
Class Notes, CS 3137

1 Measuring the Running Time of Programs

• We can define a function T (N) to represent the number of units of time that an algorithm takes for
an input of size N

• We can understand an algorithm’s cost by finding its complexity class:

– If T (N) = k, where k is some constant, then we can say T (N) is a constant time algorithm. This
is a O(1) algorithm.

– If T (N) = kN , where k is some constant, then we can say T (N) is a linear time algorithm. This
is a O(N) algorithm.

– If T (N) = logN , then we can say T (N) is a logarithmic time algorithm. This is a O(logN)
algorithm.

– If T (N) = kN2, then we can say T (N) is a quadratic time algorithm. This is a O(N2) algorithm.

– If T (N) = kN3, then we can say T (N) is a cubic time algorithm. This is a O(N3) algorithm.

– If T (N) = kXN , where X is some constant base, then we can say T (N) is an exponential time
algorithm. This is a O(XN ) algorithm.

• To be more precise, we say T (N) = O(g(N)) if there are positive constants k and n0 such that
T (N) ≤ kg(N), ∀N ≥ n0

• Its important to remember that we are looking at relative rates when comparing our own algorithm to
a known function. We need to see at what rate an algorithm’s running time increases as the input size
N increases

• When we say T (N) = O(g(N)), we are saying that T (N) grows no faster that g(N). We can say that
g(n) is an upper bound on T (N).

• It is instructive to check out figure 2 below to see how the running time of a program changes with
each complexity class.

2 Θ and Ω Notation

Most of the time we use Big O notation to understand the running time of programs, which gives us an upper
bound on the running time. We can define a lower bound on the growth of a function using the notation
Ω(g(n)). This is the same idea as O notation, except we define a function g(n) such that for n > n0 and
some constant k > 0, T (N) ≥ kg(N), ∀N ≥ n0. In figure 1, we show this relationship.

Using the notation Θ(g(n)) we can define a lower and upper bound on f(n) by saying f(n) = Θ(g(n)) if
for all n > n0, and constants c1, c2: c2g(n) ≥ f(n) ≥ c1g(n).

3 Rules for Using Big O Analysis

• Constants don’t matter. An algorithm that is O(kN2) is referred to as O(N2). It is clear that as N
gets larger, the effect of the constant becomes less important.

• Lower order terms can be dismissed since they tend to be dominated by higher order times as N
increases. An algorithm that is O(N2 + N) is referred to as O(N2). This is true for all polynomial
functions: the order of the algorithm is O(Nk) where k is the largest exponent.

• We try to pick a function with the tightest upper bound. So while an algorithm may be T (N) = O(N),
we can also say that T (N) = O(N2), T (N) = O(N3) and so on, since these are upper bounds. But we
want to pick the function with the smallest upper bound possible. Once again, we ignore constants.
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Figure 1: Example of Θ, O, and Ω notations (from Intro. to Algorithms, Corman, Leiserson,Rivest, Stein

• Even though we will use Base 2 logarithms in most of our analysis, the base doesn’t really matter. We
can always convert a logarithm in one base to any other base using a constant. For example to convert
Base 2 logarithms to Base 10 logarithms we use:

log10 N =
log2 N

log2 10
(1)

Proof:
Z = log10 N , X = log2 N , Y = log2 10 (2)

So we have to prove that Z = X
Y or X = Y Z.

We know that:
10Z = N , 2X = N , , 2Y = 10 (3)

Rewriting:

2X = N = 10Z = (2Y )
Z
, 2X = 2Y Z , X = Y Z (4)

• If T1(N) = O(f(N)) and T2(N) = O(g(n)) then:

a) T1(N) + T2(N) = max(O(f(N)) , O(g(n))

b) T1(N) ∗ T2(N) = (O(f(N)) ∗ O(g(n))

• logkN = O(N). This implies that logarithms grow slowly. Powers of logN still are O(N).
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Figure 2: Growth of functions of N

4 A Proof Using Big O Notation

Suppose we want to show that 5n3 + 3n2 + 4n + 8 is O(n3). From the definition of the Big O-notation, we
need to find K and n0 such that: 5n3 + 3n2 + 4n + 8 ≤ Kn3 ,∀n ≥ n0. Letting n0 = 1, n ≥ n0 is the same
as n ≥ 1, which is the same as 1 ≤ n. Now, multiplying each side by n successively:

