
An Evaluation Framework for Highly Available and
Scalable SIP Server Clusters

Jong Yul Kim
Computer Science Dept

Columbia University, USA
jyk@cs.columbia.edu

Gregory W. Bond
AT&T Labs Research

Florham Park, NJ USA
bond@research.att.com

Eric Cheung
AT&T Labs Research

Florham Park, NJ USA
cheung@research.att.com

Thomas M. Smith
AT&T Labs Research

Florham Park, NJ USA
tsmith@research.att.com

Henning Schulzrinne
Computer Science Dept

Columbia University, USA
hgs@cs.columbia.edu

ABSTRACT
SIP server clusters provide scalability and high availability
for SIP applications. The nature of telecommunications ser-
vices dictates requirements for these capabilities that gener-
ally exceed what is necessary in the domain of web applica-
tions. There are a number of clustering solutions available
to address these requirements, but due to significant differ-
ences in architecture and the lack of common terminology,
the solutions are difficult to compare. In this paper, we
propose system requirements that are necessary to achieve
scalability and high availability. We then propose an ab-
stract cluster architecture containing four common architec-
tural elements. Solutions from three different vendors are
described in terms of these abstract elements. The solutions
are compared based on an evaluation framework that in-
cludes a number of criteria, such as robustness to failures of
different types and numbers, overhead required to manage
failures, and scaling efficiency.

1. INTRODUCTION
As VoIP deployments grow, service providers need to be

able to handle increasing demand for their services while at
the same time making sure that the service is highly avail-
able. There are two general approaches to addressing these
problems. One is to scale up, which means supplementing
existing SIP server hardware so that it handles more load,
and using advanced software engineering methods to make
the server software more resilient. The other is to scale
out, which means adding more server hardware instances
and organizing them into a SIP server cluster. As a group,
the servers in a cluster can process more requests and also
recover from server failures. Scaling out is the approach
currently favored by service providers since it offers better
price-performance than scaling up [7]. As a result, many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPTComm ’11 Chicago, Illinois USA
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

SIP server vendors offer highly available SIP server cluster
solutions.

While scaling out has also been adopted in the web ser-
vices domain, there are important differences to consider
between the telecom and web services domains. For most
web applications it is acceptable to expect the user to resub-
mit a browser request (refresh the page) in the event that an
HTTP server fails. In contrast, it is generally considered un-
acceptable for an in-progress phone call to be dropped when
a SIP server fails, forcing the user to re-dial and re-establish
their connection. In short, telecom service is expected to be
more reliable than web service. Also, interactions between
SIP servers and clients are session-based and long-lived. All
but the simplest telecom services (e.g., proxying and reg-
istration) require the SIP server to maintain state for the
duration of each call serviced.

The expectation of high reliability combined with the need
to maintain long-lived state mean that the requirements for
supporting highly available and scalable telecom services dif-
fer significantly from those for web services. Given the rela-
tive nascence of SIP server technology, there exists no stan-
dard approach to satisfying these requirements. Instead,
SIP server vendors have developed approaches based on dif-
ferent architectures and technologies. As a result, there is
no straightforward way to ascertain relative strengths and
weaknesses of these approaches.

The results presented in this paper were motivated by a
need to compare differing solutions to high availability and
scalability for SIP server clusters. Being able to directly
compare solutions is necessary to support making an in-
formed decision when choosing a solution for a particular
system deployment. It also provides insight into more fun-
damental problems associated with supporting high avail-
ability and scalability.

In order to achieve this motivating goal, this paper pro-
poses a framework for evaluating highly available SIP server
clusters. The framework consists of a set of system require-
ments and an abstract architecture.

The framework’s requirements, described in Section 2, are
properties that are necessary to support high reliability and
scalability for any ideal SIP server cluster solution.

Related work is presented in Section 3.
The framework’s abstract architecture, described in Sec-

tion 4, exposes the salient elements of SIP server cluster
solutions. The architecture provides a common terminology

for describing a solution and a means for direct comparison
across solutions.

In Section 5, we show how the abstract architecture maps
to three different vendors’ SIP server cluster solutions and
how the constituent abstract elements interoperate for each
solution.

Finally, in Section 6, we provide a detailed comparative
evaluation of the three SIP server cluster solutions with re-
spect to our framework’s requirements. By doing so we are
able to provide insight into the relative strengths and weak-
nesses of different approaches for providing high availability
and scalability in SIP server clusters. The ability to com-
pare these solutions also serves to demonstrate the efficacy
of our proposed evaluation framework.

2. REQUIREMENTS OF A SIP SERVER
CLUSTER

It is helpful to see what an ideal SIP server cluster would
look like from the outside, that is, from the SIP client’s
point of view. At the highest level of abstraction, a SIP
server cluster is simply a SIP application: either a proxy, a
user agent client, a user agent server, or a back-to-back user
agent.

An ideal application should “just work” all the time. This
means that the client is not aware of any failure within the
SIP server cluster (highly available) and that any number
of clients and any call rate are supported by the application
(scalable).

