Automatic Induction of Rules for Text Simplification

R. Chandrasekar* B. Srinivas
Institute for Research in Department of Computer
Cognitive Science & Center for &
the Advanced Study of India Information Science

University of Pennsylvania, Philadelphia, PA 19104
{mickeyc,srini}@linc.cis.upenn.edu

Abstract

Long and complicated sentences pose various problems to many state-
of-the-art natural language technologies. We have been exploring methods
to automatically transform such sentences as to make them simpler. These
methods involve the use of a rule-based system, driven by the syntax of
the text in the domain of interest. Hand-crafting rules for every domain
is time-consuming and impractical. This paper describes an algorithm and
an implementation by which generalized rules for simplification are auto-
matically induced from annotated training material with a novel partial
parsing technique which combines constituent structure and dependency in-
formation. This algorithm described in the paper employs example-based
generalizations on linguistically-motivated structures.

1 The Need for Text Simplification

Long and complicated sentences pose various problems to many state-of-the-
art natural language technologies. For example, in parsing, as sentences become
syntactically more complex, the number of parses increases, and there is a greater
likelihood for an incorrect parse. In machine translation, complex sentences lead
to increased ambiguity and potentially unsatisfactory translations. Complicated
sentences can also lead to confusion in assembly/use/maintenance manuals for
complex equipment.

We have been exploring methods to automatically simplify such sentences
[Chandrasekar, 1994], [Chandrasekar et al, 1996]. Consider, for example, the
following sentence:

*On leave from the National Centre for Software Technology, Gulmohar Cross Road No. 9,
Juhu, Mumbai 400 049, India

(1) The embattled Major government survived a crucial vote on coal pits
closure as its last-minute concessions curbed the extent of Tory revolt over
an issue that generated unusual heat in the House of Commons and
brought the miners to London streets.

Such sentences are not uncommon in newswire texts. Compare this with an
equivalent (manually) simplified multi-sentence version:

(2) The embattled Major government survived a crucial vote on coal pits
closure. Its last-minute concessions curbed the extent of Tory revolt over
the coal-mine issue. This issue generated unusual heat in the House of
Commons. It also brought the miners to London streets.

Most of the problems listed above are either eliminated or substantially re-
duced for the simplified version shown in (2). For instance, simpler sentences
have fewer constituents, hence fewer ambiguities in identifying attachments and
thus are parsed faster. Simplification would also be of great use in several areas
of natural language processing such as machine translation, information retrieval
and in applications where clarity of text is imperative. Of course, one may lose
some nuances of meaning from the original text in the simplification process.

There has been interest in simplified English from companies such as Boeing
and Xerox. Researchers at Boeing [Hoard et al, 1992], [Wojcik et al, 1993] have
developed a Simplified English Checker. However, their focus is on carefully con-
straining the use of words in a specific domain, and in providing a tool to authors
of machine maintenance/operation manuals to help them adhere to guidelines
aimed at clear written communication. In contrast, our aim is to develop a sys-
tem to (semi-)automatically simplify text from any domain.

The following is the outline of this paper. In Section 2, we present an ar-
chitecture for simplification. The method used for analysis of input is discussed
in Section 3 and the notion of supertags is outlined. In Section 4, we describe
a method by which generalized rules are automatically induced from annotated
training material of newspaper text in English. We discuss some of the issues
pertaining to simplification in Section 5.

2 The Architecture of Simplification

Our simplification system processes one sentence at a time. Discourse related
issues are not considered. We view simplification as a two stage process: analysis
followed by transformation. The analysis stage provides a structural description
of the input, and the transformation stage uses this representation for simplifica-
tion.

The most obvious choice for the analysis stage is to use a full parser to obtain
the complete structure of a sentence. If all the constituents of the sentence along
with the dependency relations are given, simplification is very straightforward.
However, it is well-known that, as sentences become syntactically more complex,
the number of parses increases, and there is a greater likelihood for an incorrect
parse.

