAs (Corston-Oliver,
2001), and, notably, summarisation (Jing, 2000;
Lin, 2003).

Most prior work has focused on a specific
instantiation of sentence compression, namely
word deletion. Given an input sentence of
words, w1, w2 . . . wn, a compression is formed
by dropping any subset of these words (Knight
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and Marcu, 2002). The simplification renders the
task computationally feasible, allowing efficient
decoding using a dynamic program (Knight and
Marcu, 2002; Turner and Charniak, 2005; McDon-
ald, 2006). Furthermore, constraining the problem
to word deletion affords substantial modeling flex-
ibility. Indeed, a variety of models have been suc-
cessfully developed for this task ranging from in-
stantiations of the noisy-channel model (Knight
and Marcu, 2002; Galley and McKeown, 2007;
Turner and Charniak, 2005), to large-margin learn-
ing (McDonald, 2006; Cohn and Lapata, 2007),
and Integer Linear Programming (Clarke, 2008).
However, the simplification also renders the task
somewhat artificial. There are many rewrite opera-
tions that could compress a sentence, besides dele-
tion, including reordering, substitution, and inser-
tion. In fact, professional abstractors tend to use
these operations to transform selected sentences
from an article into the corresponding summary
sentences (Jing, 2000).

Therefore, in this paper we consider sentence
compression from a more general perspective and
generate abstracts rather than extracts. In this
framework, the goal is to find a summary of the
original sentence which is grammatical and con-
veys the most important information without nec-
essarily using the same words in the same or-
der. Our task is related to, but different from,
paraphrase extraction (Barzilay, 2003). We must
not only have access to paraphrases (i.e., rewrite
rules), but also be able to combine them in order to
generate new text, while attempting to produce a
shorter resulting string. Quirk et al. (2004) present
an end-to-end paraphrasing system inspired by
phrase-based machine translation that can both ac-
quire paraphrases and use them to generate new
strings. However, their model is limited to lexical
substitution — no reordering takes place — and is
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lacking the compression objective.
Once we move away from extractive compres-

sion we are faced with two problems. First, we
must find an appropriate training set for our ab-
stractive task. Compression corpora are not natu-
rally available and existing paraphrase corpora do
not normally contain compressions. Our second
problem concerns the modeling task itself. Ideally,
our learning framework should handle structural
mismatches and complex rewriting operations.

In what follows, we first present a new cor-
pus for abstractive compression which we created
by having annotators compress sentences while
rewriting them. Besides obtaining useful data for
modeling purposes, we also demonstrate that ab-
stractive compression is a meaningful task. We
then present a tree-to-tree transducer capable of
transforming an input parse tree into a compressed
parse tree. Our approach is based on synchronous
tree substitution grammar (STSG, Eisner (2003)),
a formalism that can account for structural mis-
matches, and is trained discriminatively. Specifi-
cally, we generalise the model of Cohn and Lapata
(2007) to our abstractive task. We present a novel
tree-to-tree grammar extraction method which ac-
quires paraphrases from bilingual corpora and en-
sure coherent output by including a ngram lan-
guage model as a feature. We also develop a num-
ber of loss functions suited to the abstractive com-
pression task. We hope that some of the work de-
scribed here might be of relevance to other gen-
eration tasks such as machine translation (Eisner,
2003), multi-document summarisation (Barzilay,
2003), and text simplification (Carroll et al., 1999).

2 Abstractive Compression Corpus

A stumbling block to studying abstractive sentence
compression is the lack of widely available corpora
for training and testing. Previous work has been
conducted almost exclusively on Ziff-Davis, a cor-
pus derived automatically from document abstract
pairs (Knight and Marcu, 2002), or on human-
authored corpora (Clarke, 2008). Unfortunately,
none of these data sources are suited to our prob-
lem since they have been produced with a sin-
gle rewriting operation, namely word deletion. Al-
though there is a greater supply of paraphrasing
corpora, such as the Multiple-Translation Chinese
(MTC) corpus1 and the Microsoft Research (MSR)
Paraphrase Corpus (Quirk et al., 2004), they are
also not ideal, since they have not been created

1Available by the LDC, Catalog Number LDC2002T01,
ISBN 1-58563-217-1.

with compression in mind. They contain ample
rewriting operations, however they do not explic-
itly target information loss.