The rest of this section lists a number of criteria that
fit under these two overarching requirements. We will use
them to evaluate different designs and implementations of
SIP server clusters. Furthermore, different deployments may
use this list to help specify detailed requirements based on
their specific circumstances.

2.1 High Availability
In order to differentiate varying degrees of availability, we

adapt the “Availability Level Spectrum”, originally devel-
oped for transactional servers by the analyst IDC [4], to
telecom services. The availability level (AL) ranges from
AL1 to AL4. AL1 means that in the event of a failure, the
SIP service is unavailable until the failure is repaired. A
service at AL2 remains available. Although calls are inter-
rupted, they can be re-established if the users call in again.
At AL3, all calls stay up but some ongoing operations may
need to be repeated. At the highest AL4, any failure is
transparent to the users.

This paper discusses SIP server clusters that implement
the higher levels, AL3 and AL4, which require that the states
of SIP dialogs and/or transactions are protected.

Detailed criteria related to the broad high availability re-
quirement include:

Types of failures A cluster should be able to recover from
various hardware and software failures, including rack
failure, machine failure, and software failure.

Simultaneous failures A cluster is more robust if it can
handle a higher number of failures occurring at the
same time.

Shift in workload upon failure When an element fails,
the remaining elements must take over the load. There-

fore, each element must reserve some capacity in an-
ticipation of a failure. The redistribution of load on
the failed element should be as even as possible such
that this capacity overhead can be low and resources
can be used efficiently during normal operations.

Performance degradation after failure In the event of
a failure, the overall system performance should not
degrade substantially. For example, any additional la-
tency in message processing due to time spent to re-
cover the dialog or transaction state should be low.

Loss of protection after failure As described above,
clusters support different numbers of simultaneous
failures. After this number is reached and before the
failed elements are repaired, high availability is com-
promised and another failure will result in permanent
loss of state. Ideally, a cluster can automatically adapt
and restore protection using the surviving elements.

2.2 Scalability
The scalability requirement mandates that any perfor-

mance bottlenecks within the cluster can be handled with
relative ease such that it can be scaled out to handle more
load by adding resources. For example, if the problem is de-
termined to be lack of CPU power to process SIP messages,
it should be operationally easy to add extra servers to the
cluster. Likewise, the cluster should make it operationally
easy to add additional storage in case the total number of
sessions it can handle is bounded by memory. For network
bandwidth scaling, multiple clusters can be deployed.

Detailed criteria related to the broad scalability require-
ment include:

Scaling increment It should be possible to add resources
at small increments to permit fine-grained tuning of
the cluster.

Operational cost of scaling It should be straightforward
to scale a cluster such that operational costs are kept
low for the deployers.

Scaling efficiency A cluster should allow additional re-
sources to be utilized as fully as possible. Also scaling
out should consume as little additional network band-
width as possible.

3. RELATED WORK
Previous work in this area has focused on specific SIP

services at a lower level of availability. For example, [13]
and [6] examine SIP servers that provide registrar and rout-
ing proxy functions. Because of the nature of the service,
only application data (endpoint registrations) needs to be
protected against failure. SIP dialog and transaction states
are not protected by these techniques, so services that re-
quire statefulness will be compromised by mid-call failures.
For example, a proxy server that also logs call duration will
not operate properly in the event of a mid-call failure. In
terms of availability level, the solutions described in these
references only achieve AL2.

Another work of interest studies the use of virtualization
technology [9]. Through virtual machine replication and
migration provided by Xen and Remus, SIP applications
are protected from failures of the physical host machines

Figure 1: Abstract elements of a SIP server cluster

on which they run. However, this solution does not pro-
tect against failures in the operating system or application
software. This is because the approach provides complete
system state capture and replication, and as such will prop-
agate application errors to the backup [3].

4. ABSTRACT ARCHITECTURE
Because there is no standard terminology to describe com-

ponents of a SIP server cluster, different implementations
describe their components using different terminology, thus
making it difficult to understand their commonalities and
differences. In order to understand and compare the func-
tionality of SIP server cluster implementations, we propose
an abstract architecture that both captures the common
functionality across different SIP server cluster implementa-
tions, and highlights their differences. By casting different
SIP server cluster implementations in terms of the proposed
architecture, we are able to directly compare them.

In creating the abstract architecture, our goal was to main-
tain a level of abstraction that was detailed enough to reveal
salient differences with respect to the requirements specified
in Section 2, but not so detailed that less important im-
plementation differences were revealed. The architecture is
also intended to be general enough to be applied to future
SIP server cluster implementations. As shown in Figure 1,
the resulting architecture consists of four distinct abstract
elements: the message dispatcher, the app processor, the ses-
sion replicator, and the session store. As will be shown in
Section 5, it is possible for an abstract element to map to
more than one implementation element. Furthermore, it is
possible for an abstract element to map to more than one
host machine. We now describe each abstract element in
turn.

