SipCloud: Dynamically Scalable SIP Proxies in the Cloud

Jong Yul Kim
Computer Science Dept
Columbia University, USA

jyk@cs.columbia.edu

ABSTRACT

One of the features of cloud computing platforms is the abil-
ity to scale applications dynamically. Generally, this fea-
ture is used in a web services context where the web service
provider adds more web servers during times of high traffic
and remove web servers during time of low traffic. Real-time
communications service providers can also benefit from such
feature. In this project, we propose and implement a highly
scalable SIP proxy architecture that utilizes dynamic scala-
bility. An evaluation of dynamic scalability of a part of the
system is presented as well.

1. INTRODUCTION

One of the advantages of cloud computing is dynamic scal-
ing. Dynamic scaling allows cloud users to automatically
expand or reduce the number of VM instances as required
by the application.

This property of cloud computing is attractive for voice
service providers because voice usage is predictable to some
extent, e.g. showing a diurnal or seasonal patterns. A voice
service provider may save costs by scaling up servers as much
as needed during busy holidays and then freeing server re-
sources for other uses during non-holiday periods. Also,
sometimes there are unexpected sudden spikes in voice us-
age, for example, when there is a major disaster. Dynamic
scaling on a cloud computing platform has the potential to
handle both cases economically. It allows them to main-
tain only as much VM instances based on call load, freeing
server resources for other uses. And in certain times, espe-
cially during large scale emergencies, it handles sudden load
spikes.

To take advantage of dynamic scaling in an IP telephony
context, we first present a SIP proxy architecture used by
our SipCloud system that is highly scalable. The architec-
ture is designed in such a way that individual tiers are sepa-
rately scalable from others and also highly scalable. To max-
imize scalability, we used a NoSQL key-value store called
Cassandra [3], which is becoming increasing popular as a

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
IPTComm ’11, August 01 - August 02 2011, Chicago, IL, USA

Copyright 2011 ACM 978-1-4503-0975-2/11/08 ...$10.00.

Henning Schulzrinne
Computer Science Dept
Columbia University, USA

hgs@cs.columbia.edu

scalable web backend. We discuss the challenges in using a
non-relational distributed database for a SIP proxy system.

For an application such as a SIP proxy system to opti-
mize its scaling dynamics, the cloud platform must sup-
port application-level load monitoring and scaling. However,
commerical cloud providers currently provide load monitor-
ing that are restricted to lower layer metrics such as CPU
load, memory usage, network bandwidth, and disk usage and
latency. Amazon supports an application level monitoring
and scaling via a feature called Elastic Load Balancers [2]
but this only works for HTTP traffic.

Lastly, we evaluate dynamic scalability of a part of the
system on Amazon EC2 and present the results.

Our contributions are:

e We designed and implemented a highly scalable SIP
proxy architecture that takes advantage of dynamic
scalability offered by cloud computing platforms.

e In the process, we modified SIP proxy with a non-
relational distributed DB backend called Cassandra.
Our experience with a non-traditional database inte-
gration is discussed.

e We built and evaluated a part of the system for dy-
namically scaling SIP proxies on Amazon EC2.

2. SIPCLOUD ARCHITECTURE

To fully wutilize the dynamic scaling properties of
Infrastructure-as-a-Service platforms, the architecture of the
real-time communications system that runs on top of the
cloud must be adaptive to load dynamics and highly scal-
able. In this section, we present an architecture of such a
system and explain the reasons that makes it adaptive and
highly scalable.

The SipCloud architecture is shown in Figure 1. A DNS
server is outside the cloud and directs clients to one of the
load balancers in the cloud. Inside the cloud is the classic
three-tier architecture that consists of the load balancer tier,
the SIP proxy server tier, and the database server tier. Load
balancers distribute incoming SIP messages among avail-
able SIP proxy servers, SIP proxy servers process messages,
and the database servers store user registration information
needed by the proxy servers to process messages. Each com-
ponent in the three tiers run on an individual virtual ma-
chine instance.

All of the components in the SipCloud system are orches-
trated by a centralized control entity called the Load Scaling
Manager (LSM). The LSM monitors load and takes action

SIP proxy
(SER)
Distributed DB
(Cassandra)
SIP proxy
(SER)
Distributed DB
(Cassandra)
User SIP proxy
(SER)
Distributed DB
(Cassandra)
- (SER)

Figure 1: SipCloud Architecture

such as adding or removing a component to a particular tier.
The LSM is described in detail in Section 3.

