COMSW3137 Spring 2015 Homework 2 - Due 2/26/2015

Non-Programming Problems. If you are asked to write a program or some code, note that
you do not have to write actual code. Pseudo-code or use of the Java methods mentioned in the
textbook is allowed - it can make this very simple. You may also code the solutions if you wish,
but it is not required.

1. (28 points) Assume a simple Linked List data structure such as the one below (NOT a Java
Collections API Linked List). Write brief Java methods to do the following:

) return the size of the linked list
) print the linked list
(c) test if a value x is contained in the linked list
(d) add a value x if it is not already in the linked list (add at the end of the list)
) remove a value x if it is contained in the list
) reverse the order of the items in the linked list
)

Given two lists, Li and L2, create a new list L3 that contains the interesection (common
data elements) of L1 and L2.

//simple LinkedList class
public class SimpleLinkedList {
protected Node header;

public SimpleLinkedList() {
header=null;
¥
...methods go here...
}
public class Node{
protected Object data;
protected Node next;
public Node(Object x, Node n){
data=x;
next=n;
}
public Node(){
data=null;
next=null;



Programming Problems

1. Maze Search. You will be given a maze file and using Breadth-First-Search, you will find a
solution to the maze.

A maze is an 8x8 grid of cells. Each cell has 4 neighbors: North, East, South, West. Input is
8x8 ascii matrix file, with 0 for empty cell, 1 for obstacle, S for Start, G for Goal, and spaces
between entries. Example ascii Maze File:

00000O0O0CO
01100000
01101GO0O0
00001110
00000100
0S0000O0CO
00000100
000000OO0CO

A directory containing a skeleton for thisproject will bein the class github repository in
homewor ksshomework _2/maze. I nstructionsfor accessing thisrepostory will be emailed to the class.
Thisdirectory contains the following files:

(a) MazeShell.java - this is a “skeleton” program that will compile, and it has stubs in the
code for the parts you need to write to solve the maze, as well as the GUI interface.

(b) DrawingCanvas.class - you need this class to compile MazeShell.java. It contains the
GUI drawing classes. Youmay use this set of GUI methods (easier) or use your own
drawing methods.

(¢) DrawingCanvas.html - documentation for the DrawingCanvas methods.

(d) mazel.data, maze2.data, maze3.data - sample maze files

(e) MazeSolutionObs.jar - this is an executable jar file that contains a solution to the

maze problem so you can see how the program sholdl work. The program has 1 argument
which is the maze file name: Execute it as:

java -jar MazeSolutionObs.jar maze_file_name

What you need to do:

(a) (12 pts.) Read in the maze file and display the maze with START, GOAL and OBSTA-
CLES. Use buttons in the display window to control this.

(b) (20 pts.) click a button to do a breadth-first-search using a queue from the START cell
to the GOAL cell, calculating and displaying the distances from the START cell. You
may only travel North, East, South or West from a cell, unless one of these directions is
an obstacle or the edge of the grid.


http://www1.cs.columbia.edu/~allen/S14/homework.html

(c) (10 pts.) Click a button to find the minimum cost path and display it. Note these* paths
are not unique, there may be more than one minimum cost path. Cost is simply the
number of cells traversed. If no path exists report that in the GUI.

2. Polynomial Operations Using Linked Lists

NOTE: you may not use any of the Java collections classes in this exercise. You must use
your own linked list classes, not any of the Java collections classes. Classes in the textbook
or from class notes are allowed.

(30 points) Polynomials can be represented by a linked list. Each node of the linked list will
correspond to a term of the polynomial. This will allow us to represent polynomials of an
arbitrary length. In this exercise, you will write a program to create, manipulate and display
polynomials.

A possible Java class for a polynomial term might look like this:

public class PolyTerm {
private double coef;
private int exponent;

PolyTerm()
{
coef=0.0;
exponent=0;
}
PolyTerm(double c, int e)
{
coef=c;
exponent=e;
}
public void setPolyTerm(double c, int e)
{
coef=c;
exponent=e;
}
public int getExponent()
{ return exponent; }
public double getCoef ()
{ return coef; }
public String toString()
{ return coef + " x~" + exponent; }

3



These PolyTerm objects form the nodes of a linked list that represents a polynomial. Since
we want to manipulate many polynomials (e.g. add polynomial_1 to polynomial 2 resulting
in a new polynomial 3), we can allocate an array of linked lists, where each linked list is a
polynomial. The array index is the way we identify each of the polynomials (polyarray[0],
polyarray[1], etc.)

linkedlist[] polyarray = new linkedlist[MAX_POLYS];

BE CAREFUL! Besides declaring the array above, you will still have to initialize each linked
list using your linked list object class constructor.

