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This article shows how to use model checking to find serious errors in file systems. Model checking

is a formal verification technique tuned for finding corner-case errors by comprehensively exploring

the state spaces defined by a system. File systems have two dynamics that make them attractive

for such an approach. First, their errors are some of the most serious, since they can destroy persis-

tent data and lead to unrecoverable corruption. Second, traditional testing needs an impractical,

exponential number of test cases to check that the system will recover if it crashes at any point

during execution. Model checking employs a variety of state-reducing techniques that allow it to

explore such vast state spaces efficiently.

We built a system, FiSC, for model checking file systems. We applied it to four widely-used,

heavily-tested file systems: ext3, JFS, ReiserFS and XFS. We found serious bugs in all of them,

33 in total. Most have led to patches within a day of diagnosis. For each file system, FiSC found

demonstrable events leading to the unrecoverable destruction of metadata and entire directories,

including the file system root directory “/”.
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1. INTRODUCTION

File system errors are some of the most destructive errors possible. Since almost
all deployed file systems reside in the operating system kernel, even a simple
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error can crash the entire system, most likely in the midst of a mutation to
stable state. Bugs in file system code can range from those that cause “mere”
reboots to those that lead to unrecoverable errors in stable on-disk state. In such
cases, mindlessly rebooting the machine will not correct or mask the errors and,
in fact, can make the situation worse.

Not only are errors in file systems dangerous, file system code is simultane-
ously both difficult to reason about and difficult to test. The file system must
correctly recover to an internally consistent state if the system crashes at any
point, regardless of what data is being mutated, flushed, or not flushed, to disk,
and what invariants have been violated. Anticipating all possible failures and
correctly recovering from them is known to be hard; our results do not contradict
this perception.

The importance of file system errors has led to the development of many
file system stress test frameworks; two good ones are stress [http://weather.
ou.edu/∼apw/projects/stress] and LTP [http://ltp.sourceforge.net]. However,
these focus mostly on noncrash-based errors such as checking that the file
system operations create, delete, and link objects correctly. Testing that a file
system correctly recovers from a crash requires doing reconstruction and then
comparing the reconstructed state to a known legal state. The cost of a single
crash-reboot-reconstruct cycle (typically a minute or more) makes it impossible
to test more than a tiny fraction of the exponential number of crash possibili-
ties. Consequently, just when implementors need validation the most, testing
is least effective. Thus, even heavily-tested systems have errors that only arise
after they are deployed, making their errors all but impossible to eliminate or
even replicate.

In this article, we use model checking to systematically test and find errors
in file systems. Model checking [Clarke et al. 1999; K. 1993; Holzmann 1997]
is a formal verification technique that systematically enumerates the possi-
ble states of a system by exploring the nondeterministic events in the system.
Model checkers employ various state reduction techniques to efficiently explore
the resulting exponential state space. For instance, generated states can be
stored in a hash table to avoid redundantly exploring the same state. Also, by
inspecting the system state, model checkers can identify similar sets of states
and prioritize the search towards previously unexplored behaviors in the sys-
tem. When applicable, such a systematic exploration can achieve the effect of
impractically massive testing by avoiding the redundancy that would occur in
conventional testing.

The dominant cost of traditional model checking is the effort needed to write
an abstract specification of the system (commonly referred to as the “model”).
This upfront cost has traditionally made model checking completely impracti-
cal for large systems, especially those legacy systems that were built with zero
formal analysis applied. A sufficiently detailed model can be as large as the
checked system. Empirically, implementors often refuse to write them; those
that are written have errors and, even if they do not, they “drift” as the imple-
mentation is modified but the model is not [Corbett et al. 2000].

Recent work has developed implementation-level model checkers that check
implementation code directly without requiring an abstract specification
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[Godefroid 1997; Musuvathi et al. 2002; Musuvathi and Engler 2004]. We lever-
age this approach to create a model checking infrastructure, the File System
Checker (FiSC), which lets implementors model-check real, unmodified file sys-
tems with relatively little model checking knowledge. FiSC is built on CMC, an
explicit state space, implementation model checker we developed in previous
work [Musuvathi et al. 2002; Musuvathi and Engler 2004], which lets us run
an entire operating system inside of the model checker. This allows us to check
a file system in situ rather than attempting the difficult task of extracting it
from the operating system kernel.

We applied FiSC to four widely-used, heavily-tested file systems,
JFS [http://www-124.ibm.com/jfs], ReiserFS [http://www.namesys.com], ext3
[ext2/ext3, http://e2fsprogs.sourceforge.net], and XFS [http://oss.sgi.com/
projects/xfs]. We found serious bugs in all of them, 33 in total. Most led to
patches within a day of diagnosis. For each file system, FiSC found demon-
strable events leading to the unrecoverable destruction of metadata and entire
directories, including the file system root directory “/”.