For the reasons just described, we created our
own corpus. We collected 30 newspaper articles
(575 sentences) from the British National Corpus
(BNC) and the American News Text corpus, for
which we obtained manual compressions. In or-
der to confirm that the task was feasible, five of
these documents were initially compressed by two
annotators (not the authors). The annotators were
given instructions that explained the task and de-
fined sentence compression with the aid of exam-
ples. They were asked to paraphrase while preserv-
ing the most important information and ensuring
the compressed sentences remained grammatical.
They were encouraged to use any rewriting opera-
tions that seemed appropriate, e.g., to delete words,
add new words, substitute them or reorder them.

Assessing inter-annotator agreement is notori-
ously difficult for paraphrasing tasks (Barzilay,
2003) since there can be many valid outputs for
a given input. Also our task is doubly subjective
in deciding which information to remove from the
sentence and how to rewrite it. In default of an
agreement measure that is well suited to the task
and takes both decisions into account, we assessed
them separately. We first examined whether the an-
notators compressed at a similar level. The com-
pression rate was 56% for one annotator and 54%
for the other.2 We also assessed whether they
agreed in their rewrites by measuring BLEU (Pap-
ineni et al., 2002). The inter-annotator BLEU score
was 23.79%, compared with the source agreement
BLEU of only 13.22%. Both the compression rate
and BLEU score indicate that the task is well-
defined and the compressions valid. The remain-
ing 25 documents were compressed by a single an-
notator to ensure consistency. All our experiments
used the data from this annotator.3

Table 1 illustrates some examples from our cor-
pus. As can be seen, some sentences contain a sin-
gle rewrite operation. For instance, a PP is para-
phrased with a genitive (see (1)), a subordinate
clause with a present participle (see (2)), a passive
sentence with an active one (see (3)). However, in
most cases many rewrite decisions take place all
at once. Consider sentence (4). Here, the conjunc-
tion high winds and snowfalls is abbreviated to

2The term “compression rate” refers to the percentage of
words retained in the compression.

3Available from http://homepages.inf.ed.ac.uk/
tcohn/paraphrase.
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1a. The future of the nation is in your hands.
1b. The nation’s future is in your hands.
2a. As he entered a polling booth in Katutura, he said.
2b. Entering a polling booth in Katutura, he said.
3a. Mr Usta was examined by Dr Raymond Crockett, a

Harley Street physician specialising in kidney disease.
3b. Dr Raymond Crockett, a Harley Street physician, ex-

amined Mr Usta.
4a. High winds and snowfalls have, however, grounded

at a lower level the powerful US Navy Sea Stallion
helicopters used to transport the slabs.

4b. Bad weather, however, has grounded the helicopters
transporting the slabs.

5a. To experts in international law and relations, the US
action demonstrates a breach by a major power of in-
ternational conventions.

5b. Experts say the US are in breach of international con-
ventions.

Table 1: Compression examples from our corpus; (a) sen-
tences are the source, (b) sentences the target.

bad weather and the infinitive clause to transport
to the present participle transporting. Note that the
prenominal modifiers US Navy Sea Stallion and
the verb used have been removed. In sentence (5),
the verb say is added and the NP a breach by a
major power of international conventions is para-
phrased by the sentence the US are in breach of
international conventions.

3 Basic Model

Our work builds on the model developed by Cohn
and Lapata (2007). They formulate sentence com-
pression as a tree-to-tree rewriting task. A syn-
chronous tree substitution grammar (STSG, Eisner
(2003)) licenses the space of all possible rewrites.
Each grammar rule is assigned a weight, and
these weights are learnt in discriminative training.
For prediction, a specialised generation algorithm
finds the best scoring compression using the gram-
mar rules. Cohn and Lapata apply this model to ex-
tractive compression with state-of-the-art results.

This model is appealing for our task for several
reasons. Firstly, the synchronous grammar pro-
vides expressive power to model consistent syn-
tactic effects such as reordering, changes in non-
terminal categories and lexical substitution. Sec-
ondly, it is discriminatively trained, which allows
for the incorporation of all manner of powerful fea-
tures. Thirdly, the learning framework can be tai-
lored to the task by choosing an appropriate loss
function. In the following we describe their model
in more detail with emphasis on the synchronous
grammar, the model structure, and the prediction
and training algorithms. Section 4 presents our ex-
tensions and modifications.

