CS 3137 Class Notes

1 Finding the Convex Hull of a2-D Set of Points

e Reference: Computational Geometry in C by J. O’Rourke and
http://www-e.uni-magdeburg.de/mertens/TSP/nodel.html (applet)

e In our discussion of the traveling salesperson problem, one method we discussed was the method of
cheapest insertion, in which we insert a vertex in an existing cycle to minimally increase the length of the
tour. Starting with a simple cycle of & vertices, we keep adding vertices that minimize the change in the
tour’s new cost. For example, if we have a an edge (u,v) in the path, we add the vertex x such that:

dist(u, x) + dist(x,v) — dist(u,v) is a minimum (1)

We may iterate over all choices of u,v to select this minimum.

This algorithm begins by computing the Convex Hull of the vertices. Given a set of points .S in a plane,
we can compute the convex hull of the point set. The convex hull is an enclosing polygon in which every
point in S is in the interior or on the boundary of the polygon (see Fig. 1).

¢ An intuitve definition is to pound nails at every point in the set S and then stretch a rubber band around
the outside of these nails - the resulting image of the rubber band forms a polygonal shape called the
Convex Hull. In 3-D, we can think of “wrapping” the point set with plastic shrink wrap to form a convex
polyhedron.

e A test for convexity: Given a line segment between any pair of points inside the Convex Hull, it will never
contain any points exterior to the Convex Hull.

e Another definition is that the convex hull of a point set .S is the intersection of all half-spaces that contain
S. In 2-D, half spaces are half-planes, or planes on one side of a separating line.

B C

FIGURE 6.27 The convex hull of the points (A, 8, C,D. E F,. G. H.
f....) is the polygon ABCDEF.

Figure 1: Convex Hull of a set of points

1

2 Computing a 2-D Convex Hull: Grahams's Algorithm

There are many algorithms for computing a 2-D convex hull. The algorithm we will use is Graham’s Algorithm
which isan O(N Log N) algorithm (see figure 2).

Graham’s algorithm is interesting for a number of reasons. First, it is simple to compute and is very intuitive.
And for a Data Structures class it is quite compelling, since it uses a number of ideas in we have studied this
semester including searching for a minimum value, sorting, and stacks.

1. Given N points, find the righmost, lowest point, label it Py.

2. Sort all other points angularly about FPy. Break ties in favor of closeness to Py. Label the sorted points
P, - Pn_q.

3. Push the points labeled Py _1 and P, onto a stack. These points are guaranteed to be on the Convex Hull
(why?).

4, Seti =1

5. While i < N do

If P; is strictly le ft of the line formed by top 2 stack entries (P, Piop—1), then Push P; onto the stack
and increment i; else Pop the stack (remove P;,),).

6. Stack contains Convex Hull vertices.

Notes:

e Strictly left means that the next point under consideration to be added to the hull, P;, is “left” of the line
formed by the two top stack entries - if it is collinear with the two top stack entries, we reject the point.

e One way to determine “left” or “right”, we can take a simple cross product of the line formed by the two
top stack entries, P;,,—1, Pop and the line formed by the points P,,—1, ;. The sign of this cross product
will tell you whether the point P; is left or right of the line formed by the two top stack entries.

o8 oI o6 o3
P N,
10 ’/”’ \\\
- 4
P p
7 : /
rd i 15 4
14 i S : 4 v
: /
{ 2 /
151 P9 ///
| ' /-
. I //
{ A NG N NG N P G o ERE 4// ras
16! ,//
\\\ /
~, .
*: 2 __o /(/)
18 17

Below is shown the stack (point indices only) and the value of i at the top of
the while loop. The stack is initialized to (0, 18), where the top is shown
leftmost (the opposite of our earlier convention), Point p, is added to form
(1,0,18), but then p, causes p, to be deleted, and so on. Note that p; causes
the deletion of p,, when i = 18, as it should. For this example, the total number
of iterations s 29 < 2 p=2-19 =38,

i=
i=
i= 2:
i= 3:
im
i= 5:
i=
im
i=
Jom
Fom
i= B:
i= 8:
i= 9:
i=10:

i=10:
i=11:
i=12:
i=13:
i=13:
i=13:
i=14:
i=14:
i=15:
i=16:
i=16:
i=mi7s
i=18:
1=18:
i=19:

8,

10,
115
13,
11,
10,
13,
10,
14,
15,
14,
16,
17,
18,
18,

18

3r 2,
8, 3
10!
11,
10
8,
10,
8,
10,
14,
10,
14,
15,
14,
16,

3

3

18

18
0,
2y
0,
2,
0,
2,
0,
2'
or
2,
3

0,
i 2
8, 3
10,
g, 3
¢ 2y
8, 3
;2
8, 3
10,
8,
10,
14,
10,
14,

3

18
0,
18
o,
18
0,
18
0,
18
o,
2,

18

0,

18
18
18
18

18
0,

18

L 2}

8,

3,

12;

0,

i 2#

0,
2y
ER
i 2!
3,
8.
3!
8,

g,

8,

10,

8,

10,

0,
2,
o,
18
0,
18
0,
2,
0,
2,

2,

18

18
a,
18

18

18

18
0,
18
0,
2,
0,
2,

18

18
0,
18,
ol’

3, 18

3, 18

After popping off the redundant copy of p,,, we have the precise hull we seek;
(0,2,3,8,10,14. 16, 18).

Figure 2: Graham Convex Hull Algorithm example from J. O’ Rourke, Computational Geometry in C