In the SipCloud system, each tier is highly scalable and in-
dependently scalable. These two properties allow the system
to be adaptive and highly scalable.

2.1 Highly Scalable Tier

A highly scalable tier means that the tier can have an
unbounded number of components. A tier’s high scalability
is achieved by using components that can function without
synchronizing with other components in the same tier. This
means that the full functionality of individuals component
does not depend on other components in the same tier. This
property allows the LSM to freely add new components to
a tier.

To this end, the load balancer tier in the SipCloud archi-
tecture use an identifier-based hash on incoming SIP mes-
sages to distribute load to SIP proxies. Because it is using a
hash function, there is no need to synchronize the load bal-
ancers with each other. These load balancers can be added
or removed by the LSM without affecting other load bal-
ancers.

Similarly, in the SIP proxy tier, SIP proxies run inde-
pendently from other SIP proxies. Due to identifier-based
hashing of SIP messages at the load balancer tier, each SIP
proxy handles its own set of calls.

For the database tier, components cannot be fully inde-
pendent since data is replicated among the components to
ensure availability. This requirement of data availability lim-
its independence of database components, thus making the
tier the least scalable compared to the load balancer tier
and the SIP proxy tier. In this case, one mechanism high
scalability can be achieved is by using components that or-
ganize into a peer-to-peer group and that use a hash table
to distribute data among the components. An example of
such a peer-to-peer distributed database server is Cassan-
dra [3]. SipCloud uses Cassandra nodes as components of
its database tier. Further discussions about using Cassandra
for SIP proxies is presented in Section 2.4.

2.2 Independently Scalable Tiers

Each tier performs tasks that scale differently from other
tiers. For example, the database tier stores user registration
data and needs to scale up when the number of subscribers
increase. On the other hand, the SIP proxy server tier and
the load balancer tier needs to scale up when the number of
calls increase. Load balancer tier and SIP proxy server tier

| SQL Query |

Cassandra Query

Command SELECT Method get
Table credentials || ColumnFamily | credentials
Columns password Columns password
Criteria userID=zebra Key zebra

Table 1: Mapping an SQL query to a Cassadra
method call

scale separately due to the difference in message processing
throughput. Generally, SIP proxy server tier needs to scale
up faster than the load balancer tier.

In a system with independently scalable tiers, components
can be added to or removed from each tier as needed by the
tier. Because there’s no dependency on other tiers, each
tier can scale up or down by its own mechanism. This has
a good side effect in that each tier can self-scale according
to the requirements of the tier. Therefore, the scaling logic
is simplified to a tier-local decision. Therefore, the LSM is
able to quickly decide when and how to scale each tier.

Overall, this has the potential to shift the bottleneck of
the system from one tier to another. For example, as the
bottleneck of the load balancer tier is solved by adding more
load balancers, another tier may become the new bottleneck.
However, since all tiers are separately scalable, each bottle-
neck is removed adaptively.

2.3 Implementation

As stated earlier, each element in the three-tier architec-
ture runs as a separate VM instance in the cloud. For exam-
ple, in Figure 1, there are two load balancer instances, four
SIP proxy server instances, and three distributed database
server instances. The minimum functional requirement is
that there is always one VM instance running in each tier.

For the load balancer tier and the SIP proxy server tier,
the system uses an open-source SIP server called SIP Ex-
press Router (SER) [4]. SER runs as a full SIP proxy server
in the SIP proxy tier but runs as a SIP-level load balancer
in the load balancer tier. Each SER process runs indepen-
dently from other SER processes.

To implement the data storage tier as a highly scalable
tier, the SipCloud system uses the Cassandra distributed
database server [3]. Cassandra is a P2P-based key-value
store which is used by Facebook, Twitter, and Digg. Its
scalability and self-organizing properties are the main reason
it was chosen.

The three tiers are independently scalable: components in
each tier does not affect the scalability of another tier. The
only dependence between tiers is for configuration. For ex-
ample, a SIP proxy process needs to know which Cassandra
process to contact to store or retrieve data. A load balancer
needs to know how many SIP proxies there are to send load
to the proxies. But this does not affect scalability.

2.4 SIP data model for Cassandra

Cassandra was chosen because of its scalability and self-
organizing properties. However, unlike traditional databases,
Cassandra is a key-value store that does not support struc-
tured query languages (SQL). This was one challenge in im-
plementing a database driver for the SIP proxy.

