CS W3137 Assignment 5. Due 4/21 at class time

Non-programming problems (30 points):
1 - Problem 7.12 (5 points)

2 - Problem 7.35 (5 points)

3 - Problem 7.37 (5 points)

4 - Problem 9.2 (5 points)

5 - Problem 9.19 (5 points)

6 - Problem 9.20 (5 points)

Programming Problems (70 points):

Programming 1 (35 Points) - Fibroconnect.com has asked for your help as a
consultant. Fibroconnect wants to connect major US cities via fiber optic cable to create
their own internet. They have asked you to find the minimum total cable length needed
to create a path to connect every city. The input to your program will be the file
http://www.cs.columbia.edu/~jweisz/\WW3137/HMWK/cityxy.txt

which contains the name of each city and its X and Y coordinates. Below are a few lines
from the file:

Boston 2542 1230
Chicago 1756 1048
Omaha 1350 990
SaltLake 565 1025
Peoria 1676 962
NewYork 2435 1081

Here is what you must do:
(a) Read in each city and its X Y coordinates.

(b) (7 points) Assume the cities in the graph are fully connected - an edge exists
between every city pair. Using a 2-D Euclidean distance metric for the edge costs, print
out all the edge pairs and their distances. Print them out as: city1 city2 distance. Also, to
reduce the print out length, make sure you only print out each city pair and its distance
once (i.e. DO NOT print “city1 city2 distance” and also print out “city 2 city 1 distance”).

(c) (18 points)Using these edge costs (path lengths), implement Kruskal’s algorithm for
finding the minimum spanning tree of the city graph. You are required to use a Priority

Queue in your algorithm (Java Collections classes allowed). Output the edge pairs that
make up the minimum spanning tree.

(d) (10 points) Using a JAVA GUI window, draw a map of the cities, along with the
edges that represent the Minimum Spanning tree as calculated by Kruskal’'s algorithm.
(see figure 1 for the fully connected city graph BEFORE the MST computation). Note:
the X'Y coordinates of each city is in a coordinate system in which the first coordinate
(X) increases from left to right (same as the JAVA GUI X coordinate system), and the
second coordinate (Y) decreases from the top of the page to the bottom (the reverse of
the JAVA GUI Y coordinate system). Therefore, you need to transform the Y coordinate
of each city to reflect this. Also note that all city names are a single string (i.e. no white
space as “Las Vegas” becomes “LasVegas”) to make it easier to input and identify city
name strings.

Miami

Figure 1: Sample output of fully connected US City map before MST computation.
Programing Problem 1 (Minimum spanning tree) will produce a similar map with only the
edges of the MST draw in.

Programming 2 (35 Points) -

]
:
§

Figure 2: 3-D Word Hunt. Find as many legal words of length N as you can. You may
return to a letter and use it more than once (e.g. word “TITAN”), but you cannot “stand”
on a letter and use it more than once (e.g. word “DITTO”).

The New York Times Magazine has a puzzle called 3-D Word Hunt (see fig 2). In this
puzzle, you need to search a 3D matrix of letters for legal words. Each node of the
matrix contains a single letter and a list of connections to other adjacent nodes. The
puzzle is solved by finding all legal words of length N. A word is formed by
concatenating each of N adjacent letters as you traverse the matrix. Letters can be
repeated, but a single node’s letter cannot be repeated by “standing” on the same node
you are on. In graph terms, this means no self-loops.

(a) Read in the word hunt matrix. It is contained in the file:

http://www.cs.columbia.edu/~jweisz/\W3137/HMWK/graph.txt
The file is organized as follows:

Letter

XY Z coordinates of letter in the matrix
XY Z coordinates of adjacent node
XY Z coordinates of adjacent node
Letter

XY Z coordinates of letter in the matrix
XY Z coordinates of adjacent node
XY Z coordinates of adjacent node
XY Z coordinates of adjacent node
Letter

(and so on - note that not all nodes have the same number of adjacent nodes)

Search for legal words of length N, where N is a user specified parameter. A word is
legal if it can be found in a dictionary. You will use /usr/dict/words, the standard Unix
dicitonary as our dictionary. You will do a lookup for a legal word using a Hash Table of
all the words in /usr/dict/words. Your hash function will be a standard polynomial
multiplier for strings. For Collision Detection and resolution you will use Open
Addressing with Linear Probing. Since there are 25,143 words in the dictionary, use a
table size of the smallest prime number greater than 2 * 25,143, which would be 50,287.
Your program should output all legal words of length N that can be found in the

dictionary by traversing the matrix. N is a user input.

Here are the first few lines of the file:

000
100
010
001

001
000
011
101

010

000
020
011
110

Extra Credit (5 points): Program the Word Hunt in a GUI with a display of the matrix
and an animation of each letter as it is visited.

Note: The Unix dictionary file is not very good, since it leaves out some words and also most
suffixes and prefixes (e.g doesn’t do plurals etc.) For testing and fun, you may want to try a larger
dictionary which contains 152,476 words (don’t forget to increase your hash table size if you use it):
http://www.cs.columbia.edu/~jweisz/\W3137/HMWK/largedictionary.txt

http://www.cs.columbia.edu/~jweisz/W3137/HMWK/largedictionary.txt