1 ≤ n

n ≤ n2

n2 ≤ n3

using transitivity, we can also say:

a : n2 ≤ n3

b : n ≤ n3

c : 1 ≤ n3

d : n3 ≤ n3

Multiplying inequality (a) by 3 gives 3n2 ≤ 3n3

Multiplying inequality (b) by 4 gives 4n ≤ 4n3

Multiplying inequality (c) by 8 gives 8 ≤ 8n3

multiplying inequality (d) by 5 gives 5n3 ≤ 5n3

Adding up these inequalities gives:

5n3 + 3n2 + 4n + 8 ≤ 20n3

Hence, if we choose K = 20, then for all n ≥ 1 we have proven that:

5n3 + 3n2 + 4n + 8 ≤ Kn3

which formally establishes that it is O(n3).
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5 Creating a Model and Rules for Analyzing Computer Programs

• Each typical computer statement is assumed to take the same unspecified amount of time. This
makes it easier to compare programs in a machine independent manner, since some machines execute
instuctions faster or slower. Exceptions are For, While, If statments.

• For and While loop statements are evaluated by multiplying the number of statements inside the loop
by the number of iterations of the loop. If the statements are nested, we just keep multiplying from
the innermost loop to the outermost loop.

• If statements are evaluated by taking the maximum time of all the possible branches.

• I/O statments (System.out.println, Reader, GUI commands) usually take much longer than typical
assignment statements etc. However, we still consider them a primitive, 1 time step operation

• If there are consecutive blocks of statements, we simply take the maximum time of the blocks, since
this will dominate the other blocks.

• We have to be careful about whether the time we are speaking about is the average case time or what
is known as a worst case time. This will become clear when we look at certain algorithms that may
finish very quickly on one input set and work much longer on a different set. Sorting is an example, as
the items to sort may be in order already, and the sort will do little work, or it may do a lot of work.
Average cases are sometimes hard to analyze, so we often use worst case analysis.

6 Running Time Analysis of Selection Sort

Selection sort works by finding the smallest (or largest) element in an array, and placing that element in the
first (or last) position of the array. It then repeats this procedure on the remaining elements - you can think
of it doing the same thing on an array that is 1 element smaller.

//This program generates a set of random integers and inserts
//them into an array and then sorts them using selection sort
import java.util.Random;
public class SelectionSort
{
public static void OrderArray(int[] item, int start,int end)
{

int i,maxpos;
maxpos=end;
for(i=start;i<end;i++){

if(item[i] > item[maxpos])
maxpos=i;

}
int tmp=item[end];
item[end]=item[maxpos];
item[maxpos]=tmp;

}
public static void main( String [ ] args )
{

int ARRAY_SIZE = 6;
int MAXINTEGER = 100;
int i,minpos;

System.out.println("Random ");
int[] item= new int[ARRAY_SIZE];
Random generator= new Random();
for( i = 0 ; i < ARRAY_SIZE; i ++) {

int x= generator.nextInt(MAXINTEGER);
System.out.println("Random number inserted in array is " + x);
item[i]=x;

}
for( i = ARRAY_SIZE-1; i >0; i-- ) {

OrderArray(item,0,i);
}
System.out.println("Sorted Array is:");
for( i = 0 ; i < ARRAY_SIZE; i ++) {

System.out.println(item[i]);
}

}
}
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6.1 Finding the Running Time of Selection Sort by Induction

We can see that the selection sort for an array of size N takes N + (N − 1) + (N − 2) + ... + 1 iterations.
Can we sum these up? This is just the sum of the first N positive integers starting at 1, and the formula for
this is:

N∑
i=1

i = N · (N + 1)/2 (5)

We can prove this is the formula by the method of induction. First, we need to establish a base case for
i = 1:

Base Case: If i = 1, then

1∑
i=1

i = 1 · (1 + 1)/2 = 1 (6)

So, the formula works for the case of i = 1 since 1 is the sum of the first integer in our sequence, 1. To
show it works for all cases, we assume that the formula is true for i = N , and prove it must then also be
true for i = N + 1. This is called the induction step. Once we do this, we can be sure it will always be true
by just extending the base case one or more times using the induction step.