Grammar The grammar defines a space of
tree pairs over uncompressed and compressed sen-

Grammar rules:
〈S, S〉 → 〈NP 1 VBD 2 NP 3 , NP 1 VBD 2 NP 3 〉
〈S, S〉 → 〈NP 1 VBD 2 NP 3 , NP 3 was VBN 2 by NP 1 〉
〈NP, NP〉 → 〈he, him〉
〈NP, NP〉 → 〈he, he〉
〈NP, NP〉 → 〈he, Peter〉
〈VBD, VBN〉 → 〈sang, sung〉
〈NP, NP〉 → 〈a song, a song〉
Input tree:
[S [NP HeNP [VP sangVBD [NP aDT songNN]]]

Output trees:
[S [NP He] [VP sang [NP a song]]]
[S [NP Him] [VP sang [NP a song]]]
[S [NP Peter] [VP sang [NP a song]]]
[S [NP A song] [VP was [VP sung [PP by he]]]]
[S [NP A song] [VP was [VP sung [PP by him]]]]
[S [NP A song] [VP was [VP sung [PP by Peter]]]]

Figure 1: Example grammar and the output trees it licences
for an input tree. The numbered boxes in the rules denote
linked variables. Pre-terminal categories are not shown for the
output trees for the sake of brevity.

tences, which we refer to henceforth as the source
and target. We use the grammar to find the set of
sister target sentences for a given source sentence.
Figure 1 shows a toy grammar and the set of possi-
ble target (output) trees for the given source (input)
tree. Each output tree is created by applying a se-
ries of grammar rules, where each rule matches a
fragment of the source and creates a fragment of
the target tree. A rule in the grammar consists of
a pair of elementary trees and a mapping between
the variables (frontier non-terminals) in both trees.
A derivation is a sequence of rules yielding a target
tree with no remaining variables.

Cohn and Lapata (2007) extract a STSG from
a parsed, word-aligned corpus of source and tar-
get sentences. Specifically, they extract the mini-
mal set of synchronous rules which can describe
each tree pair. These rules are minimal in the sense
that they cannot be made smaller (e.g., by replac-
ing a subtree with a variable) while still honouring
the word-alignment.

Decoding The grammar allows us to search
for all sister trees for a given tree. The decoder
maximises over this space:

y∗ =arg max
y:S(y)=x

Ψ(y) (1)

where Ψ(y) =
∑
r∈y

〈φ(r, S(y)), λ〉 (2)

Here x is the source (uncompressed) tree, y
is a derivation which produces the source tree,
S(y) = x, and a target tree, T (y),4 and r is a gram-
mar rule. The Ψ function scores the derivation and

4Equation 1 optimises over derivations rather than target
trees to allow tractable inference.
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is defined in (2) as a linear function over the rules
used. Each rule’s score is an inner product between
its feature vector, φ(r,yS), and the model parame-
ters, λ. The feature functions are set by hand, while
the model parameters are learned in training.

The maximisation problem in (1) can be solved
efficiently using a dynamic program. Derivations
will have common sub-structures whenever they
transduce the same source sub-tree into a target
sub-tree. This is captured in a chart, leading to
an efficient bottom-up algorithm. The asymptotic
time complexity of this search is O(SR) where S
is the number of source nodes and R is the number
of rules matching a given node.

Training The model is trained using
SVMstruct, a large margin method for structured
output problems (Joachims, 2005; Tsochantaridis
et al., 2005). This training method allows the use
of a configurable loss function, ∆(y∗,y), which
measures the extent to which the model’s predic-
tion, y, differs from the reference, y∗. Central
to training is the search for a derivation which
is both high scoring and has high loss compared
to the gold standard.5 This requires finding the
maximiser of H(y) in one of:

Hs = (1− 〈Ψ(y∗)−Ψ(y), λ〉)∆(y∗,y)
Hm = ∆(y∗,y)− 〈Ψ(y∗)−Ψ(y), λ〉 (3)

where the subscripts s and m denote slack and
margin rescaling, which are different formulations
of the training problem (see Tsochantaridis et al.
(2005) and Taskar et al. (2003) for details).

The search for the maximiser of H(y) in (3)
requires the tracking of the loss value. This can
be achieved by extending the decoding algorithm
such that the chart cells also store the loss param-
eters (e.g., for precision, the number of true and
false positives (Joachims, 2005)). Consequently,
this extension leads to a considerably higher time
and space complexity compared to decoding. For
example, with precision loss the time complexity
is O(S3R) as each step must consider O(S2) pos-
sible loss parameter values.

