
MapReduce and Big Data

Cloud computing
● Leverage large numbers of consumer grade

hardware.
● Failure modes

○ Network failure
○ CPU Failure
○ Hard drive failure

How big is big?
● Data is truly big if the probability of a node

failing while the data is in process is
nonnegligible.

MapReduce
● Map/Reduce is not an algorithm - it is a

programming pattern

● The advantage is not is efficiency
○ Parallelizability
○ Dependency Analysis
○ Robustness

MapReduce
"Map" step: Each worker node applies the "map()" function to the local data, and writes the output

to a temporary storage. A master node orchestrates that for redundant copies of input data, only

one is processed.

"Shuffle" step: Worker nodes redistribute data based on the output keys (produced by the "map()"

function), such that all data belonging to one key is located on the same worker node.

"Reduce" step: Worker nodes now process each group of output data, per key, in parallel.

MapReduce
● Map

○ Take input data
○ Output (key, value) pairs

● Shuffle
○ Group data by (key), feed it back to processing node

● Sort
○ Order all data per key by some function

● Reduce
○ Process all values of key

MapReduce
1. Prepare the Map() input – the "MapReduce system" designates Map processors, assigns the input key value K1

that each processor would work on, and provides that processor with all the input data associated with that key

value.

2. Run the user-provided Map() code – Map() is run exactly once for each K1 key value, generating output

organized by key values K2.

3. "Shuffle" the Map output to the Reduce processors – the MapReduce system designates Reduce processors,

assigns the K2 key value each processor should work on, and provides that processor with all the Map-generated

data associated with that key value.

4. Run the user-provided Reduce() code – Reduce() is run exactly once for each K2 key value produced by the Map

step.

5. Produce the final output – the MapReduce system collects all the Reduce output, and sorts it by K2 to produce

the final outcome.

MapReduce
The prototypical MapReduce example counts the appearance of each word in a set of documents:[11]

function map(String name, String document):
 // name: document name
 // document: document contents
 for each word w in document:
 emit (w, 1)

function reduce(String word, Iterator partialCounts):
 // word: a word
 // partialCounts: a list of aggregated partial counts
 sum = 0
 for each pc in partialCounts:
 sum += ParseInt(pc)
 emit (word, sum)

http://en.wikipedia.org/wiki/MapReduce#cite_note-11

MapReduce in Java and KMeans
http://www.slideshare.net/andreaiacono/mapreduce-34478449

KD Tree

● KD Trees are multidimensional binary trees
function kdtree (list of points pointList, int depth)

{
 // Select axis based on depth so that axis cycles through all valid values
 var int axis := depth mod k;

 // Sort point list and choose median as pivot element
 select median by axis from pointList;

 // Create node and construct subtrees
 var tree_node node;
 node.location := median;
 node.leftChild := kdtree(points in pointList before median, depth+1);
 node.rightChild := kdtree(points in pointList after median, depth+1);
 return node;
}

http://en.wikipedia.org/wiki/Selection_algorithm
http://en.wikipedia.org/wiki/Selection_algorithm

KD Tree

● KD Trees are multidimensional binary trees
Balancing a k-d tree requires care because k-d trees are sorted in multiple dimensions so the tree rotation technique

cannot be used to balance them as this may break the invariant.

Several variants of balanced k-d trees exist. They include divided k-d tree, pseudo k-d tree, k-d B-tree, hB-tree and

Bkd-tree

Finding nearest point is an O(log n) operation in the case of randomly distributed points, although analysis in general is

tricky. However an algorithm has been given that claims guaranteed O(log n) complexity.

http://en.wikipedia.org/wiki/Tree_rotation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation

KD Tree
Building a static k-d tree from n points has the following worst-case complexity:

O(n log2 n) if an O(n log n) sort such as Heapsort or Mergesort is used to find the median at each level of the nascent

tree;

O(n log n) if an O(n) median of medians algorithm[3][4] is used to select the median at each level of the nascent tree;

O(kn log n) if n points are presorted in each of k dimensions using an O(n log n) sort such as Heapsort or Mergesort

prior to building the k-d tree.[7]

● Inserting a new point into a balanced k-d tree takes O(log n) time.

● Removing a point from a balanced k-d tree takes O(log n)) time.

● Querying an axis-parallel range in a balanced k-d tree takes O(n1-1/k +m) time, where m is the number of the reported

points, and k the dimension of the k-d tree.

● Finding 1 nearest neighbour in a balanced k-d tree with randomly distributed points takes O(log n) time on average.

http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Heapsort
http://en.wikipedia.org/wiki/Mergesort
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Median_of_medians
http://en.wikipedia.org/wiki/K-d_tree#cite_note-blum-3
http://en.wikipedia.org/wiki/K-d_tree#cite_note-cormen-4
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Heapsort
http://en.wikipedia.org/wiki/Mergesort
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/K-d_tree#cite_note-knlogn-7
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation

KD Tree

● KD Trees are multidimensional binary trees
● Distributed Kd-Trees for Retrieval from Very
Large Image Collections

○ http://vision.caltech.
edu/malaa/publications/aly11distributed.pdf