4.1 Message Dispatcher
The message dispatcher receives SIP messages from the

environment and dispatches them to app processor elements.
Upon receiving a message from the environment, the mes-
sage dispatcher algorithm determines which app processor
should receive the message. For example, the algorithm
may dispatch messages in a round-robin fashion, or it may
dispatch to a particular app processor based on the hash
of fields present in the message. The dispatcher may also
add or manipulate message headers prior to dispatching.
When an app processor goes out of service due to unex-
pected failure or scheduled maintenance, the dispatcher will
cease sending messages to the failed app processor and send
them to other app processors until the app processor comes
back online. A message dispatcher may support app pro-
cessor affinity, also known as sticky routing; that is, routing
subsequent messages in the same SIP dialog to the same app
processor that the initial request was routed to. In this case,
the message dispatcher is said to be SIP aware. To counter
host machine failure, the message dispatcher is deployed re-
dundantly on different host machines. Message dispatcher

instances normally monitor each other for failure. When
a dispatcher fails, another dispatcher will take over for the
failed one. Similarly, when a dispatcher comes online, it will
take over some of the load from another instance.

4.2 App Processor
The app processor executes service logic in response to

receiving a message from the message dispatcher. For ex-
ample, upon receiving an initial request, an app processor
may react by instantiating service logic to support voicemail
service. In processing the message, the app processor needs
to create and store session state. Session state is an um-
brella term that refers to the three types of state that an
app processor may maintain: transaction state, dialog state,
and application state. Transaction and dialog state refer to
the state of an individual SIP transaction and dialog, re-
spectively. Application state refers to higher level state that
service logic may maintain. For example, if the voicemail
service logic were implemented as a state machine, then the
current machine state would be maintained as application
state.

Processing a message may result in messages being sent
from the app processor, for example, to endpoints or media
servers. In some message dispatcher configurations these
messages may be sent via the dispatcher. App processors
in a cluster are distributed across different host machines in
anticipation of host failure. In some configurations, more
than one app processor may run on the same host machine
in order to better utilize the host machine resources. App
processor instances may monitor one another for failure, or
a message dispatcher may monitor them. In either case, a
message dispatcher must be notified when an app processor
fails or comes online. When an app processor fails, the app
processor that takes over must be able to access the session
state of the failed app processor; it does this via a session
replicator.

4.3 Session Replicator
The session replicator is responsible for storing and re-

trieving instances of session state originally created and
maintained by the app processor. The session replicator
stores session state replicas on session store instances. The
session replicator presents a simple interface to the app pro-
cessor. The app processor puts a session state instance in or-
der to store the instance, and it gets a session state instance
by providing the replicator with a session state identifier,
where the identifier is normally known a priori by the app
processor.

In storing session state, the session replicator is responsi-
ble for serializing the state in preparation for transport to
the (remote) session stores. When a session becomes in-
valid, for example, when a call is torn down, the replicator
is responsible for purging the session stores of the associ-
ated session state. When a session store goes out of service,
due to planned downtime or unexpected failure, the session
replicator is able to access previously stored sessions from
a replicated session store. While the session replicator is
responsible for replicating an app processor’s session state,
the session replicator itself normally maintains no state of its
own. This simplifies failover since another session replicator
can take over from a failed session replicator without having
to inherit the state of the failed replicator. Normally, the
majority of the session replicator functionality is co-located

Figure 2: Oracle Communications Converged Application Server Cluster

with an app processor. This means that session replicators
normally rely on the failover and recovery mechanisms that
support app processors. For those replicator functions that
may not be co-located with an app processor, such as repli-
cating session state across session stores, a self-monitoring
approach akin to that used by the message dispatcher may
be used.

4.4 Session Store
A session store is responsible for maintaining session state

stored by the session replicator. Session stores are dis-
tributed across different host machines in anticipation of
host failure. Session stores may monitor one another for
failure, or the session replicator may monitor them. Session
store replicas are maintained in replication groups, where
each session store in a replication group maintains identi-
cal information. When a session store fails, the appropriate
replicators are notified and the replicators redirect access to
another store in the failed store’s replication group. When
a session store comes online, the appropriate replicators can
resume accessing the store.

5. DESCRIPTION OF COMMERCIAL SIP
SERVER CLUSTERS

In this section, we describe the architecture of three SIP
application server clusters using the four abstract elements
introduced earlier. The server cluster implementation de-
tails described here have been obtained from publicly avail-
able documentation. All of these clusters support the Java
SIP servlets specification [2]. Figures 2, 3, and 4 show the
different cluster designs. On the right-hand side of each fig-
ure is the actual cluster design with terms used in the prod-
uct manual. The left-hand side shows the corresponding
abstract elements: the message dispatcher, app processor,
session replicator, and session store. The solid lines show
SIP messages and dotted lines show session storage and re-
trieval.

5.1 Oracle Communications Converged
Application Server

The Oracle Communications Converged Application Server
(OCCAS) architecture, as shown in Figure 2, is broken down
into three entities. A load balancer is an implementation of
the message dispatcher. An engine is a software process that
combines the app processor and the session replicator. A

replica is a software process that implements an in-memory
session store. Replicas are grouped into partitions, and each
partition is responsible for a subset of all active sessions in
the cluster.