A basic SQL query has four parts: a command, a table to
retrieve values from, a list of columns within the table, and

a list of criteria to match. For example, a SELECT query
looks likes this:

SELECT name, contact FROM location
WHERE userID="zebra"

The mapping from an SQL query to a Cassandra query is
shown in Table 1. For a SIP proxy to use Cassandra, these
four parts must have a corresponding mapping to a key-value
pair: an SQL command maps to a Cassandra command, a
table maps to a Cassandra ColumnFamily, the list of criteria
maps to the key, and the list of columns maps to the values.

There are some SQL queries that do not map one-to-one
to a Cassandra query. For example,

e when there are more than one criteria in the SQL
query, key has to be created by concatenating
the criteria, e.g., WHERE userID = “zebra” AND
domain = “cs.columbia.edu” maps to key = “ze-

bra@cs.columbia.edu”.

e * denotes all columns in a SQL query. This maps to a
different method call in Cassandra called get_slice.
slicePredicate is an argument to the method call
that limits how many columns to fetch, by range or by
count. In fact, any multi-column retrieval maps to the
get_slice method call.

For the two tables that we used for the project, namely
the location table which stores contact information and
the credentials table which store user ID and passwords,
these challenges were solved by using the heuristics men-
tioned above.

However, a query like DELETE * FROM location WHERE
expiration > 50000 cannot be mapped to a Cassandra
query. In a key-value store like Cassandra, a criteria with
comparisons other than equality is not straight-forward to
implement.

3. DYNAMIC SCALING

Dynamic scaling involves close monitoring of system load,
VM instance creation or termination, and configuration of
VM instances. In the SipCloud system, these tasks are per-
formed by an entity called the Load Scaling Manager (LSM).

As shown in Figure 2, the LSM monitors loads of the proxy
tier and the load balancer tier, creates or terminates VM in-
stances for all three tiers, and (re)configures the components
as the system scales up or down. For the distributed DB tier,
scaling decision is made manually by a human operator and
not by LSM. This is reasonable given that the distributed
DB tier scales proportional to the number of subscribers
which does not increase or decrease drastically in a matter
of minutes. Therefore, the following description of dynamic
scaling applies to the load balancer tier and the proxy tier.

3.1 Load Monitoring

The LSM monitors system load by polling each compo-
nent in the load balancer tier and the SIP proxy tier for the
current call load, measure in calls per second. It uses the
same load monitoring mechanism for both tiers. The SIP
Express Router contains modules that allow it to answer
XML Remote Procedure Call (XML-RPC) queries about
the component state. LSM polls each component in both
tiers periodically using XML-RPC to query the current call

Load Balancer

¢ Add or remove LB‘

« Reconfigure LB * Poll proxy load

* Add or remove SIP

proxy

Load Scaling SIP proxy
Manager (SER)

Update DNS records

Add or remove DB

y

Distributed DB

(Cassandra)

Figure 2: The Load Scaling Manager (LSM)

load. Polling interval is configurable but the default is five
seconds.

Periodic polling allows LSM to scale up the system before
calls are dropped due to overload and scale down when it
is safe to do so. Even though LSM polls individual compo-
nents, the decision to scale up or down is based on the aggre-
gate tier load, the sum of all call loads in the tier. When the
aggreate tier load surpasses a certain threshold, LSM adds a
new component to that tier in anticipation of increased load.
On the other hand, when the aggregate tier load diminishes
below the threshold of the tier, LSM removes a component
from the tier.

Using the aggreate load to decide scaling up or down can
be dangerous if the load is not evenly balanced across all
components in the tier. If an individual component is over-
loaded, there may be calls lost even if the aggregate load
on the tier is below threshold. In the SipCloud system, this
is not a problem because for the SIP proxies, the load bal-
ancers use a hash function and distributes load evenly to
all available SIP proxies. For the load balancers, the DNS
server uses a round-robin algorithm when answering domain
SRV queries.

Lower-level metrics such as CPU utilization, memory sta-
tus, disk and network I/O rates, and so on can also be use-
ful for load monitoring. While LSM does not currently use
these metrics for load monitoring, it could be extended to
use them to make scaling decisions.

3.2 VM creation

LSM creates and terminates VMs through the use of cloud
provider APIs. VM creation takes time, generally two to
three minutes or less. Therefore, a dynamically scalable
system such as SipCloud must be tuned to start the process
of VM creation at least two to three minutes earlier than
system overload. The threshold mentioned in the previous
section is one parameter that can be tuned.