The rest of the article is as follows. We give an overview of FiSC (Section 2),
the model checker it uses and how to check a file system with it (Section 4).
We then describe: the checks FiSC performs (Section 5), the optimizations it
does (Section 6), and how it checks file system recovery code (Section 7). We
then discuss results (Section 8) and our experiences using FiSC (Section 9),
including sources of false positives and false negatives. We then conclude.

2. CHECKING OVERVIEW

Our system is comprised of four parts: (1) CMC, an explicit state model checker
running the Linux kernel, (2) a file system test driver, (3) a permutation checker
that verifies that a file system can recover no matter what order buffer cache
contents are written to disk, and (4) an fsck recovery checker. The model
checker starts in an initial pristine state (an empty, formatted disk) and re-
cursively generates and checks successive states by systematically executing
state transitions. Transitions are either test driver operations or FS-specific
kernel threads that flush blocks to disk. The test driver is conceptually similar
to a program run during testing. It creates, removes, and renames files, direc-
tories, and hard links; writes to and truncates files; and mounts and unmounts
the file system. Figure 1 shows this process.

As each new state is generated, we intercept all disk writes done by the
checked file system and forward them to the permutation checker, which checks
that the disk is in a state that fsck can repair to produce a valid file system
after each subset of all possible disk writes. This avoids storing a separate
state for each permutation and allows FiSC to choose which permutations to
check. This checker is explained in Section 5.2. We run fsck on the host system
outside of the model checker and use a small shared library to capture all the
disk accesses fsck makes while repairing the file system generated by writing
a permutation. We feed these fsck generated writes into the crash recovery
checker. This checker allows FiSC to recursively check for failures in fsck and
is covered in Section 7.
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Fig. 1. State exploration and checking overview. FiSC’s main loop picks a state S from the state

queue and then iteratively generates its successor states by applying each possible operation to a

restored copy of S. The generated state S′ is checked for validity and, if valid and not previously

explored, inserted onto the state queue.

Fig. 2. Disk permutation and fsck recovery checkers. The box named “crashed disk generation”

is magnified in Figure 3.

Figures 2 and 3 outline the operation of the permutation and fsck recovery
checkers. Both checkers copy the disk from the starting state of a transition
and write onto the copy to avoid perturbing the system. After the copied disk is
modified, the model checker traverses its file system, recording the properties
it checks for consistency in a model of the file system. Currently these are the
name, size, and link count of every file and directory in the system along with
the contents of each directory. Note that this is a model of file system data, not
file system code. The code to traverse, create, and manipulate the file system
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Fig. 3. This figure magnifies the “crashed disk generation” box in Figure 2. This box takes copies

of the experimental disks and a set of dirty blocks as inputs, and outputs many recovered disks.

Inside it, there are two checkers: the Permutation Checker and the fsck Recovery Checker. Given

a copy of the experimental disk and a set of dirty blocks, the Permutation Checker will permute

the dirty blocks to generate many potential crashed disk images and run fsck to recover them. The

fsck Recovery Checker permutes disk writes generated by fsck (intercepted by our interposition

library) to check for crashes during recovery.

model mirrors the system call interface and can be reused to check many file
systems. We check that this model matches one of the possible valid file systems,
which are computed as in Section 4.2. An error is flagged in case of a mismatch.

After each new state is generated, our system runs a series of invariant
checkers looking for file system errors. If an error is found, FiSC (1) emits an
error message, (2) stores a trace for later error diagnosis that records all the
nondeterministic choices it made to get to the error, and (3) discards the state.
If there is no error, FiSC looks at the new state and puts it on the state queue
if it has not already visited a similar state (Section 6.1). Otherwise, it discards
the state.

New states are checkpointed and added to the state queue for later explo-
ration. Checkpointing the kernel state captures the current execution envi-
ronment so that it can be put on the state queue and restored later when the
model checker decides to take it off the state queue and explore its operations.
This state consists of the kernel heap and data, the disk, an abstract model
of the current file system, and additional data necessary for invariant checks.
As discussed in Section 6.1, FiSC searches the state space using breadth- or
depth-first search along with some simple heuristics.

2.1 The Checking Environment

Similar to unit testing, model-checking a file system requires selecting two
layers at which to cut the checked system. One layer defines the external inter-
face that the test driver runs on. In our case we have the driver run atop the
system call interface. The other layer provides a “fake environment” that the
checked system runs on. We need this environment model because the checked
file system does not run on bare hardware. Instead, FiSC provides a virtual
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block device that models a disk as a collection of sectors that can be writ-
ten atomically. The block device driver layer is a natural place to cut, as it is
the only relatively well-documented boundary between in-core and persistent
data.