Induction Step: Assume the formula is true for i = 1 to N :

N∑
i=1

i = N · (N + 1)/2 (7)

Now, show it also must be true for the case of i = 1 to N + 1:

N+1∑
i=1

i = (N + 1) · (N + 2)/2 =

N∑
i=1

i + (N + 1) (8)

By the induction step assumption, the term above is simply the sum of the first N integers which we know
to be equal to N · (N + 1)/2, and

N+1∑
i=1

i = (N · (N + 1))/2 + N + 1 = (N2 + N + 2N + 2)/2 = ((N + 1)(N + 2))/2 (9)

which shows that the formula holds for input of size N + 1
What this tells us is that selection sort is O(N2), since it takes about N · (N + 1)/2 iterations. Once

again, we drop lower order terms and constants to get this result.
Formally we can write this as a recurrence relation: T (N) = T (N − 1) + N . A recurrence relationis

often used to define a computation in terms of itself.
A common way to solve a recurrence relaton is by simply “telescoping” the recurrence, remembering that

T (1) = 1:

T (N) = T (N − 1) + N (10)

T (N) = T (N − 2) + (N − 1) + N (11)

T (N) = T (N − 3) + (N − 2) + (N − 1) + N (12)

T (N) = T (1) + 2 + 3 + . . . + (N − 1) + N (13)

T (N) =

N∑
i=1

i =
N · (N + 1)

2
(14)

T (N) ≈ O(N2) (15)
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7 Running Time Analysis of Binary Search

A common type of algorithm is known as divide-and conquer. By splitting up a large program into 2 smaller
ones, we may make progress towards the solution. Binary Search is an example of this. If we are trying
to find a certain element in a sorted array, we can test the middle element, and depending on whether
the element we are seeking is in the first half of the array or the second, we can just search a continually
decreasing array (by a factor of 2) until we are left with an array of size 1 to search. We can show that any
algorithm that can cut its input in half (or by any other fraction) is O(logN).

public class BinarySearch {

public static int BinSearch( int A[ ], int X, int N )

{

int Low, Mid, High;

Low = 0; High = N - 1;

while( Low <= High )

{

Mid = ( Low + High ) / 2;

if( A[ Mid ] < X )

Low = Mid + 1;

else

if( A[ Mid ] > X )

High = Mid - 1;

else

return Mid; /* Found */

}

return -1; /* NotFound is defined as -1 */

}

public static void main( String[] args) {

int[] A = { 1, 3, 5, 7, 9, 13, 15 };

int count=A.length;

int i;

for(i=0; i<count;i++)

System.out.println("Array[" + i +"]" + " = " + A[i]);

for( i = 0; i <=15; i++ ) {

int found=BinSearch(A,i,count);

if(found>=0)

System.out.println("BinarySearch for " + i +

" found in Array[" + found+"]");

else

System.out.println("BinarySearch for " + i + " not found!");

}

}

}

We can analyze this program as follows: The running time of the program is

T (N) = T (
N

2
) + 1 (16)

At each step we do some constant amount of work (signified by the 1 term) and then work on a problem of
half size. Eventually, the problem size will be small enough where we can analyze it. This usually occurs
when T (N) = T (1) = O(1) - an input size of 1 is solved in a constant time. In binary search, that just
means we can find the element in an array of size 1 in constant time.
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To compute the running time for an input of size N = 2k (N is a power of 2, which simplifies the analysis),
we can do the following:

T (4) = T (2) + 1 (17)

= T (1) + 1 + 1 (18)

= 1 + 1 + 1 = 3 (19)

T (8) = T (4) + 1 (20)

= T (2) + 1 + 1 (21)

= T (1) + 1 + 1 + 1 (22)

= 1 + 1 + 1 + 1 = 4 (23)

T (16) = T (8) + 1 (24)

= T (4) + 1 + 1 (25)

= T (2) + 1 + 1 + 1 (26)

= T (1) + 1 + 1 + 1 + 1 (27)

= 1 + 1 + 1 + 1 + 1 = 5 (28)

Its clear that for an input of N = 2k, the running time is a function of k : T (N) = k + 1. And since
k = logN , we can see that

T (N) = k + 1 = logN + 1 = O(logN) (29)

8 Mergesort

Mergesort is an interesting algorithm that reflects a typical Computer Science strategy: divide and conquer.
The idea is very simple:

To sort N items do the following: Split the array in half, forming two arrays of N
2 items each. Sort these

arrays separately, and then merge the two arrays back together again.
The algorithm is naturally recursive, as we can keep splitting and merging the arrays of size N, N

2 , N
4 , , ....
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public static void mergeSort( Comparable [ ] a )

