
CLASS NOTES, CS 3137

1 Why Graphs?

Graphs are mathematical objects that have been studied for hundreds of years. They basically deal with connec-
tions between entities. With the onset of computation, graphs have served as very useful abstractions in solving
a number of problems. The development of fast and efficient algorithms to compute on graphs continues to be
an ongoing and vibrant research area in Computer Science. Some graph applications in computation include:

• Maps: Maps naturally express connections and paths between locations. Finding the shortest path or other
constrained path finding is a hallmark of graph computation.

• Web Browsing: in actuality, the web is just one big giant graph, with websites (url’s) linked to other web
sites. Graph algorithms are central to locating information on the web.

• Circuits: We can model electrical circuits as graphs, with wires connecting different components (tran-
sistors, resistors, capacitors etc.). Using graph alogorithms we can design chips and ask questions about
electrical flows, open circuits, timings etc.

• Scheduling: Large jobs with many components and pieces can be modeled as a graph, with timing con-
straints on jobs and pre-requisite jobs that need to be performed in a certain order.

• Matching Algorithms: Finding links (connections) between large groups of people and institutions can be
modeled as a graph search.

• Computer networks: think about a local area network (LAN) with lots of computers connected together -
this can be modeled as a graph. We can use this model to predict delays, find speedups in communication
etc.

There are many more applications as well. It is important to note that some of these graphs (e.g. the web, 10
million transistor chip) are extremely large, and this puts a premium on finding efficient graph algorithms.

2 Graph Terminology

1. A graph G is comprised of two sets V and E, V=Vertices, E = Edges (edges are pairs of vertices). The
graph is denoted G=(V,E), and edge set is E(G), vertex set V(G). Vertices are also called nodes, and edges
are also called arcs.

2. Edges are unordered in an undirected graph: (V1, V2) ≡ (V2, V1) Edges are ordered in a directed graph:
(V1, V2) �= (V2, V1). A directed graph is also called a digraph

3. We restrict for now to simple graphs (i.e., no self loops)V1 �= V2 for all edges. Also since E and V are
sets we do not allow multi-edges i.e. (V1, V2) can only appear once. A graph with multi-edges is called a
multi-graph.

4. Two vertices (V1, V2) in an undirected graph are said to be adjacent if edge (V1, V2) is incident to both
V1 and V2. In directed graph, given edge (V1, V2) V1 is adjacent to V2, and V2 is adjacent from V1. We can
also say that V1 is a predecessor of V2 and V2 is a successor of V1.

1

5. A Subgraph G’ of G is such that G’=(V’,E’) where E’(G’) is a subset of E(G) and V’(G’) is a subset of
V(G).

6. A Path from Vp to Vq in G is a sequence of vertices Vp, Vi1, Vi2, . . . , ViN , Vq,
such that (Vp, Vi1), (Vi1, Vi2), . . . , (ViN , Vq) are edges in E(G). A simple path is one which all vertices
(except first and last) are distinct.

7. Length of the path is the number of edges in it, which is 1 less than the number of nodes on the path. A
trivial path of length 0 (with no edges) exists between a node and itself.

8. A Cycle is a simple path in which the first and last vertices are the same. For an undirected graph, a simple
cycle must have at path of 3 or more that starts and ends at the same node and doesn’t visit any node more
thatn once. An acyclic graph is a graph that contains no cycles.

9. Two vertices, V1 and V2 are connected if a path exists from V1 to V2. In an undirected graph if there is a
path from V2 to V1 then there must also be a path from V1 to V2.

10. An undirected graph is connected if a path exists between all vertex pairs.

11. A directed graph is strongly connected if for every pair of vertices, V1 and V2, there is a path from V1

to V2 and a path from V2 to V1.

12. If a directed graph is not strongly connected, but the underlying graph without directions on the arcs is
connected, then we call this directed graph weakly connected.

13. A Connected Component is a subgraph that is a connected subgraph of G.

14. The degree of a vertex is the number of edges that are incident to the vertex. In a directed graph, we use
the terms in-degree and out-degree.

The number of edges in an undirected graph is E = 1
2

∑N
i=1 di , di = degree of vertex i.

15. Given an undirected graph with N vertices, there is a maximum of N(N−1)
2 edges that can exist.

• Informal Proof. If N vertices, then there are N ∗ (N − 1) edges from each of the N vertices to each
of the N − 1 other vertices. But since exactly half of these are duplicate edges, then there are a total
of N∗(N−1)

2

• Proof By Induction. Basis: N=1. No edges and the formula holds.

• Induction Step: Assume true for N vertices, show true for N+1 vertices.