Each polynomial will be indexed by its entry in the polyarray, and the contents of that array
position will a LinkedList object.

Important: To make the process efficient, we can store the polyterms in order of DECREAS-
ING exponent. Then, as we insert terms, we know where in the list to put them.

What you need to do: Below is a sample interface to do polynomial operations:

(a) Input - Enter the position in the poly array to store this polynomial, and the number
of terms in the polynomial. Then, perform a loop for the number of terms, entering
coefficient and exponent pairs. To enter the polynomial 5.12* + 623 — x + 8 (4 terms)
in position 0 of the poly array we would enter at the terminal: (sample menu of choices
for user)

Please enter what you want:
i for input

for add

for subtract

for multiply

for evaluate

for print

for quit

Qo oo B nop

i

input: enter index number of polynomial and how many terms
04

enter coef and exponent for term 1
5.1 4

enter coef and exponent for term 2
6 3

enter coef and exponent for term 3
-11

enter coef and exponent for term 4
8 0

5.1x"4 + 6.0x"3 + -1.0x"1 + 8.0x70



(e)

Each time we get a coefficient-exponent pair, we create a term, and insert it into the
linked list, ordered by decreasing exponent value. You will need to write an insertl-
nOrder method that will scan the linked list and find the appropriate spot to enter
each term in the list by decreasing exponent value. When you create a polynomial, you
should be able to input the terms in any order: the insertInOrder method will find
their proper place in the list by decreasing exponent.

addPoly(LinkedList L1, LinkedList L2, LinkedList L3) - Once you have input
the polynomials, you will have to perform operations on them. To add 2 polynomials,
simply specify the indices of the linked list polyarray for the two addends and an index
for the linked list that will hold the result. The method above will add the polynomial
at polyarray position L1 to the polynomial in polyarray position L2 and create a new
polynomial at polyarray position L3.

You might think the way to do the add operation is to process both lists together from the
first term to the last (remembering that the terms are ordered by decreasing exponent).
If pl is an iterator that points to the first term of polynomial 1, p2 is an iterator that
points to the first term of polynomial 2, we do the following;:

i. If the exponent in the term pointed to by pl is larger than the exponent in the term
pointed to by p2, we create a new term that is identical to the term pointed to by
pl, and insert this new term into polynomial 3. Now advance the pointer pl to the
next term of polynomial 1.

ii. If the exponent in the term pointed to by pl is smaller than the exponent in the
term pointed to by p2, we create a new term that is identical to the term pointed
to by p2, and insert this new term into polynomial 3. Now move the pointer p2 to
the next term of polynomial 2.

iii. If both exponents are equal, add the coefficients, and insert a new term with the
common exponent and coefficient sum into polynomial 3. Now move both pointers
pl and p2 to the next term.

iv. If one of the polynomials ends, insert each of the remaining terms in the other
polynomial into polynomial 3.

However, we really don’t have to do this. All we have to do is an insertInOrder: simply
insert every term in both polynomials into the new polynomial. insertInOrder will
automatically add co-efficients if the exponents are the same! So the add operation is
essentially for free once we write insertInOrder.

subtractPoly(LinkedList L1, LinkedList L2, LinkedList L3)

Same idea as in the addpoly method: subtract polyarray[L2] from polyarray[L1] and
leave the result in polyarray[L3].

multPoly(LinkedList L1, LinkedList L2, LinkedList L3)

Same idea as in the addpoly method. Make sure you actually do a multiply operation,
rather than doing iterative addition as shown in class.

evalPoly(LinkedList L1, int value)



This will evaluate the polynomial in position L1 using value as the value of the variable
in the polynomial.

(f) printpoly(L1) - This method will print out the polynomial in polyarray[L1]. This is
very useful in debugging your code. Everytime you do an operation on a polynomial, you
can print it out to see if it worked. This method already exists in the Weiss LinkedList
class, but you must create a toString method in the PolyTerm class to print out the
PolyTerm objects.

Extra Credit 1: Cool User Interface, 4 points - This is something you need to design
yourself. You can use the sample menu in this handout as a guideline (no extra credit) or
use your own design if you want - make it user-friendly. Also make it defensive: don’t allow
commands that don’t exist (i.e. illegal input) etc. Extra points will be given for a cool
interface!

Extra Credit 2: Polynomial Divide, 4 points - Implement a polynomial divide method.
dividePoly(L1, L2, L3, L4) divides poly L1 by poly L2, leaving the Quotient in L3 and the
Remainder in L4.