4 Extensions

In this section we present our extensions of Cohn
and Lapata’s (2007) model. The latter was de-
signed with the simpler extractive compression in
mind and cannot be readily applied to our task.

5Spurious ambiguity in the grammar means that there are
often many derivations linking the source and target. We fol-
low Cohn and Lapata (2007) by choosing the derivation with
the most rules, which should provide good generalisation.

Grammar It is relatively straightforward to
extract a grammar from our corpus. This grammar
will contain many rules encoding deletions and
structural transformations but there will be many
unobserved paraphrases, no matter how good the
extraction method (recall that our corpus consists
solely of 565 sentences). For this reason, we ex-
tract a grammar from our abstractive corpus in the
manner of Cohn and Lapata (2007) (see Section 5
for details) and augment it with a larger gram-
mar obtained from a parallel bilingual corpus. Cru-
cially, our second grammar will not contain com-
pression rules, just paraphrasing ones. We leave it
to the model to learn which rules serve the com-
pression objective.

Our paraphrase grammar extraction method
uses bilingual pivoting to learn paraphrases over
syntax tree fragments, i.e., STSG rules. Pivoting
treats the paraphrasing problem as a two-stage
translation process. Some English text is translated
to a foreign language, and then translated back into
English (Bannard and Callison-Burch, 2005):

p(e′|e) =
∑

f

p(e′|f)p(f |e) (4)

where p(f |e) is the probability of translating
an English string e into a foreign string f and
p(e′|f) the probability of translating the same for-
eign string into some other English string e′. We
thus obtain English-English translation probabili-
ties p(e′|e) by marginalizing out the foreign text.

Instead of using strings (Bannard and Callison-
Burch, 2005), we use elementary trees on the En-
glish side, resulting in a monolingual STSG. We
obtain the elementary trees and foreign strings us-
ing the GKHM algorithm (Galley et al., 2004).
This takes as input a bilingual word-aligned corpus
with trees on one side, and finds the minimal set
of tree fragments and their corresponding strings
which is consistent with the word alignment. This
process is illustrated in Figure 2 where the aligned
pair on the left gives rise to the rules shown on
the right. Note that the English rules and for-
eign strings shown include variable indices where
they have been generalised. We estimate p(f |e)
and p(e′|f) from the set of tree-to-string rules
and then then pivot each tree fragment to produce
STSG rules. Figure 3 illustrates the process for the
[VP does not VP] fragment.
Modeling and Decoding Our grammar is
much larger and noisier than a grammar extracted
solely for deletion-based compression. So, in or-
der to encourage coherence and inform lexical se-

140



S

NP VP

VBZ

does

RB

goHe not

ne pasIl va

PRP VP

NP

He

Il

PRP

go

vaVP

VP

VBZ

does

RB

not

ne    pas

VP

S
NP VP

           

1 2

1

1

1 2

Figure 2: Tree-to-string grammar extraction using the GHKM
algorithm, showing the aligned sentence pair and the resulting
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Figure 3: Pivoting the [VP does not VP] fragment.

lection we incorporate a ngram language model
(LM) as a feature. This requires adapting the scor-
ing function, Ψ, in (2) to allow features over target
ngrams:

Ψ(y) =
∑
r∈y

〈φ(r, S(y)), λ〉+
∑

m∈T (y)

〈ψ(m,S(y)), λ〉

(5)
where m are the ngrams and ψ is a new fea-
ture function over these ngrams (we use only one
ngram feature: the trigram log-probability). Sadly,
the scoring function in (5) renders the chart-based
search used for training and decoding intractable.
In order to provide sufficient context to the chart-
based algorithm, we must also store in each chart
cell the n − 1 target tokens at the left and right
edges of its yield. This is equivalent to using as
our grammar the intersection between the original
grammar and the ngram LM (Chiang, 2007), and
increases the decoding complexity to an infeasible
O(SRL2(n−1)V ) whereL is the size of the lexicon.
We adopt a popular approach in syntax-inspired
machine translation to address this problem (Chi-
ang, 2007). The idea is to use a beam-search over
the intersection grammar coupled with the cube-
pruning heuristic. The beam limits the number of
items in a given chart cell to a fixed constant, re-
gardless of the number of possible LM contexts
and non-terminal categories. Cube-pruning further
limits the number of items considered for inclu-
sion in the beam, reducing the time complexity
to a more manageable O(SRBV ) where B is the
beam size. We refer the interested reader to Chiang
(2007) for details.