{

Comparable [ ] tmpArray = new Comparable[ a.length ];

mergesort( a, tmpArray, 0, a.length - 1 );

}

public static void mergesort( Comparable [ ] a, Comparable [ ] tmpArray,

int left, int right )

{

if( left < right ) {

int center = ( left + right ) / 2;

mergesort( a, tmpArray, left, center );

mergesort( a, tmpArray, center + 1, right );

merge( a, tmpArray, left, center + 1, right );

}

}

public static void merge( Comparable [ ] a, Comparable [ ] tmpArray,

int leftPos, int rightPos, int rightEnd )

{

int leftEnd = rightPos - 1;

int tmpPos = leftPos;

int numElements = rightEnd - leftPos + 1;

while( leftPos <= leftEnd && rightPos <= rightEnd )

if( a[ leftPos ].compareTo( a[ rightPos ] ) <= 0 )

tmpArray[ tmpPos++ ] = a[ leftPos++ ];

else

tmpArray[ tmpPos++ ] = a[ rightPos++ ];

while( leftPos <= leftEnd ) // Copy rest of first half

tmpArray[ tmpPos++ ] = a[ leftPos++ ];

while( rightPos <= rightEnd ) // Copy rest of right half

tmpArray[ tmpPos++ ] = a[ rightPos++ ];

for( int i = 0; i < numElements; i++, rightEnd-- )

a[ rightEnd ] = tmpArray[ rightEnd ]; // Copy tmpArray back

}

To sort N items, we need an additional array to store the merged data, so there is an additional memory
cost for mergersort.
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To analyze the cost of mergesort, we note that the merge step is a linear operation (O(N)) in the number
of elements to sort. For N = 1 the time for mergesort is constant, and we can represent this as T (1).
Otherwise, the time to mergesort N items is the time to do 2 recursive mergesorts of size N

2 , plus the merge
step (which is linear). We can express these facts as:

T ( 1 ) = 1 (30)

T (N ) = 2T (
N

2
) + N (31)

The above is a recurrence relation, expressing the recursive timing nature of this problem. To solve such a
recurrence relation we do the following (we will assume N is a power of 2 so that our splits of the array are
always into evenly balanced halves):

Divide both sides by N:
T (N )

N
=

T (N
2 )

N
2

+ 1 (32)

Since the expression above is valid for any power of 2, we can express the time to sort an array of N
2

elements as:
T ( N

2 )
N
2

=
T (N

4 )
N
4

+ 1 (33)

and continuing with successive powers of 2...

T ( N
4 )

N
4

=
T (N

8 )
N
8

+ 1 (34)

... = ... (35)

T ( 2 )

2
=

T (1)

1
+ 1 (36)

Now, add up all these equations. Notice that almost all the terms on the left hand sides of the equations
also appear on the right hand sides of the equations. Cancelling these terms, we are left with the following:

T (N )

N
=

T (1)

1
+ log N (37)

The log N term is simply the sum of all the 1′s on the right hand sides of the equations. Because we are
splitting by powers of 2, there are log N equations total. Hence the sum of the 1′s is logN .

Now, multiply through by N :

T (N ) = N T (1) + N log N = N + N log N = O(Nlog N) (38)

9 Recursive Power Function

To compute the cost of the recursive power function, remember it is another divide-and-conquer method.
We can analyze the problem as:

516 = (52)
8

= (54)
4

= (58)
2

= (516)
1

(39)

So by continuing to half the exponent and raise the squared base, we eventually can get to a case where the
exponent is 1. The number of steps required for this is equal to the number of times it takes to divide the
exponent in half until its 1.

In Java, we can write this as follows:
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public static long pow( long x, int n ) {

if( n == 0 )

return 1;

if( n == 1 )

return x;

if( isEven( n ) )

return pow( x * x, n / 2 );

else

return pow( x * x, n / 2 ) * x;

}

This is again an O(logN) algorithm of the type:

T (N) = T (
N

2
) + 1 (40)

which is the same cost as binary search.
Example:
if we call Pow(2,4), this gets broken down in to the recursive calls:

Pow(2,4)

Pow(2*2,2)

Pow(4*4,1) ---> returns 16 when exponent reaches 1

Now, if we call Pow(2,8) (double the exponent) this gets broken down into:

Pow(2,8)

Pow(2*2,4)

Pow(4*4,2)

