
CS 3137 Class Notes

1 Finding the Convex Hull of a 2-D Set of Points

• Reference: Computational Geometry in C by J. O’Rourke and

http://www-e.uni-magdeburg.de/mertens/TSP/node1.html (applet)

• In our discussion of the traveling salesperson problem, one method we discussed was the method of
cheapest insertion, in which we insert a vertex in an existing cycle to minimally increase the length of the
tour. Starting with a simple cycle of k vertices, we keep adding vertices that minimize the change in the
tour’s new cost. For example, if we have a an edge (u,v) in the path, we add the vertex x such that:

dist(u, x) + dist(x, v) − dist(u, v) is a minimum (1)

We may iterate over all choices of u,v to select this minimum.

This algorithm begins by computing the ConvexHull of the vertices. Given a set of points S in a plane,
we can compute the convex hull of the point set. The convex hull is an enclosing polygon in which every
point in S is in the interior or on the boundary of the polygon (see Fig. 1).

• An intuitve definition is to pound nails at every point in the set S and then stretch a rubber band around
the outside of these nails - the resulting image of the rubber band forms a polygonal shape called the
Convex Hull. In 3-D, we can think of “wrapping” the point set with plastic shrink wrap to form a convex
polyhedron.

• A test for convexity: Given a line segment between any pair of points inside the Convex Hull, it will never
contain any points exterior to the Convex Hull.

• Another definition is that the convex hull of a point set S is the intersection of all half-spaces that contain
S. In 2-D, half spaces are half-planes, or planes on one side of a separating line.

Figure 1: Convex Hull of a set of points

1



2 Computing a 2-D Convex Hull: Grahams’s Algorithm

There are many algorithms for computing a 2-D convex hull. The algorithm we will use is Graham’s Algorithm
which is an O(N Log N) algorithm (see figure 2).

Graham’s algorithm is interesting for a number of reasons. First, it is simple to compute and is very intuitive.
And for a Data Structures class it is quite compelling, since it uses a number of ideas in we have studied this
semester including searching for a minimum value, sorting, and stacks.

1. Given N points, find the righmost, lowest point, label it P0.

2. Sort all other points angularly about P0. Break ties in favor of closeness to P0. Label the sorted points
P1 · · ·PN−1.

3. Push the points labeled PN−1 and P0 onto a stack. These points are guaranteed to be on the Convex Hull
(why?).

4. Set i = 1

5. While i < N do

If Pi is strictly left of the line formed by top 2 stack entries (Ptop, Ptop−1), then Push Pi onto the stack
and increment i; else Pop the stack (remove Ptop).

6. Stack contains Convex Hull vertices.

Notes:

• Strictly left means that the next point under consideration to be added to the hull, Pi, is “left” of the line
formed by the two top stack entries - if it is collinear with the two top stack entries, we reject the point.

• One way to determine “left” or “right”, we can take a simple cross product of the line formed by the two
top stack entries, Ptop−1, Ptop and the line formed by the points Ptop−1, Pi. The sign of this cross product
will tell you whether the point Pi is left or right of the line formed by the two top stack entries.

2



Figure 2: Graham Convex Hull Algorithm example from J. O’Rourke, Computational Geometry in C

3