• By induction: if a graph with N vertices has N(N−1)
2 edges show graph with N+1 vertices has

(N+1)N
2 edges. If we add a vertex to a graph with N vertices, we have to add a total of N new

edges. So this graph will have the amount of edges in a graph with N vertices (which we know by
the induction step) plus N more edges:

N · (N − 1)
2

+ N =
N · (N − 1) + 2N

2
=

N2 − N + 2N
2

=
N2 + N

2
=

(N + 1) · N
2

(1)

2

3 Representing Graphs: Edge Lists

A simple but poor way to represent a graph is by an edge list. Assuming the graph has no nodes that are
disconnected (i.e no edges incident to the node), we can simply list all edges as pairs of vertices. If the graph
is directed, we can assume an ordering on the vertices for the directed edges: (a,b) is an edge from a to b in a
directed graph.

Edge lists do not allow us to easily find connectivity information in the graph. A search through the entire
set of edges is needed to find the connectivity information.

Typically, edge lists are ways to store graphs off-line and either an adjacency list or adjcanency matrix can
be created from the edge lists.

4 Representing Graphs: Adjacency Matrix

• Matrix A such that aij = 1 if edge exists between Vi and Vj and 0 if no edge. If we assume no self loops
(edges from a vertex to itself) then all diagonal entries will be 0: aii = 0

• Adjacency Matrix for a directed Graph:

G=(V,E)= ([V1, V2, V3, V4V5, V6], [(V1, V2), (V1, V3), (V2, V3), (V3, V4), (V4, V1), (V4, V5), (V4, V6), (V5, V4)])

V 1 V 2 V 3 V 4 V 5 V 6
V 1 0 1 1 0 0 0
V 2 0 0 1 0 0 0
V 3 0 0 0 1 0 0
V 4 1 0 0 0 1 1
V 5 0 0 0 1 0 0
V 6 0 0 0 0 0 0

• In an undirected graph, the matrix is symmetric (aij = aji) so we need only store the upper or lower half
of the matrix.

• With an adjacency matrix, most algorithms are O(N2) since we need to process the whole NxN matrix.

• In a directed graph, Column sum = in-degree of vertex and row sum = out degree of vertex

5 Representing Graphs: Adjacency Lists

We store for each vertex a linked list of its successors. The array Successors below is an array of pointers to a
linked list of vertex nodes that contain a vertex which is adjacent to the node. The index of the array Successors
is used to designate which vertex’s successor list we are pointing to.

In an undirected graph, since each edge (V1,V2) is bidirectional, we will have an entry in the adjacency list
twice for each node: once on a linkled list pointing from V1’s entry in the successors list, and once from V2’s
entry in the successors list.

3

6 Depth First Search

Depth First Search (DFS) is a generalization of preorder traversal. If we do preorder traversal on a tree, we
process a tree node v, and then recursively process each of its children (you can think of children as adjacent
vertices of a graph). Because of a tree’s structure, we do not have to worry about processing a node twice.
However, with graphs, this can occur since a single node can have more than 1 “connection” (edge) to other
nodes. So to prevent this we simply mark each vertex as visited, and then we will never process it twice.

DFS Search continually searches deeper into the graph until it comes upon nodes it has already visited. It
then backtracks to continue searching for nodes it hasn’t yet visited.

/* pseudo code for Depth First Search of Graph using an Adjacency List */
/* v is vertex number and index to adjacency list successor array */

void dfs(Vertex v)
{
v.visited= true;
for each w adjacent to v
if(!w.visited)

dfs(w);
}

Depth First search can be used to find all of the following:

• Testing whether a Graph G is connected. An undiercted graph is connected if and only if a DFS starting
from ANY node does visits all the nodes

• Computing the Connected Components of G. We simply call DFS from any node, and list the nodes
the DFS reaches. These are connected components. By repeating the DFS call to any unmarked nodes,
we then find other connected components. We can create a depth first search forest of trees, each tree
contianing connected components of the graph.

4

• Computing a spanning tree of G, if G is connected. A Spanning Tree is an acyclic graph that contains all
the vertices of a graph G (this only makes sense if the graph is connected). We simply do a DFS on the
graph, and mark all the edges we use to visit an umarked vertex. The result is a spanning tree.

• Computing a cycle in G or reporting that G has no cycles. This is done by checking to see if the DFS
algorithm ever tries to visit a node that is already marked as visited. If it does, then the graph has a cycle.

• Computing a Path between two given vertices of G (if one exists). Simply start DFS at one of the vertices,
see if it visits the other vertex.