An engine does not include the session store element,
therefore it is stateless. When there is any change in session
state, the engine updates the replicas. To process messages,
an engine retrieves session state from replicas. The advan-
tage of a stateless engine is that if an engine fails, any other
engine can resume the session by retrieving state from the
session store. However, there is a cost of always having to
store and retrieve state in each invocation. To reduce this
overhead, engines are configured by default to cache session
states locally.1

The session replicator is contained within the engine,
meaning that the engine, not the replica, is responsible for
replicating session states. An engine’s session replicator
works this way: when an engine needs to store session state,
a hashing algorithm is applied to the session state to select
a partition in which to store the session state data. The
engine then writes the session state to each replica within
that partition.2 Therefore, replicas within a partition con-
tain identical copies of the session state. This ensures high
availability: if a replica fails, the engine can retrieve state
from another replica in the same partition. Adding more
replicas to the partition protects against multiple replica
failures. However, each partition is limited to a maximum
of three replicas2 due to higher bandwidth usage between
engines and replicas as the number of replicas increase.3

As for the load balancer, any type can be used since the
engines are stateless and are able to process any message
by retrieving the latest state from a partition. However, a
SIP-aware load balancer would be able to take advantage of
the local cache in the engines.1

5.2 IBM WebSphere Application Server
The IBM WebSphere Application Server (WAS), as shown

in Figure 3, supports high availability by providing two co-
operating components. The first component, labeled WAS1

to WAS4, is referred to as the SIP container, and provides
the app processor, session store, and session replicator func-
tions. The second component, labeled Proxy1 to Proxy3, is

1 [8] page 6-1
2 [8] page 1-6
3 [8] page 3-3

Figure 3: IBM WebSphere Application Server Cluster

simply referred to as a SIP proxy, which provides part of the
message dispatching function.

The SIP containers are grouped into replication domains,
statically assigned by the administrator. Containers within
a replication domain are in reciprocal primary-backup rela-
tionships: the containers back each other up. Up to three
containers can be grouped in a replication domain, though
IBM recommends two containers per replication domain for
performance reasons.4

Session state is held by the container and replicated from
the primary to the backups as required; thus, the session
store and session replication functions are also provided by
the container. The session replicator within the container
connects to its peers in the same replication domain. The
replicator sends periodic heartbeats over this connection;
failure conditions are detected by sensing connection ter-
mination. Once failure is detected, active sessions in the
session store of the failed container are reassigned to the
session store of another container in the same replication do-
main, and the change is reported to the SIP proxies. Since
the same session state is maintained by all members of the
replication domain, no migration of data is required at fail-
ure time, and the backup container can begin processing
immediately.

The SIP proxy servers ensure that incoming messages are
directed to the appropriate SIP container based on two crite-
ria. First, the appropriate replication domain is determined
by inspecting certain headers of the incoming message. If
the message is part of a known session, then the message is
proxied to the primary SIP container corresponding to that
session. If the message does not correspond to a known ses-
sion, then the proxy chooses one of the available replication
domains and proxies the message to a SIP container in that
domain.

Multiple SIP proxies can be employed for scaling and re-
dundancy; each SIP proxy is capable of routing messages to
the proper SIP container. When multiple proxies are used,
they are fronted by a load balancer which the IBM product
manual calls an IP sprayer. This load balancer does not
need to be SIP aware. Unlike the SIP container and SIP
proxy, which are tightly coupled, the IP sprayer may or may
not be supplied by IBM, as its only task is to distribute load
(to SIP proxies) using any desired algorithm. Thus the mes-
sage dispatching function is split between the IP sprayer (for

4Replicating SIP Sessions section in [5]

distribution) and the SIP proxy (for affinity). All incoming
messages pass through the IP sprayer and one of the proxies;
outgoing messages bypass the IP sprayer.

5.3 Mobicents SIP Servlets Server
Mobicents SIP Servlets Server (MSS) [11] is an open source

SIP servlet container that runs on top of Apache Tomcat ap-
plication server [1] (MSS for Tomcat) or Red Hat JBoss ap-
plication server [10] (MSS for JBoss). Since MSS for Tomcat
does not support clustering, the description below applies
only to MSS for JBoss.

Mobicents provides a SIP load balancer and a SIP servlets
server. To avoid confusion with the general meaning of these
terms, we will call them Mobicents load balancer and Mobi-
cents server respectively. The Mobicents load balancer im-
plements the message dispatcher. The Mobicents server is a
single software process that internally includes, among mul-
tiple parts, two components, the Mobicents container and
the JBoss Cache. The Mobicents container implements the
app processor and a small part of the session replicator func-
tion, namely the object serialization/deserialization. JBoss
Cache [14] is an application-agnostic distributed cache which
is used by the Mobicents container for reliable storage of ses-
sion states. JBoss Cache implements the session replicator
and session store functions.

In the default configuration of a Mobicents server, JBoss
Cache instances find and communicate with each other using
a shared multicast address and cluster name. The cache
instances use 1 Buddy Replication, which means that session
state is replicated to the cache instance that is “next in line”
as shown in Figure 4. The cache instance that holds the
replicated session state is called “buddy”.