Modern Unix derivatives provide a Virtual File System (VFS) inter-
face [Sandberg et al. 1985]. While the VFS seems like a good place to cut, it
varies significantly across operating systems and even across different versions
of the same kernel. Further it has many functions with subtle dependencies.
By instead cutting along the system call layer we avoid the headache of model-
ing these sparsely documented interactions. We also make our system easier to
port; and are able to check the VFS implementation, a design decision validated
by the two bugs we found in the VFS code (Section 8).

3. CMC OVERVIEW

FiSC is built on top of CMC, an implementation-level model checker. Unlike
traditional model checkers whose ultimate goals are to prove the absence of
bugs, CMC aims at effectively finding bugs. To meet this goal, it lets users
directly check the implementation without writing any formal specification. It
also lets users aggressively deploy unsound state abstractions to avoid checking
potentially redundant states. For example, FiSC unsoundly abstracts a real file
system image into a directed acyclic graph (DAG), ignoring details such as file
names. By doing so, FiSC can avoid redundantly checking a file system image
that has the same DAG representation as that of an already-checked image.
This trick saves FiSC from being swamped by many superficially different im-
ages, at the price of missing potential name-specific bugs. We view the CMC
approach as an attempt to hit the sweet spot between testing and model check-
ing: it requires much less work than traditional model checking yet achieves
much better coverage than testing.

FiSC relies on two key mechanisms provided by CMC: (1) state checkpoint-
ing and restoring, which enables systematic exploration of many states of a
system, and (2) the choose mechanism, which systematically explores all possi-
ble actions at a given state. We now briefly describe how they are implemented.

To automate state checkpointing and restoring, CMC requires adapting the
checked system to CMC’s runtime model—it must run within the same process
address space as CMC. A process in the original system must run as a thread
in CMC. Once such a port is done, checkpointing the checked system simply be-
comes saving the portion of the CMC address space that belongs to this system,
which includes its data, stack, heap and CPU state. (CMC does not checkpoint
file descriptors.) To restore a state, CMC copies the saved data back to their
original locations in the address space.

Although state checkpointing and restoring in CMC is straightforward, the
porting it requires is intrusive and error-prone. However, this is not funda-
mental to our approach. We can achieve the same results replacing CMC with
any other tool that provides the state checkpointing, state restoration, and the
choose mechanism, such as machine simulators, binary interpreters, or any
virtual machine monitors. Our later work [Yang et al. 2006] describes a storage
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Fig. 4. A simple choose example.

system model checker that avoids this porting headache and provides the nec-
essary mechanisms that enable thorough checking.

The choose mechanism is designed to control choices within code. Implemen-
tors use choose as follows. Given a program point that has N possible actions
they insert a call “choose(N),” which will (appear to) return N times, with the
return value 0, 1, ..., N − 1 respectively. They then write code that uses the
return value of choose to systematically pick each of the possible N actions.
Figure 4 shows a simple code example using choose. This code will run 4 times
by CMC and generate four different outputs in this order: “0 0”, “0 1”, “0 2”,
“1”. In Section 4.3 we have further discussion on using choose to check system
code. CMC implements choose as a straightforward combination generation.

4. CHECKING A NEW FILE SYSTEM

This section gives an overview of what a file system implementor must do to
check a new file system.

4.1 Basic Setup

Because CMC encases Linux, a file system that already runs within Linux and
conforms to FiSC’s assumptions of file system behavior, it will require relatively
few modifications before it can be checked.

FiSC needs to know the minimum disk and memory sizes the file system
requires. Ext3 had the smallest requirements: a 2MB disk and 16 pages of
memory. ReiserFS had the highest: a 30MB disk and 128 pages. In addition,
FiSC needs the commands to make and recover the file system (usually with
mkfs and fsck respectively). Ideally, the developer provides three different fsck
options for: (1) default recovery, (2) “slow” full recovery, and (3) “fast” recovery
that only replays the journal so that the three recovery modes may be checked
against each other (Section 5). Checking XFS was a bit more difficult because
its fsck does not replay the journal in a crashed XFS image. To repair a crashed
XFS image, we have to first do a mount to replay the journal, then run XFS
fsck to repair other errors.

In addition to providing these facts, an implementor may have to modify their
file system to expose dirty blocks. Some consistency checks require knowing
which buffers are dirty (Section 5.2). A file system, like ReiserFS, that uses its
own machinery for tracking dirty buffers must be changed to explicitly indicate
such dirty buffers.