Pow(16*16,1) ---> returns 256 when exponent reaches 1

So doubling the exponent resulted in only 1 extra recrusive call - this is exactly what it means for an
algortihm to grow at a rate of O(logN)

9.1 A Method with no speed up!

Note that if we think we can speed up the operation by doing something like this:

Pow(X,N) = Pow(X,N/2) ∗ Pow(X,N/2) (41)

If we do the recursive calls here, we can see:

Pow(2,4)

Pow(2,2) * Pow (2,2)

Pow(2,1) * Pow(2,1) Pow(2,1) * Pow(2,1)

We see that for N=4, there are 6 recursive calls. If we double N to 8, then we can see that there are
exactly twice as many recursive calls, since we are effectively calling Pow(2,4) twice.

Pow(2,8)

Pow(2,4) * Pow (2,4)
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we no longer have an O(logN) algorithm; the cost is now O(N). To prove this, assume that N is a power
of 2 (i.e. N = 2k):

T (N) = T (
N

2
) + T (

N

2
) + 1 (42)

= 2 · T (
N

2
) + 1 (43)

(44)

now divide by N:

T (N)

N
=

T (N
2 )

N
2

+
1

N
(45)

T (N
2 )

N
2

=
T (N

4 )
N
4

+
1
N
2

(46)

T (N
4 )

N
4

=
T (N

8 )
N
8

+
1
N
4

(47)

. . . (48)

T (2)

2
=

T (1)

1
+

1

2
(49)

(50)

Now, add up all these equations. Notice that almost all the terms on the left hand sides of the equations
also appear on the right hand sides of the equations. Cancelling these terms, we are left with the following:

T (N)

N
=

T (1)

1
+

1

N

k−1∑
i=0

2i (51)

T (N) = N T (1) +

k−1∑
i=0

2i (52)

T (N) = N + 2k − 1 (53)

T (N) = N + N − 1 (54)

T (N) = 2N − 1 ≈ O(N) (55)
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10 Fibonacci Number Computation

A common recurrence equation we run into is generating the Fibonacci Number sequence. The Fibonacci
sequence is defined as:

Fib(0)=1; Fib(1)=1; Fib(n) = Fib(n-1) + Fib(n-2)
We can write a very simple recursive program to compute the Fibonaci sequence:

// Computes Fibonacci number n, where n is command line argument

public class fibonacci{

public static double fib(int n)

{

if ((n==0) || (n==1)) return 1;

else return fib(n-1) + fib(n-2);

}

public static void main(String[] args)

{

int num;

num= Integer.parseInt(args[0]);

System.out.println("Fib(" + num +")=" + fib(num));

}

}

While this is a simple recursive program that mimics the recurrence equation, it is quite inefficient.
The problem is that at each step of the recursion, we recompute a Fibonacci value that has already been
computed. Below we show the recursive calls for fib(5), which calls fib(4) and fib(3) and so on:

fib(5)

/ \

fib(4) fib(3)

/ \ / \

fib(3) fib(2) fib(2) fib(1)

/ \ / \ / \

fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)

/ \

fib(1) fib(0)

We can see how we are recomputing fib() values many times, greatly increasing the running time of the
program. fib(3) is computed 2 times, fib(2) 3 times, fib(1) 5 times and fib(0) 3 times.

Section 1.25 of Weiss gives a proof that shows that Fibonacci computation is bounded by: fib(k) ≤ ( 5
3 )k.

Thus, the Fibonacci sequence is an exponential time algorithm.
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However, we can use a simple technque of storing the Fibonacci sequence in a table, computing only
those members of the sequence we need to each time. Once we compute a value of Fib(N), we remember it
and reuse it as needed. This technique is sometimes called Dynamic Programming as we create the values
we need on the fly and memorize them in a table for reuse.

import java.io.*;

public class Fibdynamic

{

static final int maxN = 47; /* Fib(47) is maximum 32 bit integer */

static int knownF[] = new int [maxN];

static int F(int i)

{

if (i < 0) return 0;

if (i == 1) return 1;

if (knownF[i] != 0) return knownF[i];

int t = i;

if(i>1) t = F(i-1) + F(i-2);

return knownF[i] = t;

}

public static void main(String[] args) {

int n=Integer.parseInt(args[0]);

System.out.println("Fib(" +n + ")" + "= " +F(n));

}

}
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11 Towers of Hanoi Problem