JBoss Cache provides the appearance of one large cache
for all Mobicents servers in the cluster. When a Mobi-
cents container needs to store session state, it internally
calls a method provided by the JBoss Cache API. JBoss
Cache makes sure that the session state is replicated to the
buddy cache instance for high availability. When a Mobi-
cents server fails, any other Mobicents server can take over
since its JBoss Cache instance can retrieve the replicated
session state from the buddy cache.

Due to this property of JBoss Cache, the Mobicents servers
are essentially stateless. Therefore, like OCCAS, any type of
load balancer can be used. The suggestion from Mobicents
is to use a SIP-aware load balancer such as the Mobicents

Figure 4: Mobicents SIP Servlets Cluster

load balancer to make efficient use of the local JBoss Cache
instance.5

6. EVALUATION OF CLUSTERS
In this section, we evaluate the three SIP server clusters

in terms of high availability and scalability requirements de-
scribed in Section 2. Although the clusters have different ar-
chitectures and implementation elements, they can be com-
pared directly as they have been decomposed into the four
common abstract elements as described earlier in Section 5.

6.1 High Availability
A cluster supports high availability of sessions if it im-

plements the session replicator abstract element. Without
the session replicator, a session store failure leads to lost
sessions. Such clusters can only achieve availability levels
up to AL2. The session replicator is implemented in all
three clusters described in Section 5. Session state is repli-
cated between replicas in OCCAS, between SIP containers
in WAS, and between Mobicents servers’ cache buddies in
MSS. Therefore, all three clusters can recover from a session
store failure, thereby achieving availability level AL4.

We use a common deployment topology as shown in Fig-
ure 5 to compare the different cluster architectures. In the
figure, there are two racks with two machines inside each
rack. Each machine contains two abstract elements: the
app processor and the session store. Pairs of session store
elements form a replication group, which is deployed across
different machines and racks. This reflects real-world strate-
gies to ensure session recovery in case of failure. The focus of
our evaluation is on high availability of sessions; therefore,
the message dispatcher is not included in the figure. The
function of session replicators is indicated by dashed lines
that pair session stores into replication groups.

When applying the common topology to a specific clus-
ter, we can replace the app processor and session store with
the actual implementation element that contains the re-
spective abstract elements. For example, applying this to
OCCAS, app processors would become engines and session
stores would become replicas. The two replicas in a replica-
tion group would form a partition. In WAS, each SIP con-
tainer contains an app processor and a session store; thus,
there is one SIP container per machine. SIP containers are

5 [12] Section 5.3 Load Balancer

paired in a replication domain across different machines and
racks. Mobicents servers also contain both app processor
and session store so there is one Mobicents server per ma-
chine.

Table 1 shows the summary of the high availability eval-
uation that follows.

6.1.1 Types of failures
Clusters using the common topology are protected from

single process failures, single machine failures, and single
rack failures since the implementation elements that con-
tain the session store are deployed on different machines
and racks. The same strategy can be applied to blades
and blade enclosures since a blade failure is analogous to
a machine failure and a blade enclosure failure is analogous
to a rack failure. In OCCAS and WAS, the administrator
can statically assign elements within a replication group to
run on different racks. By default, Mobicents servers try
to find a buddy on a different machine but not necessarily
on a different rack. The JBoss Cache configuration prop-
erty called buddyPoolName can be set to pair buddies on
different racks [14], thereby achieving the replication group
arrangement shown in Figure 5.

6.1.2 Simultaneous failures
Moving beyond the common topology, all clusters protect

against multiple failures of session stores. By adding more
session stores to a replication group, the cluster can toler-
ate more session store failures. However, there is a tradeoff:
adding more session stores increases network traffic for ses-
sion replication. In OCCAS and WAS, there is a limit of
three session stores per replication group. Therefore, these
clusters can recover from up to two session store failures. In
MSS, the number of session stores per replication group is
configurable to more than three, but at the cost of increased
network traffic.

6.1.3 Shifts in work load after failure
Next, we evaluate how much the work load shifts to other

implementation elements when there is a failure. Consider
the effect on each cluster when Rack 1 fails in Figure 5: in
all three clusters, the load on all machines in Rack 2 would
double.

Clusters react differently when a machine fails. Let’s as-
sume that all app processors are handling the same amount
of work load when Machine 2.1 fails. Also, for OCCAS and

Figure 5: Common deployment topology for evalu-
ation

MSS, the message dispatcher is assumed to evenly distribute
the load to the remaining app processors in case of an app
processor failure. The second assumption is not needed for
WAS because the SIP proxy dispatches to another container
in the replication domain.

In OCCAS, the number of engines is reduced from four to
three so each remaining engine needs to handle 33% more
load. In contrast, the number of partitions remains the same
and each partition continues to handle the same number
of sessions. The top partition is left with one replica in
Machine 1.1. This replica’s load for put operations does not
change because the replica is still storing the same number of
sessions. The replica’s load for get operations doubles since
the replica must handle load that normally would have gone
to the failed replica.