When a file system fits within FiSC’s model of how a file system works
(as do ext3 and JFS), it takes a few days to start checking. On the other
hand, ReiserFS took between one and two weeks of effort to run in FiSC,
as it violated one of the larger assumptions we made. As stated earlier,
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during crash checking, FiSC mounts a copy of the disk used by the checked
file system as a second block device that it uses to check the original. Thus,
the file system must independently manage two disks in a reentrant man-
ner. Unfortunately, ReiserFS does not do so: it uses a single kernel thread
to perform journal writes for all mounted devices, which causes a deadlock
when the journal thread writes to the log; FiSC suspends it, creates a copy
of the disk, and then remounts the file system. Remounting normally replays
the journal, but this requires writing to the journal—which deadlocks waiting
for the suspended journal thread to run. We fixed the problem by modifying
ReiserFS to not wake the journal thread when a clean file system is mounted
read-only.

4.2 Modeling the File System

After every file system operation, FiSC compares the checked file system
against what it believes is the correct volatile file system (VolatileFS). The
VolatileFS reflects the effects of all file system operations done sequentially
up through the last one. Because it is defined by various standards rather than
being FS-specific, FiSC can construct it as follows. After FiSC performs an
operation (e.g., mkdir, link) to the checked concrete system, it emulates the op-
eration’s effect on a “fake” abstract file system. It then verifies that the checked
and abstract file systems are equivalent, using a lossy comparison that discards
details such as time.

After every disk write, FiSC compares the checked file system against a
model of what it believes to be the current stable file system (StableFS). The
StableFS reflects the state the file system should recover to after a crash. At
any point, running a file system’s fsck repair utility on the current disk should
always produce a file system equivalent to this StableFS.

Unlike the VolatileFS, the StableFS is FS-specific. Different file systems
make wildly different guarantees as to what will be recovered after a crash.
The ext2 [ext2/ext3 http://e2fsprogs.sourceforge.net] file system provides al-
most none, a journaling file system typically intends to recover up to the last
completed log record or commit point, and a soft-updates [Ganger and Patt
1995] file system recovers to a difficult-to-specify mix of old and new data. We
therefore require the FS implementors to provide the StableFS models.

4.2.1 Computing StableFS for Journaling File Systems. While we assume
FS implementors will provide us the StableFS models, we check systems we
did not build. Fortunately, the four file systems we checked all use write-ahead
logging, which made it easy for us to compute their StableFS.

Determining how the StableFS evolves, requires determining two FS-specific
facts: (1) when it can legally change and (2) what it changes to.

For journaling file systems the StabeFS model typically changes when a
journal commit record is written to disk. A journaling FS usually commits an
operation to stable storage in three consecutive steps: (1) it writes information
about the operation to the write-ahead log, (2) it commits the information to the
log, typically by writing a log commit record, and (3) it applies the operation

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.



Using Model Checking to Find Serious File System Errors • 401

to the actual file system.1 A crash anywhere before step 2 should leave the
file system in the same state as if the operation had never happened. A crash
anywhere after step 2 should not affect the operation because the FS can always
recover the operation from the log and reapply it. Therefore, the StableFS model
for journaling file systems changes only at step 2, when the commit records are
written. Other disk writes will not update StableFS.

We were able to identify and annotate the commit records relatively easily for
ext3 and ReiserFS. JFS and XFS were more difficult. In the end, after a variety
of false starts, we gave up trying to determine which journal write represented
a commit-point and instead let the StableFS change after any journal write.
We assume a file system implementor could do a better job.

Once we know that the StableFS changes, we need to know what it changes
to. Doing so is difficult, since it essentially requires writing a crash recovery
specification for each file system. While we assume a file system implementor
could do so, we check systems we did not build. Thus, we take a shortcut and use
fsck to generate the StableFS for us. We copy the experimental disk, run fsck
to reconstruct a file system image after the committed operations, and traverse
the file system, recording properties of interest. This approach can miss errors
since we have no guarantee that fsck will produce the correct state. However,
it is relatively unlikely that fsck will fail when repairing a perfectly behaving
disk. It is even more unlikely that if it does fail that it will do so in the same
way for the many subsequent crashed disks to which the persistent file system
model will be compared.

4.3 Checking More Thoroughly

Once a basic file system is up and being checked, there are three main strategies
an implementor can follow to check their file system more thoroughly: down-
scaling [Dill et al. 1992], canonicalization, and exposing choice points. We talk
about each below.

Downscale. Operationally, this means making everything as small as
plausible. Caches become one or two entries large, file systems just a few
“nodes” (where a node is a file or directory). Model checking works best at
ferreting out complex interactions of a small number of nouns (files, direc-
tories, blocks, threads, etc.), since this small number allows caching tech-
niques to give the most leverage. There were three main places we downscaled.
First, making disk small (megabytes rather than gigabytes), second, check-
ing small file system topologies, typically 2–4 nodes, and finally, reducing the
size of “virtual memory” of the checked Linux system to a small number of
pages.

