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Abstract—Cloud computing is great for scaling applications
but the latency in a guest VM can be unpredictable due to
resource contention between neighbors. For telephony applica-
tions, which are latency-sensitive, we propose a system to monitor
telephony server latencies and adapt the server load based on the
measured latencies. We implemented the system and evaluated it
on an Amazon EC2 testbed. We show indirectly by comparing our
server on EC2 and on a local VM, that there may be contention
between EC2 VMs in the wild that leads to higher server latency.
While there is some overhead due to constant monitoring of the
server, our system manages to lower latency by reducing the load
to the server.

I. INTRODUCTION

Cloud computing enables applications to scale in real
time through on-demand provisioning of resources. Developers
building dynamically scalable websites can find a wide range
of scalability-support services offered by cloud providers. For
example, Amazon EC2 [1] provides CloudWatch service with
Auto Scale to monitor the status of web servers and auto-
matically add or remove servers. Also, Elastic Load Balancer
distributes incoming HTTP traffic to web servers while keeping
track of the number of available servers. These support services
aid considerably in the development of scalable websites.

In addition to websites, on-demand scalability would also
greatly benefit telephony applications. Telephony traffic pat-
terns, both time-based (e.g., diurnal and seasonal patterns)
and event-based (e.g., natural disaster or televoting) [2], are
conducive to automatic scaling such as those provided by
Amazon. However, telephony applications have an important
requirement to maintain low processing latency for call setup
and voice delivery.

In a dedicated server environment, the telephony applica-
tion is profiled with a fixed configuration of servers. After
the configuration is proven to satisfy latency and estimated
throughput requirements, the system is generally left alone
except for maintenance operations. As long as load is dis-
tributed evenly among individual servers so that they are
not overloaded, each server is guaranteed to meet latency
requirements.

On the other hand, in the cloud environment, latency
profiling and planning is considerably more complex. Virtual
Machine (VM) colocation leads to resource contention within
the physical hardware, resulting in significant degradation in
latency [3]. In a cloud, even a normally loaded server can show
increased latency due to the activities of neighboring VMs.

Traditional methods of round-robin distribution and least-work
distribution, therefore, may not be good for latency-sensitive
applications in the cloud.

Our approach is to introduce a distributed, latency-based
mechanism for load distribution within the cloud. In our
design, the cloud constantly monitors each server for request-
to-response latency and increases server load as long as the
latency is within bounds. If the latency moves out of bounds for
any reason, our system quickly reduces the load so that other
servers with good latency can process the incoming load. A
server will rebound to increased load if latency improves. Since
each server is essentially requesting load based on available
capacity, centralized load balancing is no longer necessary.
Instead, there is a front-end queue from which all servers pull
their workload.

We tested our approach using a set of Session Initiation
Protocol (SIP) proxy servers and measured the performance
on Amazon EC2. SIP proxy servers relay call establishment
and teardown requests between callers. Delays in SIP proxy
servers result in long call setup time. These SIP servers scale
well because each call is handled by a unique server and there
are no dependencies between servers.

While we designed and implemented our approach with the
telephony application in mind, there are many other latency-
sensitive applications for which our approach may be useful,
such as stock trading systems and airline reservation systems
where the request-to-response latency is measured in at least
hundreds of microseconds. The server monitor and the front-
end queue are abstract enough to be implemented by cloud
providers and configured at deployment to support these types
of applications.

Our contributions are:

• Introduction of a distributed, latency-based load distri-
bution policy for telephony applications in the cloud.

• Identification of new components in the cloud that can
assist latency-sensitive applications.

• Measurement and evaluation of our policy on a
commercial-grade cloud platform (Amazon EC2).

The rest of the paper is organized as follows. Related
work is explained in Section II. Section III goes over a
little bit of background in SIP. We explain the design of our
latency-sensitive application support service in Section IV. Our
particular implementation of the system is described next in
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Fig. 1: The SIP trapezoid shows how packets travel between
callers. The INVITE transaction establishes a call and the BYE
transaction tears it down.

Section V. Section VI is a performance evaluation of various
aspects of the system. Lastly, Section VII concludes the paper.