We have discussed two alternative approaches to analyzing text, using a finite
state grammar approach [Chandrasekar, 1994] and a dependency based approach
[Chandrasekar et al, 1996]. We summarize the dependency based approach in the
next section. Note that this approach is different from a full parsing approach in
that a complete constituent structure is not created.

We define articulation-points to be those points where sentences may be split
for simplification. Segments of a sentence between two articulation points may
be extracted as simplified sentences. The nature of the segments delineated by
the articulation points depends on the type of the structural analysis performed.
If the sentences are viewed as linear strings of words, we could define articulation
points to be, say, punctuation marks. If the words in the input are also tagged
with part of speech information, we can split sentences based on the category
information, for instance at relative pronouns. With part of speech information,
subordinating and coordinating conjunctions may also be detected and used as
articulation points. However, with just this information, the span of the subordi-
nating/coordinating clause would be difficult to determine. On the other hand,
if the sentence is annotated with phrasal bracketings, the beginnings and ends of
phrases could also be articulation points.

For example, the sentence (3) with a relative clause, annotated with phrasal
bracketing, can be simplified into two sentences as shown in (4), using a rule such
as the one shown in (5) that relies on skeletal phrasal structure and punctuation
information.

(3) [Talwinder Singh]:NP, who:RelPron masterminded:V [the 1984 Kanishka
crash]:NP, [was killed]:V [in [a fierce two-hour encounter/:NP]:PP.

(4) Talwinder Singh was killed in a fierce two-hour encounter. Talwinder
Singh masterminded the 1984 Kanishka crash.

(5) W X:NP, RelPron Y, Z — W X:NP Z. X:NP Y.

The rule is interpreted as follows. If a sentence starts with some segment
W and a noun phrase (X:NP), and is then followed by a phrase of the form
(, RelPron Y ,) followed by some (Z), where Y and Z are arbitrary sequences

of words, then the sentence may be simplified into two sentences, namely the
sequence (W X) followed by (Z), and the sequence (X) followed by (Y).

However, the rule shown above does not handle reduced relatives, such as the
one in sentence (6).

(6) [The creator of Air India, Mr. JRD Tata]:NP, [believes]:V [that]:COMP
[the airline]:NP, [known]:V [for [its on-board service]:NP]:PP,
[could return]:V [to [its old days of glory/:NP]:PP.

To solve such problems, we use a representation which combines dependency
information with constituent structure, providing attachment and scope informa-
tion. This representation is described in the next section.

We need a variety of rules to simplify text from any particular domain. How-
ever, hand-crafting simplification rules is time-consuming and not very practical.
While some of the rules are likely to be common across domains, several are
likely to be domain-specific. We ideally need a method to develop rules which
can be easily induced for a new domain. In this paper, we present an algorithm
and an implementation to automatically induce rules for simplification given an
annotated aligned corpus of complex and simple text.

In addition to developing rules, we need gap-filling routines. For example, if
we separate a relative clause from a sentence (for example (4)), we must insert a
copy of the head noun at the gap in the relative clause. The exact choice of the
gap fillers is a complicated task based on a variety of pragmatic factors, and will
not be discussed in this paper.

3 Analysis of Input

Our approach to the analysis stage of simplification uses rich syntactic informa-
tion, that combines constituency and dependency information. We use partial
parsing and simple dependency attachment techniques for fast and robust pars-
ing. This model is based on a simple dependency representation provided by
Lexicalized Tree Adjoining Grammar (LTAG) [Joshi, 1985], [Schabes et al, 1988]
and uses the “supertagging” techniques described in [Joshi and Srinivas, 1994].

The elementary trees of LTAG localize dependencies, including long distance
dependencies, by requiring that all and only the dependent elements be present
within the same tree. As a result of this localization, a lexical item is associated
with more than one elementary tree. The example in Figure 1 shows a selection
of the elementary trees associated with the word “masterminded”.