Canonicalization. This technique modifies states so that state hashing will
not see “irrelevant” differences. In practice, the most common canonicalization
is to set as many things as possible to constant values: clearing inode generation
numbers, mount counts, time fields; zeroing freed memory and unused disk
blocks (especially journal blocks).

1The file systems we checked provide several different journaling modes with subtle variations

from what we describe.
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Many canonicalizations require FS-specific knowledge and thus must be done
by the implementor. However, FiSC does do two generic canonicalizations. First,
it constrains the search space by only writing two different values to data blocks,
significantly reducing the number of states while still providing enough reso-
lution to catch data errors. Second, before hashing a model of a file system,
FiSC transforms the file system to remove superficial differences, by renaming
files and directories so that there is always a sequential numbering among file
system objects. For example, a file system with one directory and three files “a,”
“b,” and “c” will have the same model as another file system with one directory
and three files “1,” “2,” and “3” if the files have the same length and content.
Canonicalization lets us move our search space away from searching for rare
filename-specific bugs and toward the relatively more common bugs that arise
while creating many file system topologies.

Expose choice points. Making sources of nondeterminism (“choice points”)
visible to FiSC, lets it search the set of possible file system behaviors more
thoroughly. A low level example is adding code to fail FS-specific allocators.
More generally, whenever a file system makes a decision based on an arbitrary
time constraint or environmental feature, we change it to call into FiSC so that
FiSC can choose to explore each possible decision in every state that reaches
that point.

Mechanically, exposing a choice point reduces to modifying the file system
code to call “choose(n)” where n is the number of possible decision alternatives.
choose will appear to return to this callsite n times, with the return values
0, . . . , (n − 1). The caller uses this return value to pick which of the n possible
actions to perform. An example: both ReiserFS and ext3 flush their in-memory
journals to disk after a given amount of time has lapsed. We replaced this time
check with a call to choose(2) and modified the caller so that when choose
returns 0 the code flushes the commit record; when it returns 1 it does not. As
another example, file systems check the buffer cache before issuing disk reads.
Without care, this means that the “cache miss” path will rarely be checked
(especially since we check tiny file system topologies). We solve this problem
by using choose on the success path of the buffer cache read routine to ensure
FiSC also explores the miss path. In addition, FiSC generically fails memory
allocation routines and permission checks.

When inserting choice points, the implementor can exploit well defined in-
ternal interfaces to increase the set of explored actions. Interface specifications
typically allow a range of actions, of which an implementation will pick some
subset. For example, many routines specify that any invocation may return an
“out of memory” error. However their actual implementation may only allocate
memory on certain paths, or perhaps never do any allocations at all. It is a mis-
take to only fail the specific allocation calls an implementation performssince
this almost certainly means that many callers and system configurations will
never see such failures. The simple fix is to insert a choice point as the routine’s
first action, allowing the model checker to test that failure is handled on each
call.

Unfortunately, it is not always easy to expose choice points and may require
restructuring parts of the system to remove artificial constraints. The most
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invasive example of these modifications are the changes to the buffer cache we
made so that the permutation checker (Section 5.2) would be able to see all
possible buffer write orderings.

5. CHECKERS

This section describes the checks FiSC performs.

5.1 Generic Checks

FiSC inspects the actual state of the system and can thus catch errors that are
difficult or impossible to diagnose with static analysis. It is capable of doing a
set of general checks that could apply to any code run in the kernel:

Deadlock. We instrument the lock acquisition and release routines to check
for circular waits.

NULL. FiSC reports an error whenever the kernel dereferences a NULL
pointer.

Paired functions. There are some kernel functions, like iget, iput for inode
allocation, and dget, dput for directory cache entries, which should always be
called in pairs. We instrument these functions in the kernel and then check
that they are always called in pairs while running the model checker.

Memory leak. We instrument the memory allocation and deallocation func-
tions so FiSC can track currently used memory. We also altered the system-wide
freelist to prevent memory consumers from allocating objects without the model
checker’s knowledge. After every state transition, we stop the system and per-
form a conservative traversal [Boehm 1996] of the stack and the heap, looking
for allocated memory with no references.

No silent failures. The kernel does not request a resource for which it does
not have a specific use planned. Thus, it is likely a bug if a system call returns
success after it calls a resource allocation routine that fails. The exception to
this pattern is when code loops until it acquires a resource. In that case, we
generate a false positive when a function fails during the first iteration of the
loop but later succeeds. We suppress these false positives by manually marking
functions with resource acquisition loops.