3.3 Configuration

For each tier in the system, there are configurations that
are needed for individual components. LSM has a global
view of the whole system whereas individual components do
not. Therefore, LSM is reponsible for configuring individual
components as well.

For a new SIP proxy VM instance, it needs to be config-
ured with Cassandra’s IP address so that user registration
data can be retrieved. LSM accomplishes this by logging

SIP proxy
Load Balancer (SER)
@ Poll load
of tier

(3 Update LB’s (@ Add a

destination list SIP proxy
and

Load Scaling Manager configure

Adding a proxy

Removing a proxy

SIP proxy
Load Balancer @ Choose (SER)
proxy to
remove
(2 Update LB:)
4))
@ Delete proxy Invalidate (® Terminate

from dispatcher instance

list proxy

Load Scaling Manager

Figure 3: Adding and removing a SIP proxy

into the VM instance via SSH and executing pre-defined
commands. As shown in Figure 3, once the configuration
and starting of SIP proxy is done, LSM updates all the load
balancer’s destination list so that it includes the new SIP
proxy. After reconfiguration, the load balancers start send-
ing traffic to the new SIP proxy.

For a new load balancer VM instance, a file containing the
IP address and port of all SIP proxies must be uploaded to
the instance. LSM builds the file locally and uploads it to
the load balancer instance using scp [1]. And it logs into the
load balancer instance to start the process. When the load
balancer is ready to receive calls, the LSM then updates the
DNS server with a new SRV record that contains the new
load balancer’s public IP addrress. Once the DNS server is
configured, the SRV records are sent to clients.

3.4 VM termination and reconfiguration

Removing a SIP proxy is a different process from adding
one, as shown in Figure 3. If the aggregate tier load becomes
lower than the threshold value, the LSM selects a SIP proxy
instance to retire. Then it sends requests to the load bal-
ancers to flag the SIP proxy as inactive. Load balancers
immediately stops sending transactions to that proxy. LSM
then terminates the proxy VM instance. And on comple-
tion it updates all load balancers’ destination list so that
the proxy is permanently removed.

For load balancers, when the aggregate tier load becomes
lower than the threshold value, the LSM requests the DNS
server to remove a resource record of one of the load bal-
ancers. That load balancer needs to be available until all
records sent to clients expires, so the LSM waits for the du-
ration of the record expiration time. After this duration, the
LSM proceeds to remove the VM instance from the cluster.

3.5 LSM failure

Even though LSM is a central entity in the operation of
the SipCloud system, existing components and operations

Distributed DB
(Cassandra)

UAS Load
Handler

<
Proxy 1
UAC Load
Generator Load Balancer
- T =
Ay

|
More proxies ¢ — — — —

L _ S
INVITE INVITE
401 Unauthorized |¢ 401 Unauthorized |
l¢ 401 Unauthorized |
ACK
INVITE w/ auth
M, INVITE
180 Ringing 180 Ringing 180 Ringing
200 OK 200 OK 200 OK
ACK ACK ACK
BYE BYE
401 Unauthorized | 401 Unauthorized
A
BYE w/ auth M, BYE
200 OK 200 OK 200 OK

Figure 4: Test setup and message flow

are not affected by LSM failure. However, the system loses
its ability to scale dynamically when system load changes.
When the LSM comes back online, it can resume its oper-
ations by querying the cloud about its VM instances and
types.

4. EVALUATION

We evaluate the SipCloud system’s dynamic scaling of SIP
proxies on Amazon EC2 [2]. In conducting the evaluation,
we had to be careful not to trigger the Amazon EC2 security
alert system. Therefore, our experiments did not stress test
the SipCloud system full throttle. Instead, component load
tests were done to a certain degree to make sure that the
load balancer, SIP proxy, and Cassandra database server
are not bottlenecks in our test scenario. Then we conducted
a simple, low-load test involving one load balancer and one
Cassandra database server to show the dynamic scaling of
SIP proxies, both in scaling up and scaling down.

