CS 3137 Class Notes

1 Finding the Convex Hull of a 2-D Set of Points

- Reference: Computational Geometry in C by J. O'Rourke and http://www-e.uni-magdeburg.de/mertens/TSP/node1.html (applet)
- In our discussion of the traveling salesperson problem, one method we discussed was the method of cheapest insertion, in which we insert a vertex in an existing cycle to minimally increase the length of the tour. Starting with a simple cycle of k vertices, we keep adding vertices that minimize the change in the tour's new cost. For example, if we have a an edge (u,v) in the path, we add the vertex x such that:

$$dist(u, x) + dist(x, v) - dist(u, v) \text{ is a minimum}$$

$$\tag{1}$$

We may iterate over all choices of u,v to select this minimum.

This algorithm begins by computing the ConvexHull of the vertices. Given a set of points S in a plane, we can compute the convex hull of the point set. The convex hull is an enclosing polygon in which every point in S is in the interior or on the boundary of the polygon (see Fig. 1).

- An intuitve definition is to pound nails at every point in the set S and then stretch a rubber band around the outside of these nails the resulting image of the rubber band forms a polygonal shape called the Convex Hull. In 3-D, we can think of "wrapping" the point set with plastic shrink wrap to form a convex polyhedron.
- A test for convexity: Given a line segment between any pair of points inside the Convex Hull, it will never contain any points exterior to the Convex Hull.
- Another definition is that the convex hull of a point set S is the intersection of all half-spaces that contain S. In 2-D, half spaces are half-planes, or planes on one side of a separating line.

FIGURE 6.27 The convex hull of the points (A, B, C, D, E, F, G, H, I, ...) is the polygon ABCDEF.

Figure 1: Convex Hull of a set of points

2 Computing a 2-D Convex Hull: Grahams's Algorithm

There are many algorithms for computing a 2-D convex hull. The algorithm we will use is Graham's Algorithm which is an $O(N \log N)$ algorithm (see figure 2).

Graham's algorithm is interesting for a number of reasons. First, it is simple to compute and is very intuitive. And for a Data Structures class it is quite compelling, since it uses a number of ideas in we have studied this semester including searching for a minimum value, sorting, and stacks.

- 1. Given N points, find the righmost, lowest point, label it P_0 .
- 2. Sort all other points angularly about P_0 . Break ties in favor of closeness to P_0 . Label the sorted points $P_1 \cdots P_{N-1}$.
- 3. Push the points labeled P_{N-1} and P_0 onto a stack. These points are guaranteed to be on the Convex Hull (why?).
- 4. Set i = 1
- 5. While i < N do

If P_i is strictly left of the line formed by top 2 stack entries (P_{top}, P_{top-1}) , then Push P_i onto the stack and increment i; else Pop the stack (remove P_{top}).

6. Stack contains Convex Hull vertices.

Notes:

- Strictly left means that the next point under consideration to be added to the hull, P_i , is "left" of the line formed by the two top stack entries if it is collinear with the two top stack entries, we reject the point.
- One way to determine "left" or "right", we can take a simple cross product of the line formed by the two top stack entries, P_{top-1} , P_{top} and the line formed by the points P_{top-1} , P_i . The sign of this cross product will tell you whether the point P_i is left or right of the line formed by the two top stack entries.

Below is shown the stack (point indices only) and the value of i at the top of the while loop. The stack is initialized to (0, 18), where the top is shown leftmost (the opposite of our earlier convention). Point p_1 is added to form (1,0,18), but then p_2 causes p_1 to be deleted, and so on. Note that p_{18} causes the deletion of p_{17} when i = 18, as it should. For this example, the total number of iterations is $29 < 2 \cdot n = 2 \cdot 19 = 38$.

i=	1:	Ο,	18							
<u>i</u> =	2:	1,	0,	18						
i=	2:	0,	18							
i=	3:	2,	0,	18						
i=	4:	3,	2,	0,	18					
i=	5:	4,	3,	2,	0,	18				
i=	5:	3,	2,	0,	18					
i=	6:	5,	3,	2,	0,	18				
i=	6:	з,	2,	0,	18					
i=	7:	6,	3,	2,	0,	18				
i=	7:	з,	2,	0,	18					
i=	8:	7,	3,	2,	0,	18				
i=	8:	3,	2,	0,	18					
i=	9:	8,	3,	2,	ο,	18				
i=1	.0:	9,	8,	3,	2,	0,	18			
i=10:	8,	3,	2,	ο,	18					
i=11:	10,	8,	3,	2.	0.	18	3			
i=12:	11,	10	. 8	. 3	1. 2	. (), 18	i i		
i=13:	12	11	, 1	0.	8.	3.	2. 0		18	
i=13:	11.	10	. 8	. 3	. 2	. (), 18	6		
i=13:	10,	8.	3.	2.	0.	18	3			
i=14:	13,	10	, 8	. 3	. 2	. (). 18			
i=14:	10,	8,	3,	2.	0.	18	3			
i=15:	14,	10	, 8	, 3	, 2	, (), 18	6		
i=16:	15,	14	. 1	ò.	8.	3.	2. 0		18	
i=16:	14.	10	. 8	. 3	. 2	. 0	1. 18	<u> </u>	22	
i=17:	16,	14	. 1	ò.	8.	3.	2. 0	. 1	18	
i=18:	17,	16	, 1	4,	10.	8.	3.	2.	0.	18
i=18:	16,	14	, 1	0,	8,	3.	2. 0	<u> </u>	18,	1000
i=19:	18,	16	. 1	4.	10.	8.	3.	2.	0.	18
CH 2017 BL 2		- T.T.	e			~ /	~,	- 1	- /	

After popping off the redundant copy of p_{18} , we have the precise hull we seek: (0, 2, 3, 8, 10, 14, 16, 18).

Figure 2: Graham Convex Hull Algorithm example from J. O'Rourke, Computational Geometry in C