Training The extensions to the model in (5)
also necessitate changes in the training proce-
dure. Recall that training the basic model of Cohn
and Lapata (2007) requires finding the maximiser
of H(y) in (3). Their model uses a chart-based al-
gorithm for this purpose. As in decoding we also
use a beam search for training, thereby avoiding
the exponential time complexity of exact search.
The beam search requires an estimate of the qual-
ity for incomplete derivations. We use the margin
rescaling objective, Hm in (3), and approximate
the loss using the current (incomplete) loss param-
eter values in each chart cell. We use a wide beam
of 200 unique items or 500 items in total to reduce
the impact of the approximation.

Our loss functions are tailored to the task and
draw inspiration from metrics developed for ex-
tractive compression but also for summarisation
and machine translation. They are based on the
Hamming distance over unordered bags of items.
This measures the number of predicted items that
did not appear in the reference, along with a
penalty for short output:

∆hamming(y∗,y) = f+max (l − (t+ f), 0) (6)

where t and f are the number of true and false
positives, respectively, when comparing the pre-
dicted target, y, with the reference, y∗, and l is
the length of the reference. The second term pe-
nalises short output, as predicting very little or
nothing would otherwise be unpenalised. We have
three Hamming loss functions over: 1) tokens,
2) ngrams (n ≤ 3), or 3) CFG productions. These
losses all operate on unordered bags and there-
fore might reward erroneous predictions. For ex-
ample, a permutation of the reference tokens has
zero token-loss. The CFG and ngram losses have
overlapping items which encode a partial order,
and therefore are less affected.

In addition, we developed a fourth loss func-
tion to measure the edit distance between the
model’s prediction and the reference, both as bags-
of-tokens. This measures the number of insertions
and deletions. In contrast to the previous loss func-
tions, this requires the true positive counts to be
clipped to the number of occurrences of each type
in the reference. The edit distance is given by:

∆edit(y∗,y) = p+ q − 2
∑

i

min(pi, qi) (7)

where p and q denote the number of target tokens
in the predicted and reference derivation, respec-
tively, and pi and qi are the counts for type i.
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〈ADJP,NP〉 → 〈subject [PP to NP 1 ], part [PP of NP 1 ]〉 (T)

〈ADVP,RB〉 → 〈as well, also〉 (T)
〈ADJP,JJ〉 → 〈too little, insufficient〉 (P)

〈S,S〉 → 〈S 1 and S 2 , S 2 and S 1 〉 (P)

〈NP,NP〉 → 〈DT 1 NN 2 , DT 1 NN 2 〉 (S)

〈NP,NP〉 → 〈DT 1 NN 2 , NN 2 〉 (S)

Table 2: Sample grammar rules extracted from the training
set (T), pivoted set (P) or generated from the source (S).

5 Experimental Design

In this section we present our experimental set-
up for assessing the performance of our model.
We give details on the corpora and grammars we
used, model parameters and features,6 the baseline
used for comparison with our approach, and ex-
plain how our system output was evaluated.
Grammar Extraction Our grammar used
rules extracted directly from our compression cor-
pus (the training partition, 480 sentences) and a
bilingual corpus (see Table 2 for examples). The
former corpus was word-aligned using the Berke-
ley aligner (Liang et al., 2006) initialised with
a lexicon of word identity mappings, and parsed
with Bikel’s (2002) parser. From this we extracted
grammar rules following the technique described
in Cohn and Lapata (2007). For the pivot grammar
we use the French-English Europarl v2 which con-
tains approximately 688K sentences. Again, the
corpus was aligned using the Berkeley aligner and
the English side was parsed with Bikel’s parser. We
extracted tree-to-string rules using our implemen-
tation of the GHKM method. To ameliorate the ef-
fects of poor alignments on the grammar, we re-
moved singleton rules before pivoting.