II. RELATED WORK

There are several load distribution mechanisms used in
the cloud. Round-robin seems to be the most popular while
some cloud providers offer more advanced logic such as
least-connect [4]. These load distribution mechanisms assume
that latency requirement will be met as long as none of the
servers are overloaded. The assumption is not valid on a cloud
platform. As shown in Figure 5 in Section VI, server latency is
unpredictable even under normal load, possibly due to resource
contention with other virtual machines in the same physical
host. Accordingly, we propose to use latency as the primary
metric for load distribution when the application is latency-
sensitive.

Latency on cloud computing platforms has been studied
at different levels of the cloud architecture. For example,
latency degradation due to resource contention between VMs
colocated on the same hardware has been studied by [3][5][6].
These studies conclude that improvements in VM resource
scheduling are needed so that less contention leads to better
performance. These solutions attack the latency problem at
the source while our solution attempts to mask the problem
temporarily.

Smart VM placement [7] is another potential solution. In
this approach, the VMs are assigned to hardware depending
on application workload to minimize interference. However,
there is a problem: the cloud provider does not know the
application workload and the application developer has no
power to decide where to place their VMs. VM placement
is useful, nonetheless, for private clouds where both the cloud
provider and the application developer can share information
about application workload.

For real-time applications with requirements to optimize
latency at a few microsecond range, the hardware, hypervisor,
and guest operating systems must be tuned [8]. But a platform
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Fig. 2: Overall design of cloud support for latency-sensitive
telephony application

highly optimized for real-time applications leads to degrada-
tion of performance in other applications [8], and is not an
appropriate solution for a general-purpose cloud platform.

Lastly, there is a lot of interest in deploying massively
multiplayer games on the cloud [9][10]. Games are latency-
sensitive as well; otherwise, the gaming experience degrades
to an intolerable level. However, games have different traffic
characteristics from telephony applications.

III. A QUICK SIP BACKGROUND

The Session Initiation Protocol (SIP) [11] is an IETF stan-
dard for Internet telephony. SIP is used to establish, modify,
and tear down sessions. SIP messages are text-based and are
syntactically similar to HTTP messages. Messages beginning
with verbs like INVITE are used to establish a call and BYE
to tear it down. Responses have status codes such as “200 OK”
if the callee picked up the phone, or “486 Busy here” if the
callee is currently busy taking another call.

SIP servers are divided into three classes with respect to the
amount of call state stored: stateless, transaction-stateful, and
session-stateful. Stateless servers do not store any call state and
merely forward messages based on their content. On the other
extreme, session-stateful servers store call state from beginning
to end of a call. These servers are used for accounting and
billing. Transcation-stateful servers create and store call state
only until the end of each transaction.

As shown in Figure 1, a simple call consists of two
transactions: an INVITE transaction and a BYE transaction.
An INVITE message from the caller initiates an INVITE
transaction and an ACK message terminates the INVITE trans-
action. If a proxy server stores transaction state, all messages
within this transaction must be processed by the same proxy
server. SIP headers contain information such as the Call-ID
to match individual messages to transactions and sessions.
In a server cluster, the Call-ID is important in assisting load
balancers to send messages to the right server.

IV. DESIGN

Figure 2 shows the design of the cloud support system
for latency-sensitive telephony applications. It is a feedback
loop that consists of three functions: monitoring latency on a
server, estimating the next load, and distributing load from the
front-end queue. In this design, latency is constantly monitored
and used as input to estimate how much the next load should
be. If the latency increases, next load is reduced. If latency
stays stable or decreases, a higher load is tried. In short, load
offered to the server is dependent on currrent latency statistics.
Periodic updates of the load are sent to the front-end queue.
Since each server is essentially determining its own load in real
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Fig. 3: Load versus latency of a SIP proxy server. Each ver-
tical line shows the minimum, 95th percentile, and maximum
latency.

time, the role of the front-end queue is to passively distribute
load to each server, up to the amount requested.

Placing a queue in the front may be counter-intuitive in
a system that supports latency-sensitive applications. Indeed,
queuing delay can rapidly increase if traffic arrival rate is
greater than the server processing rate. However, by central-
izing the likelihood of queueing delay to the front-end queue,
we can better manage the delay. The best option is to have
a queueing delay close to zero. This close-to-zero queueing
delay is guaranteed by making sure that the sum of all server
capacities is greater than the traffic arrival rate, a strategy
that is feasible with dynamic scalability of cloud computing
platforms. The other option is to reduce the queue length to
control delay. Unfortunately, this results in dropped packets
and lost calls but the upside is that latency can be managed
for the calls that got through.