4.1 Test Setup

The goal of the test is to see that dynamic scaling of SIP
proxies works and to observe the behavior of the system
when one load balancer and one Cassandra node is used.
The test setup and the message flows are shown in Figure 4.
User Agent Client (UAC) calls generated by sipp [5] goes to
the load balancer which statelessly forwards calls to Proxy 1.
Proxy 1 authenticates INVITE and BYE messages. In this
step, there is a query to Cassandra to retrieve the digest
authentication hash value. Since both the SIP proxy and
the load balancer are based on the same SIP Express Router
(SER) code, adding authenication to the message flow allows
us to test a more realistic situation where SIP proxy incurs
higher load than a load balancer. Each box in Figure 4 is a
separate VM instace, including the User Agent Client (UAC)
load balancer and User Agent Server (UAS) load generator.
Our test was done all within the EC2 platform.

The entire message flow in Figure 4 is considered one call.
Sipp considers the call a success if the message flow is fol-
lowed properly from top to bottom, except for optional mes-
sages such as 100 Trying and 180 Ringing. A call is consid-
ered unsuccessful if sipp receives any unexpected message

o 600
S
g
500
g
—_ 400 g
= 1
g g
s
] 300 g
3 g
d
§ 200 E
4 K3
100
0:00 0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00
Time (h:mm)

=+Load Balancer

->¢Proxyl -¥-Proxy2 =o-Proxy3 ==Proxy4 —+Cassandra —Total Capacity

Figure 5: Total SIP proxy capacity and aggregate network I/O per VM instance

CPU Utilization (%)

0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00

Time (h:mm)

| —-+-Load Balancer —¢Proxyl -#%-Proxy2 -e-Proxy3 =+-Proxy4 -+Cassandra

Figure 6: CPU utilization of VM instances

such as a 408 Request Timeout, or if an expected message is
received out of order. A call that never completes is also a
failed call. As all our test components were inside the EC2
platform, we configured sipp to use UDP without retrans-
mission.

The M1.Large instance type was used for all components.
Each of these instances have 7.5 GB of memory, a virtual
dual-core processor, 850 GB of local storage, and a 64-bit
linux operating system. We observed that the load balancer
implementation, based on a SIP Express Router (SER), can
handle more than 2300 INVITE forwards per second. The
SIP proxy implementation, again based on SER, can handle
up to around 520 calls per second (cps) with both INVITE
and BYE authentication through Cassandra. A Cassandra
node can handle more than 1800 authetication queries per
second, or 900 calls per second. As mentioned before, we
did not stress test the components to the limit as our tests
were done within the public cloud platform. However, these

numbers were referenced so that the dynamic scaling test
would not suffer from bottlenecks related to either a single
Cassandra node or a single load balancer.

In the test, the SIP proxy’s capacity is configured at 200
cps which is much lower than 520 cps it is really capable of.
But the goal is to scale up to 4 SIP proxies and then scale
back to 1 SIP proxy at the end of the test. Therefore, at
200 cps for a SIP proxy, the single Cassandra node would
not be overloaded even with 4 SIP proxies in the system.

Before the aggregate load on the proxy tier reaches a mul-
tiple of 200 cps, the LSM starts to launch a new proxy VM
instance so that the load can be distributed without over-
loading any SIP proxy. The threshold is set at 85% of the
proxy tier’s maximum load for both scaling up and scal-
ing down. Therefore, at total proxy loads of 170 cps, 340
cps, and 510 cps, LSM will launch or remove a SIP proxy
instance. To guard against load fluctuations, the LSM only
launches or removes a VM instance if the threshold is crossed

for 5 consecutive monitoring sessions with 3 second intervals,
resulting in a 15 second wait.

At startup, the load generated by the UAC is 140 cps.
The load is increased automatically at a rate of 10 cps every
90 seconds until it reaches 760 cps. At that point, the load
is reduced at a rate of 60 cps every 90 seconds until the total
load reaches zero.

In gathering data for the test, we mainly used EC2 Cloud-
Watch which allows users to monitor minute-by-minute
change of various metrics such as CPU utilization and net-
work usage in the VM instances.

4.2 Results

As it can be seen in Figures 5 and 6, the SipCloud sys-
tem is able to dynamically scale SIP proxies using a cloud
platform. In both figures, the X-axis shows the time from
beginning of the test to the end after around 2 hours.

Figure 5 shows the total capacity of the system and the
network I/O of individual VM instances. Because the two
metrics have different units, there are two Y-axis in the
graph. The one on the right shows total capacity in the
system as proxies are spawned and terminated. Since we as-
sumed, for the test, that SIP proxies have 200 cps maximum
capacity, each SIP proxy brings 200 cps more to the total
capacity whenever it is added to the system. This is shown
in the graph as a step function.