In WAS, the replication domain affected by the machine
failure would have one SIP container left. The SIP container
needs to handle 100% more load while containers in the un-
affected replication domain continue handling equal load as
before. The overall result is that Machine 1.1 handles 100%
more load while Machine 1.2 and Machine 2.2 handle no
extra load.

In MSS, existing and new sessions will be distributed
evenly among the remaining three Mobicents servers as in
OCCAS. For existing sessions, the Mobicents server selected
by the load balancer pulls the replicated session state from
the dead server’s buddy and replicates that session to its
own buddy. The replication is done lazily: a server does
not pull the session state unless it needs to handle the ses-
sion. After this lazy replication process, the selected server
becomes the new owner of the session. The dead server’s
buddy deletes the session from its cache. For its own session
states, it finds a new replication buddy. This way, session
states are automatically replicated to other cache instances.
The overall result is identical to OCCAS.

As mentioned earlier, in this topology, WAS requires all
containers to have 100% over-capacity to cope with a con-
tainer failure. To reduce the over-capacity on containers, the
administrator can add another container to the replication
domain so that the remaining two containers handle 50%
extra load instead of 100%. To reduce the over-capacity on

Figure 6: WAS configuration that achieves 33% fail-
ure overhead

machines, the administrator can assign more than one SIP
container process to the machine. For example, to reduce
the over-capacity to 33% as in OCCAS or MSS, the admin-
istrator could run three SIP containers on each of the four
machines and assign partitions that span two different ma-
chines as shown in Figure 6. However, this kind of scheme
would quickly become unwieldy as the cluster scales. Be-
sides, this scheme does not protect sessions from rack fail-
ure. For example, if Rack 1 fails, sessions handled by WAS

1.1.2 and WAS 1.2.1 cannot be recovered.
To summarize, in both rack failures and machine failures,

the remaining processes must handle more load. In the case
of machine failures, OCCAS and MSS require the same over-
capacity but WAS requires more over-capacity.

6.1.4 Additional message processing latency after
failure

WAS SIP containers already store session states of other
containers in the same replication domain. The backup SIP
container only needs to activate the session states that be-
long to the failed container. Therefore, there is no additional
message processing latency in WAS after a failure. On the
other hand in OCCAS, when an engine fails, the load bal-
ancer picks another engine to take over the session. The
selected engine does not have any session state of the failed
engine in its local cache and must fetch session state from a
replica to process the message. This leads to one-time ad-
ditional latency. In MSS, the Mobicents server selected by
the load balancer to take over a session of the failed server
may be a buddy which already has the session state in its
local cache instance. For example, if Machine 2.1 in Fig-
ure 5 fails there is a 33% chance that the buddy server in
Machine 1.1 will be selected. In this case, there is no ad-
ditional latency in message processing. In the other 67%
of cases where a buddy is not selected, there is a one-time
additional latency. The probability that a buddy is selected
is inversely proportional to the cluster size.

Therefore, WAS has no additional latency, OCCAS has
a one-time latency, and MSS has a one-time latency for a
higher proportion of calls as the cluster grows.

Evaluation criteria OCCAS WAS MSS

Types of failure it
can recover from

Process failure, machine failure,
and rack failure

Process failure, machine failure,
and rack failure

Process failure, machine failure,
and rack failure

Recovery from si-
multaneous failures

Partitions can recover from up
to two replica failures.

Replication domains can re-
cover from up to two SIP con-
tainer failures.

The number of replication bud-
dies is configurable. Additional
buddy leads to increased traffic.

Load shift after fail-
ure

Load is distributed among re-
maining engines across the clus-
ter. In partitions, get opera-
tions are handled by remaining
replicas.

Remaining SIP containers in a
replication domain share load.
Containers in other replication
domains do not share load.

Load is distributed among
remaining Mobicents servers
across the cluster.

Additional message
processing latency
after failure

One-time latency No additional latency Probability of one-time latency
increases proportional to clus-
ter size.

Session loss Happens when all replicas in
a partition fail. Partitions are
statically assigned.

Happens when all SIP contain-
ers in a replication domain fail.
Replication domains are stati-
cally assigned.

Happens when all replication
buddies fail, but buddy rela-
tionships dynamically adjust to
failure.

Table 1: Summary of high availability evaluation

6.1.5 Exposure to loss of sessions before recovery
All clusters have a potential to lose session state before

recovery. OCCAS and WAS both support automated pro-
cess restarts for quick recovery from process failures. How-
ever, there may be times when automated recovery is not
possible, such as when there is a rack failure or a machine
failure. During these incidents where an administrator has
to intervene, OCCAS and WAS clusters are vulnerable to
session loss. For example, all session states in an OCCAS
partition are lost if, after a replica fails, the other remaining
replica also fails before the administrator has a chance to
recover from the first failure. This leads to service failure
for those sessions. The is because OCCAS and WAS clusters
have replication groups statically assigned; therefore, session
states are not protected until the failed session stores in the
same group are restarted.