Different aspects of the design are explained next.

A. Monitoring latency

As shown in Figure 2, the latency of a server is monitored
by tracking request-response pairs. The request-response pair
is application specific.

For SIP proxy servers, the request is an incoming SIP
INVITE message, which starts an INVITE transaction, and
the response is a proxy-generated SIP INVITE message to the
callee. The pair is matched with a Call-ID header value within
the SIP message since Call-ID is not modified by the proxy
server. The time difference between the request-response pair
measures the sum of latencies involved in receiving and parsing
the SIP INVITE message, generating and storing transaction
state in memory, querying the database for callee location,
possibly writing the call record to database for accounting
purposes, generating a SIP INVITE message to send to the
callee, and finally sending the message.

Thus, the measured latency is not only the processing
latency of the server, but the total latency of the flow of
execution involving all participating nodes in the server cluster.

For example, if the database is suddenly slow, server latency
measurement is affected as well. This will result in decreased
load for the server even though the server has room for more
load. However, decrease in server load will lead to a decrease
in database queries, which may relieve load on the database
and return latency back to normal.

The on-going measurement is used to generate latency
statistics such as the minimum, maximum, median, the 95th
percentile value, average, and standard deviation. For each time
window, e.g., 1 second, these statistics are gathered and used
as input to calculate load appropriate for the server.

B. Estimating load

Load sent to the server directly affects the server’s latency.
Figure 3 shows our measurement of a SIP proxy server’s
load and latency. At a given load, each vertical line shows
the value of three statistics: minimum, 95th percentile, and
maximum. The minimum value remains constant across all
loads, since this is the latency when there is no resource
contention. The maximum value is the worst-case latency that
is affected by CPU scheduling, cache misses, memory page
faults, resource contention, and network delays. To guarantee
a strict constraint on maximum latency, one must work from
the bottom-up starting with hardware and operating systems
that respond within a given timeframe. This is difficult and
expensive, so most applications use a percentile value such as
the 95th percentile value.

By controlling load on the server, the 95th percentile
latency can also be controlled. Therefore, when an external
event such as VM contention starts to degrade latency, the
server reduces its load so that the 95th percentile latency is
still within limits.

However, care must be taken not to overestimate the load
on the server. If the load is overestimated, latency will degrade
very quickly. Placing a hard limit on the maximum load helps
to keep the latency reasonable in normal situations without VM
contention. During periods where latency is high even when
the load is below the maximum, we use a conservative policy
when increasing the load on the server so that load is increased
at 10 calls every minute. When reducing load, we reduce to
90% of the current load as soon as the 95th percentile latency
moves out of bounds.

The estimated load is updated periodically to the front-end
queue. The protocol is very simple. An update message is sent
every x seconds to the front-end queue. The message contains
the IP address of the server and the server capacity. The front-
end replies with an OK message. A lost update message can
degrade the overall performance of the system. Therefore, TCP
is used as the underlying transport protocol to prevent message
loss. Since update messages are short and throughput is not a
concern, TCP congestion avoidance or flow control algorithms
are irrelevant for this purpose.

C. Front-end queue

The behavior of front-end queue is described in pseudocode
in Listing 1. Thread 1 receives an incoming message and
checks to see if there is a {Call-ID, server} pair in memory. If
there is one, then the message is sent directly to the server. This



is known as sticky session and is important for correct behavior
of SIP servers. As explained in Section III, SIP messages are
bound to the session state in a server. SIP proxy servers will
reject messages that do not belong to a session, unless it is
a message that starts a new session. If the {Call-ID, server}
mapping does not exist and the message is a SIP INVITE
message, it is stored in queue.

Thread 2 takes the first message from queue and chooses
a destination server. This creates a new {Call-ID, server}
mapping in memory so that subsequent messages will be
correctly routed to the server. Once it sends the message, server
capacity is decreased by one.