7 Breadth First Search

Breadth First Search is similar to the level-order search we performed on trees. You visit the initial node, mark it
as visited, and then place any successor nodes on a queue, marking them as visited. Then you begin dequeueing
nodes. Each time a node is dequeued, you place any of its unvisited successor nodes on the queue and mark
them as VISITED. Eventually the queue empties and you are done.

void bfs(Vertex v)
{

v.visited=true;
EnQueue on Q each unvisited vertex w adjacent to v and mark as visited
while (Q not empty) {

node= DeQueue(Q);
EnQueue on Q each unvisited vertex w adjacent to node and mark as visited

}

5

8 Topological Sorting

1. The nodes of a directed graph without any cycles can be placed into a special ordering called a topological
sort. This is a partial ordering of the nodes such that if there is a path from vertex vi to vj , then vi appears
before vj in the ordering.

2. A common use for topological sorting is in determining prerequisites for courses. It can also be used to
order the way parts of a job are done to insure that things that need to be done first are.

void topsort() throws CycleFound
{
Queue q;
int counter=0;
Vertex v,w;

q= new Queue();
for each vertex v
if (v.indegree == 0)
q.enqueue(v);

while (!q.isEmpty())
{
v=q.dequeue();
v.topNum = ++counter;

for each w adjacent to v
if(--w.indegree == 0)

q.enqueue(w);
}

if(counter != NUM_VERTICES)
throw new CycleFound();

}

You can also perform topological sorting by using Depth First Search. Create a Depth First Search Tree,
and then do a postorder traversal numbering the nodes of the tree. The reverse of the postorder numbering will
give you the topological listing of the nodes.

9 Minimum Spanning Trees

1. A Spanning Tree is an acyclic graph that contains all the vertices of a graph G. This only makes sense if
the graph is connected!

2. A Spanning Tree on a connected graph of N nodes has exactly N − 1 edges (can be shown with a simple
proof by induction)

6

...............Indegree Before Dequeue Number
Vertex 1 2 3 4 5 6 7

v1 0 0 0 0 0 0 0
v2 1 0 0 0 0 0 0
v3 2 1 1 1 0 0 0
v4 3 2 1 0 0 0 0
v5 1 1 0 0 0 0 0
v6 3 3 3 3 2 1 0
v7 2 2 2 1 0 0 0

Enqueue v1 v2 v5 v4 v3,v7 v6
Dequeue v1 v2 v5 v4 v3 v7 v6

Figure 1: Top: Acyclic Graph. Middle: Toplogical Sort of Graph showing order nodes are processed by dequeing
nodes with zero in-degree. Bottom: Computing Toplogical sort using Depth First Search Tree of the graph,
and its postorder numbering. By listing the nodes in the reverse of the postorder numbering, we generate a
topological sort of the nodes. Note: graph must be acyclic.

7

3. One way to form a spanning tree is take a cycle that includes every node in the graph, and remove any
edge. We can also see that removing the edge of greatest cost will reduce the cost of the spanning tree
created over removing a lower cost edge. So there must be a way to find the spanning tree of minimal
overall cost or Minimum Spanning Tree (MST).

4. A MST can be used to reduce the cost of connecting nodes. For example, the nodes might represent cities
that need to be connected by electrical or gas lines, and reducing the cost of the lines is equivalent to
finding the MST.

5. Given graph G, Can we find the MST?

1 -------(16)-------2
| \ / | \
| \ / | \
| \ / | \
| (21) (11) | (5)
| \ / | \
| \ / | \
| \ / | \

(19) 6 (6) 3
| / \ | /
| / \ | /
| / \ | /
| (33) (14) | (10)
| / \ | /
| / \ | /
| / \ | /
| / \ |/
5-------(18)--------4

6. Algorithm - Kruskal’s Method. Select an edge of minimum length only if it doesn’t make a cycle. Keep
doing this until we have selected N − 1 edges.

• Initially, we maintain a forest of N single node trees representing each vertex in the graph. We then
link these vertices as we add edges of minimum cost to build up a spanning tree. We note that each
of the nodes in a linked tree is part of a set. If at any time an edge is added that causes a cycle, we
reject that edge.

• We can determine if the proposed edge causes a cycle by maintaining a Union-Find data structure
(see below) that tells us if two nodes in an edge are already connected in the tree. Adding this edge
will then cause a cycle, so we reject this edge as part of the MST. Eventually, we build up a tree that
includes all the nodes in the graph, and we stop.

• We use a priority queue prioritized by increasing edge weight to always get the next lowest cost
edge.