As mentioned before, MSS adapts dynamically to fail-
ures through lazy replication and selection of new replication
buddies. This allows MSS to restore protection to machine
failures and rack failures automatically even without restart-
ing failed servers in the same replication group. Therefore,
the odds of session loss in MSS are lower than in OCCAS or
WAS.

6.2 Scalability
How much load a cluster can handle is limited by the

amount of parallel processing power, memory, or the net-
work bandwidth. As mentioned in Section 1, scaling out is
the more common approach when handling increased load,
and all three clusters achieve scalability by scaling out. A
summary of the evaluation that follows can be found in Ta-
ble 2.

6.2.1 Scaling increments
The three clusters scale in different increments. For the

purpose of comparative analysis, let’s assume that the pro-
cessing speed of the abstract element app processor is r
transactions per second and that any implementation el-
ement that contains an app processor has the processing

speed r. Also, let’s assume that the maximum number of
sessions stored in the abstract element session store is s and
that any implementation element that contains a session
store has the same upper bound on the number of sessions it
can store. We also assume that session replication is config-
ured to be done in pairs; two replicas per partition in OC-
CAS, two SIP containers per replication domain in WAS,
and two replication buddies in MSS.

In OCCAS, an engine is CPU-intensive while a replica is
memory-intensive. Scaling out an OCCAS cluster involves
either scaling the engine to increase processing power or scal-
ing the partition to increase session storage. The two lim-
iting factors can be addressed separately. When the bottle-
neck is processing power, more engines can be added. Like-
wise, more partitions can be added when the bottleneck is
the amount of memory needed to store active sessions. An
extra engine adds r transactions per second. An extra par-
tition adds s sessions storage. Adding a partition entails
adding two replicas deployed in separate machines and racks.

Scaling out a WAS cluster involves adding more replica-
tion domains, each of which handles a non-overlapping sub-
set of sessions. The total work load of the cluster is divided
into n replication domains. As stated in section 5.2, repli-
cation domains consist of SIP containers, that is, an app
processor and a session store combined into a single process.
Depending on the nature of the work load, a SIP container
can be limited by processing power r or memory space s.
A replication domain processes up to 2r transactions per
second since it contains two SIP containers. Session storage
in a replication domain is still s since sessions are shared
equally by all SIP containers within the domain.

MSS is similar to WAS in that each Mobicents server con-
tains both app processor and session store. Unlike WAS,
a cluster can be incremented one Mobicents server at a
time instead of one replication group at a time. This is be-
cause replication groups are not statically assigned: servers
can dynamically select buddies. Each additional Mobicents
server adds r transactions per second of extra processing
power and s/2 extra session storage, assuming that each

Evaluation criteria OCCAS WAS MSS

Scaling increments Engine, or Replication domain Mobicents server
Partition (2 ∼ 3 replicas) (2 ∼ 3 SIP containers)

Operational costs Adding an engine or a partition
is easy.

Adding a replication domain in-
volves careful planning for ex-
tra load after failure.

Servers with identical config-
urations automatically form a
cluster.

Scaling efficiency CPU-intensive units and
memory-intensive units scale
separately, so resource usage
can be optimized.

Incremental unit adds both
CPU and memory - leads to re-
dundant resource.

Incremental unit adds both
CPU and memory - leads to re-
dundant resource.

Replication traffic Sent to all replicas in a parti-
tion

Sent to other containers in a
replication domain

Sent to other replication bud-
dies, but can update field in-
stead of whole session

Table 2: Summary of scalability evaluation

server replicates with one buddy.
Overall, MSS has the smallest scaling granularity (r and

s/2), followed by OCCAS (r or s), and then WAS (2r and
s).

6.2.2 Operational cost of scaling
Scaling out a cluster is not just a matter of adding more

machines. It involves careful planning to ensure high avail-
ability.

In OCCAS, this process involves grouping replicas into
partitions and placing them on separate racks or machines.
Engines can be added with relative ease because they do not
affect high availability as much as the replicas.

Mobicents servers are more convenient when scaling. As
long as the servers run with identical configurations, new
Mobicents servers will add themselves to the cluster auto-
matically. However, MSS lacks an easy way for servers to be
aware of racks. The JBoss Cache instances will pick buddies
that are on different machines but they may be in the same
rack. Support for configuration on a per-rack basis would
make scaling easier.

WAS clusters need more administrator attention than OC-
CAS and MSS. Adding a new replication domain is simple
but, as mentioned earlier, a failure in a WAS machine may
result in 100% extra load on the remaining machine. The
administrator may need to add more resources to machines
to handle the extra load or may have to carefully place pro-
cesses in machines so that the extra load does not exceed a
certain amount. In either case, WAS needs more advance
planning as the cluster scales up.

6.2.3 Scaling efficiency
In terms of processing power and memory efficiency, OC-

CAS has a more flexible architecture since CPU-intensive
and memory-intensive elements scale separately. WAS and
MSS are less efficient because adding an incremental unit
means adding both processing power and memory space.
This leads to either redundant CPU power or redundant
memory space.

