
Writing good psuedocode
Source: http://users.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html

Basic rules:
1. Use the language of the problem domain, not the implementation domain:

a. i.e. Get the next word in the sentence NOT increment the word index to the next index in
the word array

b. Append the file extension to the name NOT name = name + extension
c. For all characters in name NOT For i = 0 to length(word) word[i]

2. The logic must be decomposed to the level of a single decision
a. BAD Search the book for the longest word - This is a loop and a decision

3. Typical “psuedocode” instructions that begin a good instruction are constructs such as:
a. While condition
b. if condition then sequence else sequence endif
c. Repeat-Until condition
d. CASE branch 1
e. FOR

http://users.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html

● Note that flow control statements should be terminated if they are long
○ IF/ENDIF , WHILE/ENDWHILE

● Easiest use of CASE is:
○ CASE expression OF

■ condition 1: sequence
■ condition 2: sequence

○ OTHERS or DEFAULT: sequence
○ ENDCASE

● REPEAT sequence UNTIL condition
● FOR

○ FOR EACH MONTH OF YEAR GOOD
○ FOR MONTH = 1:12 OK
○ FOR EACH employee in LIST GOOD

● Nested flow control should be indented AND closed

● Subprocedures
○ Use CALL keyword for maximum clarity, append with RETURNING to explain exactly what it does
○ CALL getBalance RETURNING aBalance

Example - game playing:

counter = 1
FOR X = 1 to 10

FOR Y = 1 to 10

 IF gameBoard[X][Y] = 0

 Do nothing

 ELSE

 CALL theCall(X, Y) (recursive method)

 increment counter

END IF

END FOR

END FOR

Note, instructions are given in the implementation domain (indices x and y, test of gameBoard[x][y], and variable
names are not informative

Set moveCount to 1

FOR each row on the board

FOR each column on the board

 IF gameBoard position (row, column) is occupied THEN

 CALL findAdjacentTiles with row, column

 INCREMENT moveCount

 END IF

END FOR

END FOR

Now the language is in the problem domain.

1 b) - Calculate the transitive closure of A

a =

matrix([[0, 1, 1, 0, 0],

 [0, 0, 1, 0, 0],

 [0, 0, 0, 1, 0],

 [0, 1, 0, 0, 0],

 [0, 1, 0, 0, 0]])

pow(a,5) | pow(a,4) | pow(a,3) | pow(a,2) | pow(a,1)

matrix([[0, 1, 1, 1, 0],

 [0, 1, 1, 1, 0],

 [0, 1, 1, 1, 0],

 [0, 1, 1, 1, 0],

 [0, 1, 1, 1, 0]])

A

D

CBE

How can we determine if there is a cycle in the
graph?

Each row of the table holds all of the nodes that
can be reachable from that node.

If there is a non-zero value in an on diagonal
row, the node is reachable from itself.
Therefore there is a cycle.

a. Since the number of cities is held constant and the number of empty cells of the table is around the same number of
non-empty cells, and adjacency matrix is reasonable.

class RoutingTable

{

private int[][] routingTable = new int[5][5];

 //! returns an array containing the number of flights out of the city in the

0th index and the cities that it connects with in the subsequent indices.

public int[] getRoutesOut(int city_number)

...

● This is a feasibility problem - there is no cost given to each flight, and you aren’t told to minimize
the number of flights.

● In this case, depth first search is sufficient
○ But there might be cycles, and we didn’t specify a way of “marking” nodes

■ Make flight values negative to mark them.

private bool findRoute(int from, int to, int flight[], int flightarray_index)

{

bool succeeded = False;

if (from == to)

return True;

int routes[] = new int[5];

for(int i = 0; i < 5; ++i)

{

if(routingTable[from][i] < 0)

return False;

if (!routingTable[from][i]) // If no flight exists, go to next
neighbor.

continue;

flight[flightarray_index] = routingTable[from][i]

//! mark all flights into the node we’re about to visit as
negative

for(int j = 0; j < 5’ ++j)

routingTable[i,j] *= -1;

if(findRoute(i, to, flight[]. flightarray_index +1)

{

succeeded = True;

break;

}

}

 // clean up flight table if we are at the 0th level

 if(flightarray_index ==0)

{

for(int i =0; i < 5; ++i)

for(int j=0; j < 5; ++j)

if(routingTable[i,j] < 0)

routingTable[i,j] *= -1;

}

return succeeded;

}

● That solution uses DFS - doesn’t find the shortest route,
but works easily with recursion.

● We have an implicit stack, but to do BFS we need a
queue.

● What are our options, without changing the function
signature and without adding more members?

c) Make it a List[][] -> This requires a little extra work
because you can’t have a generic container array

 Virgin records catalogue
Assumptions: Artist names and work names are unique

We need both forward and reverse lookup.

Many fewer artists than works.

class Record{
int type;
int year;
string author;
string name;
}

 Virgin records catalogue
For forward lookup by artist name, we could use something like a prefix trie. The leaves can be lists of
records sorted by year. The lists can be filtered by type when the works are requested. Artists will be
added and removed less often than works, so the structure of the trie will not change that much.

For reverse lookup, it may be better to have a hashmap to the artist name using separate chaining,
since the records are added often and are small, keeping the hashmap sparse will not be too
expensive. Removing items from a seperate chained hashmap is not so bad.

1

5

3

2

4

4-b)1,2,3,4,5
4-c)1,2,3,5,4
4-d)See text book

5a - This is a MST problem. We can use the greedy algorithms to solve is
SaltLake-Cheyenne is the cheapest connection to salt lake
Cheyenne-Denver is the next cheapest connection
Denver-Dodge is the next cheapest
Dodge-OC is the next
Dodge-Omaha
Albuqurque-Denver

Problem 7

This problem should remind you of quicksort - it is basically a pivoting problem. The algorithm goes
something like this

Set H to the Head of the list of objects
Set T to the Tail of the list of objects

While H and T do not overlap
While H does not point to a 1 key object and H does not overlap T

Move H forward
While T does not point to a 0 key object and H does not overlap T

Move T backward
Swap H and T