5.2 Consistency Checks

FiSC checks the following consistency properties.
System calls map to actions. A mutation of the file system that indicates

success (usually a system call with a return value of zero) should produce a user-
visible change, while an indication of failure should produce no such change.
We use a reference model (the VolatileFS) to ensure that when an operation
produces a user-visible change it is the correct change.

Recoverable disk write ordering. As described in Section 2, we write
arbitrary combinations of dirty buffer cache entries to disk, checking that the
system recovers to a valid state. File system recovery code typically requires
that disk writes happen in certain stylized orders. Illegal orders may not inter-
fere with normal system operation, but will lead to unrecoverable data loss if a
crash occurs at an inopportune moment. Comprehensively checking for these
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errors requires we (1) have the largest legal set of possible dirty buffers in
memory, and (2) flush combinations of these blocks to disk at every legal op-
portunity. Unfortunately, many file systems (all those we check) thwart these
desires by using a background thread to periodically write dirty blocks to disk.
These cleaned blocks will not be available for subsequent reorder checking,
falsely constraining the schedules we can generate. Further, the vagaries of
thread scheduling can hide vulnerabilities—if the thread does not run when
the system is in a vulnerable state then the dangerous disk writes will not hap-
pen. Thus we modified this thread to do nothing, and instead have the model
checker track all blocks that could be legally written. Whenever a block is added
to this set, we write out different permutations of the set, and verify that run-
ning fsck produces a valid file system image. The set of possible blocks that
can be written are (1) all dirty buffers in the buffer cache (dirty buffers may
be written in any order), and (2) all requests in the disk queue (disks routinely
reorder the disk queue).

This set is initially empty. Blocks are added whenever a buffer cache entry
is marked dirty. Blocks are removed from this set in four ways: (1) they are
deleted from the buffer cache, (2) marked clean, (3) the file system explicitly
waits for the block to be written, or (4) the file system forces a synchronous
write of a specific buffer or the entire disk request queue.

Changed buffers are marked dirty. When a file system changes a block
in the buffer cache it needs to mark it as dirty so the operating system knows it
should eventually write the block back to disk. Blocks that are not marked as
dirty may be flushed from the cache at any time. Initially we thought we could
use the generic dirty bit associated with each buffer to track the “dirtiness” of
a buffer, but each file system has a slightly different concept of what it means
for a buffer to be dirty. For example, ext3 considers a buffer dirty if one of
the following conditions is true: (1) the generic dirty bit is set, (2) the buffer is
journaled and the journal dirty bit is set, or (3) the buffer is journaled and it has
been revoked and the revocation is valid. Discovering dirty buffer invariants
requires intimate knowledge of the file system design; thus we have only run
this checker on ext3.

Buffer consistency. Each journaling file system associates state with each
buffer it uses from the buffer cache, and has rules about how that state may
change. For example a buffer managed by ext3 may not be marked both dirty
and “journal dirty.” That is, it should be written first to the journal (journal
dirty), and then written to the appropriate location on disk (dirty).

Double fsck. By default, fsck on a journaled file system simply replays the
journal. We compare the file system resulting from recovering in this man-
ner with one generated after running fsck in a comprehensive mode that
scans the entire disk, checking for consistency. If they differ, at least one is
wrong.

6. SCALING THE SYSTEM

As we brought our system online we ran into a number of performance and
memory bottlenecks. This section describes our most important optimizations.
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6.1 State Hashing and Search

Exploring an exponential state space is a game where you ignore (hopefully)
irrelevant details in a quest to only explore states that differ in nonsuperficial
ways. FiSC plays this game in two places: (1) state hashing, where it selectively
discards details to make bit-level different states equivalent, and (2) searching,
when it picks the next state to explore. We describe both below.

We initially hashed most things in the checked file system’s state, such as
the heap, data segment, and the raw disk. In practice this meant it was hard to
comprehensively explore “interesting” states, since the model checker spent its
time re-exploring states that that were not that much different from each other.
After iterative experimentation, we settled on only hashing the VolatileFS, the
StableFS, and the list of currently runnable threads. We ignored the heap,
thread stacks, and data segment. Users can optionally hash the actual disk
image instead of the more abstract StableFS to check at a higher-level of detail.

Despite discarding so much detail, we rarely can explore all states. Given
the size of each checkpoint (roughly 1-3MB), the state queue holding all “to-be-
explored” states consumes all memory long before FiSC can exhaust the search
space. We stave off this exhaustion by randomly discarding states from the
state queue whenever its size exceeds a user-selected threshold.