These elementary trees are called supertags, since they contain more informa-
tion (such as subcategorization, agreement information) than standard

NR ¢ VP
\% NR ¢
master minded

(a) Transitive Supertag

NR S
NR VP
" A
€ v NR |
masterminded

(¢) Subject Extraction Supertag

N
NA

Pf

NR * S
NR VP
" A

€ \ NR |

master minded

(e) Subject Relative Supertag

S
/\
NR ¢ VP
|
\
|
master minded

(b) Passive Supertag

S

/N

NR S

/\
NR L VP
/\
v NR
NA

master minded €

(d) Object Extraction Supertag

NR
NA

A
a

>
S
NR ¢ VP
% NR
N

master minded €

(f) Object Relative Supertag

Figure 1: A selection of the supertags associated with the word masterminded

part-of-speech tags. Each word of an input sentence is initially associated with
many such supertags. In a complete parse, each word would be associated with
just one supertag (assuming there is no global ambiguity). The supertags for all
the words in the sentence are combined by the operations used in LTAG, namely,
substitution and adjunction.

Instead of relying on parsing to disambiguate supertags, we can use local sta-
tistical information in the form of N-gram models [Church, 1988] based on the
distribution of supertags in a LTAG parsed corpus. Further, using the information
coded in supertags, such as subcategorization and dependency information, we
have implemented a system, a Lightweight Dependency Analyzer (LDA) [Srinivas
et al, 1996], to heuristically determine the constituent structure and dependencies
between constituents. For the purpose of simplification, the constituent informa-
tion is used to determine whether a supertag contains a clausal constituent and
the dependency links are used to identify the span of the clause. Thus, embedded
clauses can easily be located and extracted, along with their arguments. Punc-
tuation can be used to identify constituents such as appositives which can also
be separated out.

4 Induction of Rules for Simplification

Our approach to automatically inducing rules from training data is described
in this section. The training data is an aligned text corpus that links complex
sentences to corresponding simplified sentences. This data are analyzed using
LDA, and simplification rules are induced which are subsequently generalized
using techniques similar to those used in Explanation Based Learning.

The training procedure for rule induction is detailed below, and illustrated
with a running example.

1. The training data consists of a set of input sentences (such as (7)) along with
aset of equivalent manually simplified sentences (such as (8)) corresponding
to each of the input sentences.

(7) Talwinder Singh, who masterminded the 198 Kanishka crash, was
killed in a fierce two-hour encounter.

(8) Talwinder Singh was killed in a fierce two-hour encounter. Talwinder
Singh masterminded the 1984 Kanishka crash.

2. The sentences in the training data are first processed to identify phrases
that denote names of people, names of places or designations. These phrases
are converted effectively to single lexical items.

3. Each training sentence S;, along with its associated j (simplified) sentences
Si1 to S;;, is then processed using the Lightweight Dependency Analyzer
(LDA).

4. The resulting dependency representations of S; and S;; through S;; are
‘chunked’. Chunking collapses certain substructures of the dependency rep-
resentation (noun phrases and verb groups) and allows us to define the syn-
tax of a sentence at a coarser granularity. Chunking also makes the phrasal
structure explicit, while maintaining dependency information. Thus, this
approach has the benefit of both phrasal and dependency representations.

The chunked LDA representation for the example sentence and its simplified
version is illustrated in Figure 2. The nodes of this representation consist
of word groups which are linked by dependency information. Each node
is also associated with a supertag, such as the Subject Relative Supertag
(Rel) and the Transitive Supertag (Trans «) in Figure 2.

was killed

Tawinder Singh in ... encounter

masterminded (Rel ()

who the ... crash

K masterminded (Trans o)
Tawinder Singh in..encounter . Tawinder Singh the... crash

Figure 2: Chunked LDA representation of a complex sentence and its simplified
versions

5. The chunked dependency representation of the complex sentence is com-
pared with that of the simpler sentences using a tree-comparison algorithm.