Problem: move N numbered disks from one peg (peg A) to another peg (peg B) using a temporary storge
peg (peg C) without ever having a larger disk sit on top of a smaller disk (disk 1 is the smallest disk, disk
N is the largest disk). At the start of the game, all disks are on peg A, to be moved to peg B, using peg C
ast temporary store, with largest disk on bottom and smallest on top.

public class tower

{

public static void tower(char from, char to, char spare,int disk)

{

if (disk>0){

tower(from, spare, to,disk-1);

System.out.println("move disk " + disk + " from " + from + " to " + to);

tower(spare, to , from, disk-1);

}

}

public static void main(String[] args)

{

int disk;

disk= Integer.parseInt(args[0]);

tower(’A’,’B’,’C’,disk);

}

>tower 2

move disk 1 from A to C

move disk 2 from A to B

move disk 1 from C to B

>tower 3

move disk 1 from A to B

move disk 2 from A to C

move disk 1 from B to C

move disk 3 from A to B

move disk 1 from C to A

move disk 2 from C to B

move disk 1 from A to B

>tower 4

move disk 1 from A to C

move disk 2 from A to B

move disk 1 from C to B

move disk 3 from A to C

move disk 1 from B to A

move disk 2 from B to C

move disk 1 from A to C

move disk 4 from A to B

move disk 1 from C to B

move disk 2 from C to A

move disk 1 from B to A

move disk 3 from C to B

move disk 1 from A to C

move disk 2 from A to B

move disk 1 from C to B
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12 Complexity of Towers of Hanoi

We can analyze the towers of hanoi problem by the following recurrence relation:

T (N) = 1 + 2T (N − 1) (56)

T (N) = 1 + 2(1 + 2 (T (N − 2)) (57)

T (N) = 1 + 2 + 22 T (N − 2) (58)

T (N) = 1 + 2 + 22(1 + 2T (N − 3)) (59)

T (N) = 1 + 2 + 22 + 23 T (N − 3)) (60)

T (N) = 1 + 2 + 22 + 2i−1 + 2i T (N − i)) (61)

T (N) =

N−1∑
i=0

2i (62)

This is just a standard geometric progression that adds up the powers of 2. The formula for this is:

T (N) =

N−1∑
i=0

2i = 2N − 1 (63)

Remember that if the first term of a geometric progression is a, the common ratio is r and if there are
N terms, the sum S is:

S = a

(
rN − 1

r − 1

)
(64)

What we see here is that the complexity is exponential. It grows very fast, as a power of 2. THe
complexity is then:

T (N) ≈ O(2N ) (65)

13 Recap: Common Recurrence Relations

13.1 T (N) = T (N − 1) + N

This recurrence is for an algorithm that loops through the input, eliminating 1 element at at time. An
example is selection sort, which finds the smallest item in an array, and then repeats this for an array of size
one less. Its time complexity is:

T (N) ≈ O(N2) (66)

13.2 T (N) = T (N
2

) + 1

This recurrence is for an algorithm that recrusively breaks a problem down into a problem half the size in
one step. An example is binary search, which at each step does a simple constant time test to look at only
half of the remaining input, until there is only 1 item left.

T (N) ≈ O( log(N)) (67)
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13.3 T (N ) = T (N − 1) + 1

This is just a linear find operation: for N items, look at 1 item and then look at the rest of the input (
(N − 1) items).

T (N ) = T (N − 1) + 1 (68)

T (N ) = T (N − 2) + 1 + 1 (69)

T (N ) = T (N − 3) + 1 + 1 + 1 (70)

T (N ) = 1 + 1 + . . . + 1 (71)

T (N ) = N ≈ O(N) (72)

13.4 T (N ) = 2T (N
2

) + N

This is a recurrence relation for an algorithm that breaks the problem down into 2 smaller problems of half
the size (divide-and-conquer), and it also requires examining every member of the input. An example is
Mergesort of N items: we sort each half of the array independently, and then do a linear merge of all N
items.

The result is T (N) ≈ O(N log(N)) (see the proof in section 8 of these notes).

13.5 T (N ) = 2T (N
2

) + 1

This is the recurrence for splitting a problem in half, and doing a constant amount of other work each time.

T (N) ≈ O(N) (73)

13.6 T (N) = 2T (N − 1) + 1

This is a recurrence that shows exponential growth (see proof in section for Towers of Hanoi problem) and
its time complexity is:

T (N) ≈ O(2N ) (74)
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