We provide two heuristic search strategies as alternatives to vanilla DFS or
BFS. The first heuristic attempts to stress a file system’s recovery code by pref-
erentially running states whose disks will likely take the most work to repair
after a crash. It crudely does so by tracking how many sectors were written
when the state’s parent’s disk was recovered, and sorts states accordingly. This
approach found a data loss error in JFS that we have not been able to trigger
with any other strategy.

The second heuristic tries to quantify how different a given state is from
previously explored states, using a utility score. A state’s utility score is based
on how many times states with the same features have already been explored.
Features include: the number of dirty blocks a state has, its abstract file system
topology, and whether its parent executed new file system statements. A state’s
score is an exponentially-weighted sum of the number of times each feature has
been seen.

6.2 Systematically Failing Functions

When a transition (e.g., mkdir, creat) is executed, it may perform many dif-
ferent calls to functions that can fail such as memory allocation or permission
checks (Section 4.3). Blindly causing all combinations of these functions to fail,
risks having FiSC explore an exponential number of uninteresting, redundant
transitions for each state. Additionally, in many cases FS-implementors are
relatively uninterested in “unlikely” failures, for example, those only triggered
when both memory allocation fails and a disk read error occurs.

Instead, we use an iterative approach—FiSC will first run a transition with
no failures; it will then run it failing only a single callsite until all callsites
have been failed; it will then similarly fail two callsites, and so on. Users can
specify the maximum number of failures that FiSC will explore. The default
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Fig. 5. Memory usage when model checking ext3 on a 40MB disk with and without disk com-

paction. Without compaction, the model checker quickly exhausts all the physical memory and dies

before it reaches 20 states. The chunk database consumes about 0.2% of the total memory with

a maximum of less than 2MB. Note, the spike around the 150 state mark happens because FiSC

starts randomly discarding states from its state queue.

is one failure. This approach will find the smallest possible number of failures
needed to trigger an error.

6.3 Efficiently Modeling Large Disks

As Figure 5 shows, naively modeling reasonably-sized disks with one contiguous
memory allocation, severely limits the number of states our model checker can
explore as we quickly exhaust available memory. Changing file, system code
so that it works with a smaller disk is nontrivial and error prone, as the code
contains mutually dependent macros, structures, and functions that all rely on
offsets in intricate ways. Instead we efficiently model large disks using hash
compaction [Waldspurger 2002]. We keep a database of disk chunks, collections
of disk sectors, and their hashes. The disk is thus an array of references to
hashed chunks. When a write alters a chunk we hash the new value, inserting
it into the database if necessary, and have the chunk reference the hash.

6.4 fsck Memoization

Repairing a file system is expensive. It takes about five times as long to run fsck
as it does to restore a state and generate a new state by executing an operation.
If we are not careful, the time to run fsck dominates checking. Fortunately,
for all practical purposes, recovery code is deterministic: given the same input
disk image it should always produce the same output image. This determinism
allows us to memoize the result of recovering a specific disk. Before running
fsck we check if the current disk is in a hash table and, if so, return the already
computed result. Otherwise we run fsck and add the entry to the table. (As
a space optimization, we actually just track the sectors read and written by
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Table I. The Number of States, Transitions, and the Cost of

Checking Each File System Until the Point at which FiSC Runs

Out of Memory. Times are all in Seconds. ReiserFS’s Relatively

Large Virtual Memory Requirements Limited FiSC Checks to

Roughly an Order of Magnitude Fewer States than the Other

Systems. fsck Memoization (Described in Section 6.4) Speeds

Checking of ext3 by a Factor of 10, and ReiserFS by a Factor of 33

ext3 ReiserFS JFS

States Total 10800 630 4500

Expanded States 2419 142 905

State Transitions 35978 11009 14387

Time With Memoization 650 893 3774

Without Memoization 7307 29419 4343

fsck.) While memoization is trivial, it gives a huge performance win as seen
in Table I, especially since our fsck recovery checker (Section 7) can run fsck
10–20 times after each crash.

6.5 Cluster-Based Model Checking

A model checking run makes a set of configuration choices: the number of files
and directories to allow, what operations can fail, whether crashes happen dur-
ing recovery, and so on. Exploring different values is expensive, but not doing
so can miss bugs. Fortunately, exploration is easily parallelizable. We wrote a
script that given a set of configuration settings and remote machines, generates
all configurations and remotely executes them.

6.6 Summary

Table I shows that FiSC was able to check more than 10k states and more than
35k transitions for ext3 within 650 seconds. The expanded states are those for
which all their possible transitions are explored. The data in this section was
computed using a Pentium 4 3.2GHz machine with 2GB memory.