In addition to the two grammars described, we
scanned the source trees in the compression cor-
pus and included STSG rules to copy each CFG
production or delete up to two of its children. This
is illustrated in Table 2 where the last two rules are
derived from the CFG production NP→DT NN in
the source tree. All trees are rooted with a distin-
guished TOP non-terminal which allows the ex-
plicit modelling of sentence spanning sub-trees.
These grammars each had 44,199 (pivot), 7,813
(train) and 22,555 (copy) rules. We took their
union, resulting in 58,281 unique rules and 13,619
unique source elementary trees.
Model Parameters Our model was trained
on 480 sentences, 36 sentences were used for de-
velopment and 59 for testing. We used a variety
of syntax-based, lexical and compression-specific

6The software and corpus can be downloaded from
http://homepages.inf.ed.ac.uk/tcohn/paraphrase.

For every rule:
origin of rule
for each origin, o: log po(s, t), log po(s|t), log po(t|s)
sR, tR, sR ∨ tR

s, t, s ∨ t, s = t
both s and t are pre-terminals and s = t or s 6= t
number of terminals/variables/dropped variables
ordering of variables as numbers/non-terminals
non-terminal sequence of vars identical after reordering
pre-terminal or terminal sequences are identical
number/identity of common/inserted/dropped terminals
source is shorter/longer than target
target is a compression of the source using deletes
For every ngram :
log p(wi|wi−1

i−(n−1))

Table 3: The feature set. Rules were drawn from the training
set, bilingual pivoting and directly from the source trees. s and
t are the source and target elementary trees in a rule, the sub-
script R references the root non-terminal, w are the terminals
in the target tree.

features (196,419 in total). These are summarised
in Table 3. We also use a trigram language model
trained on the BNC (100 million words) using the
SRI Language Modeling toolkit (Stolcke, 2002),
with modified Kneser-Ney smoothing.

An important parameter in our modeling frame-
work is the choice of loss function. We evaluated
the loss functions presented in Section 4 on the de-
velopment set. We ran our system for each of the
four loss functions and asked two human judges
to rate the output on a scale of 1 to 5. The Ham-
ming loss over tokens performed best with a mean
rating of 3.18, closely followed by the edit dis-
tance (3.17). We chose the former over the latter
as it is less coarsely approximated during search.

Baseline There are no existing models that
can be readily trained on our abstractive com-
pression data. Instead, we use Cohn and Lapata’s
(2007) extractive model as a baseline. The latter
was trained on an extractive compression corpus
drawn from the BNC (Clarke, 2008) and tuned
to provide a similar compression rate to our sys-
tem. Note that their model is a strong baseline:
it performed significantly better than competitive
approaches (McDonald, 2006) across a variety of
compression corpora.

Evaluation Methodology Sentence compres-
sion output is commonly evaluated by eliciting
human judgments. Following Knight and Marcu
(2002), we asked participants to rate the grammati-
cality of the target compressions and how well they
preserved the most important information from
the source. In both cases they used a five point
rating scale where a high number indicates bet-
ter performance. We randomly selected 30 sen-
tences from the test portion of our corpus. These
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Models Grammaticality Importance CompR
Extract 3.10∗ 2.43∗ 82.5
Abstract 3.38∗ 2.85∗† 79.2
Gold 4.51 4.02 58.4

Table 4: Mean ratings on compression output elicited by hu-
mans; ∗: significantly different from the gold standard; †: sig-
nificantly different from the baseline.

sentences were compressed automatically by our
model and the baseline. We also included gold
standard compressions. Our materials thus con-
sisted of 90 (30 × 3) source-target sentences. We
collected ratings from 22 unpaid volunteers, all
self reported native English speakers. Both studies
were conducted over the Internet using a custom
built web interface.

6 Results

Our results are summarised in Table 4, where we
show the mean ratings for our system (Abstract),
the baseline (Extract), and the gold standard. We
first performed an Analysis of Variance (ANOVA)
to examine the effect of different system compres-
sions. The ANOVA revealed a reliable effect on
both grammaticality and importance (significant
over both subjects and items (p < 0.01)).

We next examined in more detail between-
system differences. Post-hoc Tukey tests revealed
that our abstractive model received significantly
higher ratings than the baseline in terms of impor-
tance (α < 0.01). We conjecture that this is due
to the synchronous grammar we employ which
is larger and more expressive than the baseline.
In the extractive case, a word sequence is either
deleted or retained. We may, however, want to re-
tain the meaning of the sequence while rendering
the sentence shorter, and this is precisely what our
model can achieve, e.g., by allowing substitutions.
As far as grammaticality is concerned, our abstrac-
tive model is numerically better than the extrac-
tive baseline but the difference is not statistically
significant. Note that our model has to work a lot
harder than the baseline to preserve grammatical-
ity since we allow arbitrary rewrites which may
lead to agreement or tense mismatches, and selec-
tional preference violations. The scope for errors is
greatly reduced when performing solely deletions.