1 MSG: incoming message
2 Ca l l−ID : Ca l l−ID v a l u e i n message
3 SERVER : a proxy s e r v e r
4
5 Thread 1 :
6 r e c e i v e incoming MSG
7 p a r s e Ca l l−ID from MSG
8 i f {Cal l−ID , SERVER} mapping e x i s t s
9 send MSG t o SERVER

10 i f MSG i s s e s s i o n−e n d i n g message
11 remove {MSG, SERVER} from mapping
12 e l s e

13 s t o r e MSG i n queue
14
15 Thread 2 :
16 t a k e t h e f i r s t MSG from queue
17 choose a SERVER wi t h c a p a c i t y > 0
18 add {Cal l−ID , SERVER} t o mapping
19 dec remen t SERVER c a p a c i t y by one
20 send MSG t o SERVER

Listing 1: Front-end algorithm

The queue length is one of the factors in deciding queueing
delay. We use a varying queue length to control how long a
packet waits in the queue.

D. Server scaling logic

From the front-end queue, the traffic arrival rate and the
total server capacity can be obtained. A server needs to be
added when the traffic arrival rate λ approaches the total server
capacity θ, and removed when the total server capacity is less
than the capacity of n − 1 servers. We use a simple 80%
threshold on the λ

θ
ratio to add a server.

The bigger problem is the startup time of VMs in the cloud.
On Amazon EC2, it takes around 1 to 2 minutes on average
to start a new VM [12]. To offset this starting time, a spare
VM can be powered on in advance. This type of n+1 server
configuration will not be needed with improvements in startup
time.

To remove a server, we follow the index-packing scheme
[13] which distributes load to a small number of servers so
that idle servers can be turned off after a timeout. SIP proxy
servers are usually transaction-stateful at most; therefore, an
idle server can be turned off after a timeout of few minutes
when all transaction states within the server expires.

The total server capacity can fluctuate from time to time
because each server’s load is determined by individual latency
statistics. Under normal conditions, the total server capacity
would remain stable because latency fluctuations in a small
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Fig. 4: Experiment setup on Amazon EC2. Cassandra DB, used
for storing user location and credentials, is not shown in the
figure.

TABLE I: Type of EC2 instances used for evaluation. VM 1,
VM 2, and sipp are shown in Figure 4

Component VM Type Cores Memory Network

VM 1 c1.medium 2 1.7 GiB Moderate

VM 2 m1.small 1 1.7 GiB Low

sipp m1.small 1 1.7 GiB Low

set of servers would not affect the overall capacity. However,
if there is a cluster-wide disruption in latency, the total server
capacity may drop significantly. The problem, then, is not
with the latency-support system but a much bigger problem
involving the telephony application or the underlying cloud
computing infrastructure.

V. IMPLEMENTATION

We implemented two prototype components to test our ap-
proach. The front-end queue (FEQ) is a component described
in the previous section and the Server Monitor And Capacity
Estimation (SMACE) is a component that monitors servers
and estimates capacity. Both components are written in C for
fast execution time. Figure 4 shows the location of these two
components in the server cluster.

A. Implementation of SMACE

SMACE measures the proxy server’s request-response
latency by passively sniffing messages using libpcap [14].
This incurs some overhead and an evaluation of throughput
and latency overhead is presented in Section VI. We used
online algorithms to generate statistics like the average and
standard deviation, and the P2 algorithm [15] for estimating
the median. Minimum and maximum are trivial to obtain. For
95th percentile value, we implemented a small, sorted array
that is used to keep track of the top 0.05% of the values we
have seen in a time period. The smallest value in the array is
the 95th percentile value. This method of calculating the 95th
percentile value is not scalable but it is still useful and fast
enough for our servers’ peak load of less than 500 calls per
second, which translates to at most 25 values in the array.

The user sets the limit on the 95th percentile latency and
SMACE will adjust load in order to meet those guidelines.
To eliminate overestimation of load, we introduced a user-
configurable parameter to specify the maximum load of the
server. This value can be easily obtained from a stress test of
a server. Every second, SMACE updates the server capacity to
FEQ.
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Fig. 5: 95th percentile latency on Amazon EC2 versus local
VM. Server on Amazon EC2 displays much more variation
than the server on a local VM at the same low load level of
300 calls/sec.