To compare network bandwidth usage for replication traf-
fic, let’s assume that a session replicator writes to two session
stores. The write operation incurs session replication traffic
to one SIP container in the same replication domain (WAS)
or to one buddy JBoss Cache instance (MSS). In OCCAS,
the write operation incurs replication traffic to two repli-

cas in a partition, which is twice as much as others. JBoss
Cache is further optimized to update a modified field within
a session state instead of replicating the entire session state.
Given the same network bandwidth for a cluster, MSS will
scale most efficiently, followed by WAS and then OCCAS.

7. CONCLUSION AND FUTURE WORK
We have developed a framework for evaluating SIP server

clusters. The framework includes system requirements and
evaluation criteria that can be used to specify detailed re-
quirements for different deployments. The framework also
includes an abstract architecture defined at an appropriate
abstraction level to help with understanding and compar-
ing different designs and implementations. Each of the four
abstract elements — the message dispatcher, the app proces-
sor, the session replicator, and the session store — has dis-
tinct and essential functions. In analyzing three SIP server
cluster solutions, we have demonstrated the effectiveness of
the abstract architecture. This paper shows that the ab-
stract elements in each solution achieve their functions dif-
ferently. For example, how session data is stored, replicated,
and partitioned in the session store element is different in
each solution. As well, this paper shows that each solution
follows a different design in mapping these abstract elements
to actual software components. Identifying these salient dif-
ferences helps analyze and explain the high availability and
scalability characteristics of the solutions.

While all three solutions examined can provide the high-
est Availability Level 4, the analysis has revealed significant
differences in their characteristics and how well they meet
the evaluation criteria. For example, the performance degra-
dation upon a single machine failure, network bandwidth re-
quired for state replication, and scaling flexibility, are quite
different in the solutions examined. It is hoped that this
analysis will help practitioners select a suitable solution for
their specific environments. It is also hoped that the evalu-
ation framework will aid future analyses as well as motivate
alternative designs.

We have not considered failure of an entire site in this
paper. Disaster recovery based on geographical redundancy
and replication will be examined in the future. Also as fu-
ture work, we plan to conduct benchmarking to compare
the performance of different designs under normal and fail-
ure conditions. The process of recovering the cluster to its

original state after failure, sometimes called failback, will
also be investigated. We also plan to apply the evaluation
framework to analyze highly available systems that utilize
peer-to-peer networking.

8. REFERENCES
[1] Apache Software Foundation. Apache tomcat.

http://tomcat.apache.org/.

[2] BEA. SIP servlet API version 1.1, 2008. Java
Community Process JSR 289.
http://jcp.org/en/jsr/detail?id=289.

[3] B. Cully, G. Lefebvre, D. Meyer, M. Feeley,
N. Hutchinson, and A. Warfield. Remus: high
availability via asynchronous virtual machine
replication. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and
Implementation, NSDI’08, pages 161–174, Berkeley,
CA, USA, 2008. USENIX Association.

[4] E. M. Farr, R. E. Harper, L. F. Spainhower, and
J. Xenidis. A case for high availability in a virtualized
environment (HAVEN). In The Third International
Conference on Availability, Reliability and Security,
pages 675–682, 2008.

[5] IBM. IBM WebSphere Application Server, Network
Deployment, Version 7.0. http://publib.boulder.
ibm.com/infocenter/wasinfo/v7r0/.

[6] G. Kambourakis, D. Geneiatakis, S. Gritzalis,
C. Lambrinoudakis, T. Dagiuklas, S. Ehlert, and
J. Fiedler. High availability for SIP: Solutions and
real-time measurement performance evaluation.
International Journal of Disaster Recovery and
Business Continuity, 2010.

[7] M. Michael, J. Moreira, D. Shiloach, and
R. Wisniewski. Scale-up x scale-out: A case study
using Nutch/Lucene. In Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE
International, pages 1 –8, 2007.

[8] Oracle. Oracle Communications Converged
Application Server Configuration Guide Release 4.0,
2008. http://download.oracle.com/docs/cd/
E13153_01/wlcp/wlss40/pdf/configwlss.pdf.

[9] D. Patnaik, A. Bijlani, and V. K. Singh. Towards
high-availability for IP telephony using virtual
machines. In IMSAA-10, 2010.

[10] Red Hat Middleware. JBoss application server.
http://www.jboss.org/jbossas/.

[11] Red Hat Middleware. Mobicents SIP servlets. http:
//www.mobicents.org/products_sip_servlets.html.

[12] D. Silas, J. Deruelle, V. Ralev, I. Ivanov, and
J. Morgan. Mobicents: SIP Servlets User Guide, 2011.
Release 4.0. Available at [11].

[13] K. Singh and H. Schulzrinne. Failover, load sharing
and server architecture in SIP telephony. Comput.
Commun., 30:927–942, March 2007.

[14] M. Surtani, B. Stansberry, G. Zamarreño, and
M. Markus. JBoss Cache Users’ Guide, Release 3.1.0
Cascabel, 2009. http://docs.jboss.org/jbosscache/
3.1.0.CR1/userguide_en/pdf/userguide_en.pdf.