This algorithm uses the immediate dominance (parent—child) relation and
computes the tree-to-trees transformations required to convert 5; to S
through S;;. The transformations include variables which are instantiated
using a constraint satisfaction mechanism. The resulting rule is general-
ized, from the level of the specific words and word features in the sentences,
to the supertags associated with each word. Recursive substructures are
identified using supertag information, and marked as potentially repeating
structures.

In our example, there are three changes between the complex and the simple
versions:

(a) The Subject Relative Supertag (Rel §) changes to the Transitive Su-
pertag (Trans «).

(b) The head of the relative clause (represented by the parent of the Rel 3
node in the LDA representation) is copied in place of the relative

pronoun. 1

(c) The Subject Relative Supertag (Rel), and its dependents are sepa-
rated out.

Note that the same rule will apply to all sentences which have relative
clauses, regardless of the argument being relativized (subject/object/indirect
object). Note also the level of generalization achieved already: it is not im-
portant if the verb in the relative clause is masterminded or not; the rule
will apply to any verb which is associated with the subject-relative transi-
tive supertag. In fact, it will be true of any morphological variant of the
verb; so verbs such as masterminds, mastermind etc. will also show the
same behaviour in a similar context.

. All input sentences .S; are processed using steps 2 through 4, and duplicate
rules removed. This results in a set of generalized simplification rules.

. Each rule is indexed on its articulation points, and stored appropriately.
The articulation point defines the link (or edge) to be cut for simplification.
For example, this rule is indexed on the Subject Relative Supertag (Rel).

In the rule application phase, every new sentence is first analyzed using the

LDA, and then chunked. Every node in the chunked LDA representation is a
potential articulation point. The system retrieves all rules associated with the
categories of these articulation points, and attempts to apply each of them. All
rules that match the given structure are applied.

Consider the sentence shown in (9):

'Reduced relative clauses will have empty relative pronouns.

(9) The creator of Air India, Mr. JRD Tata, believes that the airline, which
celebrated its 60th anniversary today, could return to its old days of glory.

believes

TN

the ... Tata that could return

theairline to ... glory

celebrated (Rel B)

which its 60th anniversary today

believes
celebrated (Trans a)
the ... Tata that could return theairline its 60th anniversary today
theairline to... glory

Figure 3: Chunked LDA representation of a complex sentence and its simplified
versions

Figure 3 shows the chunked LDA representations of the original text and the
result of applying the rule induced in the training phase. Note that while the
structure at the sentence level is significantly different from the training evam-
ple, there is a similarity in the sub-structure, and the rule is applicable on this
component.

The training data for this system was culled from a set of sixty-five stories
from a leading Indian newspaper, published in English. A simplified version
of these stories was manually created. For the present, we have concentrated on
simplifying sentences with relative clauses. We are extending this to handle other
syntactic phenomena. The system has been coded as a series of interconnected
PERL programs.

10

(a)
(who ,) (the_1984_Kanishka_crash masterminded) (masterminded who)
(masterminded .) (masterminded the_1984_Kanishka_crash)

(b)

(B_COMPs B_PUs) (A_NXN B_NOnxOVnx1) (B_NOnxOVnx1 B_COMPs)

===>

(A_nxOVnx1 B_sPU) (A_nxOVnx1l A_NXN)

Figure 4: Example of an induced rule (a) before generalization and (b) after
generalization.

An example rule induced by the program given the sentences in examples 7
and 8 is shown in Figure 4 before and after generalization. The tuples indicate
parent—child relations. The terms on the LHS of the rule represent a conjunction
of constraints which must be satisfied for the rule to fire. The generalized tags
(BLCOMPs, A_NXN etc.) are the appropriate supertags assigned to the words
given the context of the sentences.