TABLE II: Comparison of Amazon EC2 and local VM

Cores CPU Model Memory Kernel

EC2 m1.small 1 Xeon 5110 (1.60GHz) 1.7 GiB 2.6.35.14

Local VM 1 Xeon E5-2650 (2.00GHz) 1.0 GiB 2.6.27.21

B. Implementation of FEQ

The Front-End Queue (FEQ) passively distributes messages
to proxy servers, up to the load requested by each server. FEQ
only queues messages without an associated session. Messages
within existing sessions are forwarded to the appropriate server
immediately. The queue is allocated in memory with a fixed
size, but a variable called queue length is used to control the
effective size of the queue. When queue length is filled, new
calls are dropped. As mentioned in Section IV, however, the
best strategy is to proactively spawn servers so that new calls
can also be processed.

VI. EVALUATION

A. Evaluation setup

Most of our experiments were conducted on Amazon EC2.
Figure 4 shows our testbed setup. A stateless SIP server
is placed in the front to deal with client interaction. Front-
end queue (FEQ) interacts with SMACE to send requests to
servers. An open-source SIP server called SIP Express Router
[16] is used for both the stateless SIP server and the SIP proxy
server. SIP load generator called sipp [17] is used for calling
and receiving calls. The type of VM used on Amazon EC2 is
organized in Table I.

B. EC2 versus local VM

To verify the resource contention problem in the wild, we
indirectly compared the latency of a server on Amazon EC2
to the latency of the same server on a local VM. We tried to
configure the local VM so that it would be very similar to the
image on Amazon EC2. Table II shows our setup.
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Fig. 6: SMACE tries to bring latency down by reducing load
when latency is above threshold.

As shown in Figure 5, there is much more variation in
latency on Amazon EC2. Especially from time 300 to around
400, there is a period of higher latency even though no other
CPU or I/O intensive process was running within the VM. This
points to the possibility of VM contention.

We verified that similar latency variations can be seen in a
local VM as well, when there is contention among VMs with
a single network card. As a proxy server is not CPU-intensive
and moderately network-intensive, the higher latency strongly
suggests that a neighboring VM on Amazon EC2 was sending
or receiving packets from time 300 to 400.

C. Load estimation behavior

Figure 6 shows how SMACE reacts to variations in latency
by increasing or reducing the load. The actual load, or goodput,
is shown as a solid line and the requested load is shown as the
dotted line. If the latency spikes above the threshold, SMACE
reduces the load to 90% of the current goodput. SMACE
increases requested load by a simple formula when latency
is below threshold.

loadnext = loadcurrent ×

√

1 +
threshold− latency95

threshold

Due to the latency-to-threshold ratio in the formula, load
increase is small if latency is close to the threshold while load
increase is big if latency is safely under the threshold.

To guard against excessive fluctuations in requested load,
SMACE only changes the requested load every 10 seconds.
The graph shows this behavior; at around 90 and 270 seconds,
requested load stays the same even though the latency spikes
well above the 1000 microsecond threshold.

D. Server monitoring overhead

Server monitoring overhead is shown in Figure 7 and
8. During our measurements, goodput was not affected by
SMACE although we expect minor overhead at higher loads.
Figure 8 shows measurements of how long it takes for the
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monitoring shows no degradation until 900 calls per second.

caller to hear the ring tone. The latency shown in the graph
includes network delays on both the caller and callee. Assum-
ing a 250 millisecond round trip time to the opposite side of
the globe, the ring time for international calls will still be less
than 1 second even at 900 calls per second load.

VII. CONCLUSION

In this paper, we presented a cloud support system for
latency-sensitive telephony applications. Latency variations in
the cloud are unpredictable due to resource contention between
VMs colocated in the same physical hardware. As a result,
a server may suffer from increased latency due to resource
contention even if the server load is stable.

Our system ensures that servers in the cloud are always
running at peak performance with respect to latency. The server
is constantly monitored for latency. Based on these latency
statistics, for example the 95th percentile value, the next server
load is calculated and requested from the front-end queue.
The front-end queue passively distributes load to the server
up to the requested amount. By reducing the load on a high
latency server, the system lets other servers with better latency
handle more load. When latency drops to normal levels, load
is increased gradually to fully utilize the server.

Our approach was implemented for a cluster of SIP proxy
servers for telephony services. This approach may also be used
for other latency-sensitive applications with a request-response
transaction model, such as stock trading or airline reservation
systems.
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