
Class Notes CS 3137

1 LZW Encoding

References: Data Structures & Their Algorithms, Harper Collins Publishers, Harry R. Lewis and Larry
Denenberg, 1991, and Data Structures and Algorithms, A. Drozdek, Brooks/Cole 2001.

A key to file data compression is to have repetitive patterns of data so that patterns seen once, can then
be encoded into a compact code symbol, which is then used to represent the pattern whenever it reappears
in the file.

For example, in images, consecutive scan lines (rows) of the image may be indentical. They can then be
encoded with a simple code character that represents the lines. In text processing, repetitive words, phrases,
and sentences may also be recognized and represented as a code.

A typical file data compression algorithm is known as LZW - Lempel, Ziv, Welch encoding. Variants
of this algorithm are used in many file compression schemes such as GIF files etc. These are lossless

compression algorithms in which no data is lost, and the original file can be entirely reconstructed from the
encoded message file.

The LZW algorithm is a greedy algorithm in that it tries to recognize increasingly longer and longer
phrases that are repetitive, and encode them. Each phrase is defined to have a prefix that is equal to a
previously encoded phrase plus one additional character in the alphabet. Note “alphabet” means the set of
legal characters in the file. For a normal text file, this is the ascii character set. For a gray level image with
256 gray levels, it is an 8 bit number that represents the pixel’s gray level.

In many texts certain sequences of characters occur with high frequency. In English, for example, the
word the occurs more often than any other sequence of three letters, with and, ion, and ing close behind.
If we include the space character, there are other very common sequences, including longer ones like of

the. Although it is impossible to improve on Huffman encoding with any method that assigns a fixed
encoding to each character, we can do better by encoding entire sequences of characters with just a few
bits. The method of this section takes advantage of frequently occurring character sequences of any length.
It typically produces an even smaller representation than is possible with Huffman trees, and unlike basic
Huffman encoding it 1) reads through the text only once and 2) requires no extra space for overhead in the
compressed representation.

The algorithm makes use of a dictionary that stores character sequences chosen dynamically from the
text. With each character sequence the dictionary associates a number; if s is a character sequence, we use
codeword(s) to denote the number assigned to s by the dictionary. The number codeword(s) is called the
code or code number of s. All codes have the same length in bits; a typical code size is twelve bits, which
permits a maximum dictionary size of 212 = 4096 character sequences.

The dictionary is initialized with all possible one-character sequences, that is, the elements of the text
alphabet (assume N symbols in the alphabet) are assigned the code numbers 0 through N-1 and all other code
numbers are initially unassigned. The text w is encoded using a greedy heuristic: at each step, determine the
longest prefix p of w that is in the dictionary, output the code number of p, and remove p from the front of
w; call p the current match. At each step we also modify the dictionary by adding a new string and assigning
it the next unused code number. The string to be added consists of the current match concatenated to the
first character of the remainder of w. It turns out to be simpler to wait until the next step to add this
string; that is, at each step we determine the current match, then add to the dictionary the match from the
previous step concatenated to the first character of the current match. No string is added to the dictionary
in the very first step.

The table on the last page shows the encoder algorithm (LZWcompress) applied to the string:
a a b a b a c b a a c b a a d a a

1

Figure 1: LZW compress and decompress algorithms

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Input: a a b a b a c b a a c b a a d a a a

Code Output: 1 1 2 6 1 3 7 9 11 4 5 1

Coded
iteration String s Char c Output Code Table Algorithm

1 a a add aa 1 Code String
2 a b add ab 1 1 a LZWcompress()
3 b a add ba 2 2 b enter all letters in table
4 a b 3 c initialize string s to first letter of input
5 ab a add aba 6 4 d while any input left
6 a c add ac 1 5 aa read character c
7 c b add cb 3 6 ab if s+c is in the table
8 b a 7 ba s=s+c
9 ba a add baa 7 8 aba else output codeword(s)

10 a c 9 ac enter s+c in the table
11 ac b add acb 9 10 cb s=c
12 b a 11 baa output codeword(s)
13 ba a 12 acb
14 baa d add baad 11 13 baad
15 d a add da 4 14 da
16 a a 15 aaa
17 aa a add aaa 5
18 a 1

LZW Decompress Example

Orig. String a a b ab a c ba ac baa d aa a
Codewords 1 1 2 6 1 3 7 9 11 4 5 1

Prior NewCode
CodeWord CodeWord Output Entry Code String

1 a 1 a
1 1 a 5 2 b
1 2 b 6 3 c
2 6 ab 7 4 d
6 1 a 8 5 aa
1 3 c 9 6 ab
3 7 ba 10 7 ba
7 9 ac 11 8 aba
9 11 baa 12 9 ac
11 4 d 13 10 cb
4 5 aa 14 11 baa
5 1 a 15 12 acb

13 baad
14 da
15 aaa