7. Pseudo Code for Kruskal:

8

Place all edges in a Priority Queue prioritized by minimum edge cost;

Make each vertex a single element set - a forest of single node trees;

While there is more than one tree in the forest do:
Delete edge E of minimum length from the Priority Queue (E=(v,w));
If vertices v and w are not already members of the same set then

Add edge E=(v,w) as edge of the MST
Perform a Set Union on the sets containing v and w;

The single node sets become multiple node sets through the Set Union operation. At any time if we want
to add an edge, we make sure that the 2 vertices that define the edge are not in the same set - adding this
edge will create a a cycle.

8. Algorithm - Prim’s Method - Choose any node, and select the minimum cost edge containing that node.
Continue to select an adjacent edge of least cost to the tree built so far, and add it if it doesn’t make a
cycle: Continually Select edge (u,v) where vertex u is in the tree so far and vertex v is not.

PRIM (Start node 1) Kruskal
edge cost edge cost
(1-2) 16 (2-3) 5
(2-3) 5 (2-4) 6
(2-4) 6 (2-6) 11
(2-6) 11 (2-1) 16
(4-5) 18 (4-5) 18

Total 56 56

9. Algorithm - RemoveMax Edges. Start with connected Graph G, and continually remoce the most expen-
sive edges while maintaining the graph’s connectivity.

RemoveMax Edges removes these edges to form MST:
(5-6)
(1-6)
(1-5)
(6-4)
(3-4)

10. How to implement Union-Find Tree. Define an array parent[] of integers defined by the following rule:
if i lies at the root of the rooted tree for its set, then parent[i]=i. Otherwise parent[i] = value of its parent.

11. Simple Find Algorithm

find (x)
while(parent[x]!=x)

x=parent[x]
return(x)

9

12. To perform Union, we find roots of the trees that are to be unioned, and make one root then parent of the
other (graft one tree onto another).

union(x,y)
px=find(x)
py=find(y)
parent[px]=py

13. Proof of Kruskal’s MST algorithm. The idea is to show that the Spanning Tree we create by Kruskal’s
method can not be of higher total edge cost than the minimal Spanning Tree, so Kruskal’s tree is the MST.

• Let e1, e2, . . . , em be the dges of Graph G in order of their cost, smallest first. This is the order that
the edges will be considered by Kruskal. Let K by the spanning tree created by Kruskal’s algorithm,
and let T be the MST of Graph G.

• We now prove K and T are the same. Assume they are not. Then there must be some edge that is in
one but not the other. Let ei be the first edge in the ordering of edges that appears in either K or T
but not both. We examine both cases, and show that this cannot be - that the edges in both K and T
are the same.

• Case I: Edge ei is in T but not in K . If ei is not in K, then it was rejected since it caused a cycle
with the vertices already in K. But these same vertices must also be part of T , and if T has added
edge ei, then T must also have a cycle. But since T is by definition a MST, T cannot have a cycle.
So edge ei cannot be in T but not K .

• Case II: Edge ei is in K but not in T . Let ei connect nodes u and v. Since T is connected, there
must be some acyclic path in T between u and v; call it path Q. Since Q does not contain the edge
ei that also connects u and v, adding ei to Q forms a simple cycle in the graph. We now analyze the
two cases¡ where ei is the largest cost edge or not.

– If edge ei has the highest label (most costly edge), then the edges of path Q contain edges from
[e1, e2, . . . , ei−1]. Since T and K agree on all edges up until ei, then all the edges of path Q
are in K. But since ei is also in K, then K has a cycle, and Kruskal’s method will not allow a
cycle. We thus rule out edge ei having the highest edge label.

– Assume there is some edge f on path Q whose edge label is higher than ei. Suppose f connects
nodes w and x. If we remove edge f from T , we can replace it with edge ei, and reduce the cost
of the tree since we have substituted a lower cost edge for f . We claim the tree is stil connected,
since f connected w and x, and they still must be connected by the removal of f and insertion
of ei. However, this means that T was not minimal before the insertion of edge ei, and therefore
ei must have been in T , contradicitng our assumption that ei was in K but not T .

• We have now shown that K and T must have the same edge set, and therefore K is minimal.

10

Edge Weight Action
(v1-v4) 1 Accepted
(v6-v7) 1 Accepted
(v1-v2) 2 Accepted
(v3-v4) 2 Accepted
(v2-v4) 3 Rejected
(v1-v3) 4 Rejected
(v4-v7) 4 Accepted
(v3-v6) 5 Rejected
(v5-v7) 6 Accepted

Figure 2: Kruskal’s Method of fidning MST. Top: Original Undirected Graph. Middle: MST. Bottom: Stages of
accepting edges in Kruskal’s Method

11