Finally, both the abstractive and extractive out-
puts are perceived as significantly worse than the
gold standard both in terms of grammaticality
and importance (α < 0.01). This is not surpris-
ing: human-authored compressions are more fluent
and tend to omit genuinely superfluous informa-
tion. This is also mirrored in the compression rates
shown in Table 4. When compressing, humans em-

O: Kurtz came from Missouri, and at the age of 14, hitch-
hiked to Los Angeles seeking top diving coaches.

E: Kurtz came from Missouri, and at 14, hitch-hiked to Los
Angeles seeking top diving coaches.

A: Kurtz hitch-hiked to Los Angeles seeking top diving
coaches.

G: Kurtz came from Missouri, and at 14, hitch-hiked to Los
Angeles seeking diving coaches.

O: The scheme was intended for people of poor or moderate
means.

E: The scheme was intended for people of poor means.
A: The scheme was planned for poor people.
G: The scheme was intended for the poor.
O: He died last Thursday at his home from complications

following a fall, said his wife author Margo Kurtz.
E: He died last at his home from complications following a

fall, said wife, author Margo Kurtz.
A: His wife author Margo Kurtz died from complications

after a decline.
G: He died from complications following a fall.
O: But a month ago, she returned to Britain, taking the chil-

dren with her.
E: She returned to Britain, taking the children.
A: But she took the children with him.
G: But she returned to Britain with the children.

Table 5: Compression examples including human and system
output (O: original sentence, E: Extractive model, A: Abstrac-
tive model, G: gold standard)

ploy not only linguistic but also world knowledge
which is not accessible to our model. Although the
system can be forced to match the human compres-
sion rate, the grammaticality and information con-
tent both suffer. More sophisticated features could
allow the system to narrow this gap.

We next examined the output of our system in
more detail by recording the number of substitu-
tions, deletions and insertions it performed on the
test data. Deletions accounted for 67% of rewrite
operations, substitutions for 27%, and insertions
for 6%. Interestingly, we observe a similar ratio
in the human compressions. Here, deletions are
also the most common rewrite operation (69%) fol-
lowed by substitutions (24%), and insertions (7%).
The ability to perform substitutions and insertions
increases the compression potential of our system,
but can also result in drastic meaning changes. In
most cases (63%) the compressions produced by
our system did not distort the meaning of the orig-
inal. Humans are clearly better at this, 96.5% of
their compressions were meaning preserving.

We illustrate example output of our system in
Table 5. For comparison we also present the gold
standard compressions and baseline output. In the
first sentence the system rendered Kurtz the sub-
ject of hitch-hiked. At the same time it deleted the
verb and its adjunct from the first conjunct (came
from Missouri ) as well as the temporal modi-
fier at the age of 14 from the second conjunct.
The second sentence shows some paraphrasing:
the verb intended is substituted with planned and
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poor is now modifying people rather than means.
In the third example, our system applies multi-
ple rewrites. It deletes last Thursday at his home,
moves wife author Margo Kurtz to the subject po-
sition, and substitutes fall with decline. Unfortu-
nately, the compressed sentence expresses a rather
different meaning from the original. It is not Margo
Kurtz who died but her husband. Finally, our last
sentence illustrates a counter-intuitive substitution,
the pronoun her is rewritten as him. This is because
they share the French translation lui and thus piv-
oting learns to replace the less common word (in
legal corpora) her with him. This problem could
be addressed by pivoting over multiple bitexts with
different foreign languages.

Possible extensions and improvements to the
current model are many and varied. Firstly, as
hinted at above, the model would benefit from ex-
tensive feature engineering, including source con-
ditioned features and ngram features besides the
LM. A richer grammar would also boost perfor-
mance. This could be found by pivoting over more
bitexts in many foreign languages or making use
of existing or paraphrase corpora. Finally, we plan
to apply the model to other paraphrasing tasks in-
cluding fully abstractive document summarisation
(Daumé III and Marcu, 2002).
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