5 Discussion

In this paper, we have presented a novel approach to induce rules for simplification
of text using the representation provided by supertags, which combines phrasal
and dependency information in a uniform manner. Supertags localize all the
dependencies of a word to one structure. As a result, the dependents of a word
in the LDA representation appear as children of that word. The simplification
rules that are induced operate on these localized representations, and have a local
domain of influence. Therefore, these rules do not interact with each other with
regard to their applicability. Also, the result of simplification is independent of
the order of rule application.

As in many rule-based systems, hand-crafting rules is a time-consuming, te-
dious and error-prone process. An automated method of rule induction facilitates
improved coverage of the system in terms of the phenomena handled, and the in-
duction of rule sets for new domains with manageable effort. It provides us the
opportunity to experiment with texts of different genres, and with a variety of

11

preprocessing and post-processing software. In this work we have also integrated
the transparency and interpretability afforded by rule-based representation with
the robustness provided by the training process on corpora. We believe that this
is an important advance in simplification.

There are several problems of interest in the area of simplification. For ex-
ample, the ordering of simplified sentences, the choice of referring or gap-filling
expressions, and the maintenance of discourse coherence as a whole deserve atten-
tion. Another aspect that deserves attention is the evaluation of simplification.
We believe that the performance of simplification can be best evaluated in the
context of an application where simplification is used as a component.

Acknowledgments

This work is partially supported by NSEF grant NSF-STC SBR 8920230, ARPA
grant N00014-94 and ARO grant DAAH04-94-G0426.

References

[Chandrasekar, 1994]

Chandrasekar R. A Hybrid Approach to Machine Translation using Man Machine
Communication, PhD thesis, University of Bombay/Tata Institute of Fundamen-
tal Research, Bombay, September 1994.

[Chandrasekar et al, 1996]

Chandrasekar R, Doran C and Srinivas B. Motivations and Methods for Text
Simplification, Poster paper. In Proceedings of the 16'" International Conference
on Computational Linguistics (COLING’96), Copenhagen, Sweden, August 1996.

[Church, 1988]

Church, KW. A Stochastic Parts Program and Noun Phrase Parser for Unre-
stricted Text. In Proc. 2nd Applied Natural Language Processing Conference,
Austin, Texas, 1988, pp. 136-143.

[Hoard et al, 1992]

Hoard JE, Wojcik RH and Holzhauser KC. An automated grammar and style
checker for writers of Simplified English, In PO Holt and N Williams (eds.),
Computers and Writing: State of the Art, Kluwer, 1992.

[Joshi, 1985]

Joshi, AK. Tree Adjoining Grammars: How much context sensitivity is required
to provide a reasonable structural description, In D Dowty, 1 Karttunen and
A Zwicky (eds.), Natural Language Parsing, Cambridge University Press, Cam-
bridge, UK, 1985.

12

[Joshi and Srinivas, 1994]

Joshi AK and Srinivas B. Disambiguation of Super Parts of Speech (or Supertags):
Almost Parsing, In Proceedings of the 151" International Conference on Compu-
tational Linguistics (COLING’94), Kyoto University, Japan, August 1994.

[Schabes et al, 1988]

Schabes Y, Abeillé A and Joshi AK. Parsing strategies with ‘lexicalized’ gram-
mars: Application to tree adjoining grammars. In Proceedings of the 121" In-
ternational Conference on Computational Linguistics (COLING’88), Budapest,
Hungary, August 1988.

[Srinivas et al, 1996]

Srinivas B, Doran C, Hockey BA and Joshi AK. An approach to Robust Partial
Parsing and Evaluation Metrics, In Proceedings of the Workshop on Robust Pars-
ing at Furopean Summer School in Logic, Language and Information, Prague,
August 1996.

[Wojcik et al, 1993]

Wojcik RH, Harrison P and Bremer J. Using bracketed parses to evaluate a
grammar checking application. In Proceedings of the 315 Annual Meeting of
the Association for Computational Linguistics (ACL93), Ohio State University,
Columbus, Ohio, 1993.