The Y-axis on the left shows the sum of network input
and output of VM instances. As can be seen at the top
of the graph, the load balancer and Proxy 1 have similar
network I/O in the beginning but soon diverges as Proxy 2
comes online. The load balancer’s load is generally divided
evenly among the SIP proxies due to the hash function used
to distributed load. This can be observed by the fact that
whenever a new proxy instance comes online, the network
I/0 graphs of all proxy instances merge to look like one line.

However, near the end, as proxy instances go offline due
to insufficient call load, there are spikes in the network 1/0
of some proxy instances. This is because the load balancer
distributes the load of the outgoing proxy while it is in an
inactive state to one of the remaining proxies. When the
outgoing is proxy is terminated, then the load balancer starts
to distribute the load evenly among the remaining proxies.

The lowest aggregate network I/O is shown by the Cas-
sandra node. The network I/O is similar to that shown by
the load balancer since, like the load balancer, Cassandra is
a single node in the system.

Figure 6 shows the CPU utilization of each VM instance
in the system. CPU utilization for any SIP proxy instance
is similar as they process same amounts of load. As for
the load balancer and the Cassandra node, CPU utilization
rises linearly as the load increases and both are likely to be
simultaneous bottlenecks if we were to do a full throttle test
on the system.

S. RELATED WORK

Kundan, et al. discusses various architectures for scalable
real-time communications services [6] . In particular, they
propose and evaluate a two-stage message processing archi-
tecture where a DNS server first directs traffic to the first-
tier proxy, which in turn direct traffic to one of the proxy
clusters in the second-iter. This is similar to our architecture
in that there are three tiers after the DNS server. The dif-
ference is in the second tier and the third tier where we used

independent SIP proxies and Cassandra database servers in-
stead of proxy clusters and MySQL database. However, the
main difference is that our work studies dynamic scalability
of such architectures.

Dynamic scaling for cloud applications is discussed in [7].
Their focus is on enabling the cloud provider to support
scalability at the application layer and the work deals with
server, network, and platform scalability. Examples of appli-
cations that can benefit from such cloud-level enhancements
are not discussed. Our work is such an example.

6. CONCLUSION AND FUTURE WORK

In this paper, we studied the dynamic scalability of a SIP
proxy system. We proposed a highly scalable architecture,
implemented it, and evaluated part of the system. Evalua-
tion was highly restricted due to the use of a public cloud
platform. We leave large-scale evaluation of the system on
an unrestricted cloud platform as future work.

There are many interesing challenges left unsolved. The
LSM can be smarter since it already polls all components
in the two tiers. It could proactively manipulate the distri-
bution tables of the load balancer so that the traffic does
not go to an overloading SIP proxy. The same logic ap-
plies to the DNS server. Instead of relying on round-robin
DNS, LSM could potentially manipulate the SRV records to
control traffic going to the load balancers.

Also, load balancing strategies for dynamically scaling sys-
tems can be different from static systems.

Lastly, high availability is another area left for future in-
vestigation.

7. ACKNOWLEDGEMENTS

The authors would like to thank Jan Janak for guidance
on SIP Express Router development, Dr. Arata Koike for
valuable comments and insights throughout the project, and
the anonymous reviewers for their valuable comments and
encouragement. We are also thankful to Amazon for the
Education Research Grant. This project is funded by NTT.
This material is based upon work supported by the National
Science Foundation under Grant No. 0751094.

8. REFERENCES

[1] Secure Copy, 2011 (accessed June, 2011). http://www.
openbsd.org/cgi-bin/man.cgi?query=scp&sektion=1.

[2] Amazon EC2, 2011 (accessed March, 2011).
http://aws.amazon.com.

[3] The Apache Cassandra Project, 2011 (accessed March,
2011). http://cassandra.apache.org/.

[4] The SIP Router Project, 2011 (accessed March, 2011).
http://sip-router.org/.

[5] Sipp, 2011 (accessed March, 2011).
http://sipp.sourceforge.net/.

[6] K. Singh and H. Schulzrinne. Failover, load sharing and
server architecture in sip telephony. Comput. Commun.,
30:927-942, March 2007.

[7] L. M. Vaquero, L. Rodero-Merino, and R. Buyya.
Dynamically scaling applications in the cloud.
SIGCOMM Comput. Commun. Rev., 41:45-52.