7. CRASHES DURING RECOVERY

A classic recovery mistake is to incorrectly handle a crash that happens during
recovery. The number of potential failure scenarios caused by one failure is
unwieldy, the number of scenarios caused by a second failure is combinatorially
exciting. Unfortunately, since many failures are correlated, such crashes are not
uncommon. For example, after a power outage, one might run fsck only to have
the power go out again while it runs. Similarly, a bad memory board will cause
a system crash and then promptly cause another one during recovery.

This section describes how we check that a file system’s recovery logic can
handle a single crash during recovery. We check that if fsck crashes during
its first recovery attempt, the final file system (the StableFS) obtained after
running fsck a second time (on a disk possibly already modified by the previous
run) should be the same as if the first attempt succeeded. We do not consider
the case where fsck crashes repeatedly during recovery. While repeated failure
is intellectually interesting, the difficulty in reasoning about errors caused by
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a single crash is such that implementors have shown a marked disinterest in
more elaborate combinations.

Conceptually, the basic algorithm is simple:

1. Given the disk image d0 after a crash, run fsck to completion. We record
an ordered “write-list” W S = (w1, . . . , wn) of the sectors and values written
by fsck during recovery. Here wi is a tuple 〈si, vi〉, where si is the sector
written to and vi is the data written to the sector. In more formal terms, we
model fsck as a function (denoted fsck) that maps from an input disk d to
an output disk d ′, where the differences between d and d ′ are the values in
the write-set W S. For our purposes, these writes are the only effects that
running fsck has. Moreover, we denote the partial evaluation of fsck(d ) after
performing writes w1, . . . , wi as fsck[i](d ). By definition, fsck(d ) ≡ fsck[n](d ).

2. Let di be the disk image obtained by applying the writes w1, . . . , wi to disk
image d0. This is the disk image returned by fsck[i](d0). Next, rerun fsck
on di to verify that it produces the same file system as running it on d0

(i.e., fsck(di) = fsck(d0)). Computing fsck(di) ≡ fsck(fsck[i](d0)) simulates the
effect of a crash during the recovery where fsck performed i writes and then
was restarted.

To illustrate, if invoking fsck(d0) writes two sectors 1, and then 4, with values
v1, and v2 respectively, the algorithm will first apply the write 〈1, v1〉 to d0 to
obtain d1, crash, check, and then apply write 〈4, v2〉 to d1 to obtain d2, crash,
and check.

This approach requires three refinements before it is reasonable. The first is
for speed, the second to catch more errors, and the third to reason about them.
We describe all three below.

7.1 Speed From Determinism

The naive algorithm checks many more cases than it needs to. We can dramati-
cally reduce this number by exploiting two facts. First, for all practical purposes
we can regard fsck as a deterministic procedure (Section 6.4). Determinism im-
plies a useful property: if two invocations of a deterministic function read the
same input values, then they must compute the same result. Thus, if a given
write by fsck does not change any value it previously read, then there is no
need to crash and rerun it—it will always get back to the current state. Second,
fsck rarely writes data it reads. As a result, most writes do not require that
we crash and recover: they will not intersect the set of sectors fsck reads and
thus, by determinism, cannot influence the disk it would produce.

We state this independence more precisely as follows. Let RSi = {r1, . . . , rk}
denote the (unordered) set of all sectors read by fsck[i](d0). As above, let di denote
the disk produced by applying the writes (w1, . . . , wi) in order, to the initial disk
d0. We claim that if the sector si written by wi is not in the read set RSi, then
running fsck to completion on disk di produces the same result as running
it on di−1. si /∈ RSiimpliesfsck(di) = fsck(di−1) (recall that RSi−1 ⊆ RSi).
Tautologically, a deterministic function can only change what it computes if the
values it reads are different. Thus, si /∈ RSi implies that fsck(di) and fsck(di−1)
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Fig. 6. fsck optimization example.

read identical values for the first i − 1 steps,2 forcing them to both compute the
same results so far. Then, at step i, both will perform write wi, making their
disks identical.

There are two special cases that our checker exploits to skip running fsck:

1. Suppose wi does write a sector in RSi, but the value it writes is the same
as what is currently on disk (i.e., di = di−1). Clearly if di−1 = di then
fsck(di) = fsck(di−1). Surprisingly, recovery programs empirically do many
such redundant writes.

2. If (1) the sector si written by wi is dominated by an earlier write wj , and (2)
there is no read that precedes wj , then wi cannot have any effect, since si

will always be overwritten with vj when fsck is restarted.

Figure 6 uses a simple example to demonstrate all fsck optimizations we do.
The original schedule, shown in Figure 6(0), does four writes, requiring four
crashes for the naive algorithm. Most of these crashes can be optimized away.
As pointed out in (1), the write to block B3 can never affect the outcome of
fsck since B3 is never read by fsck. We can therefore eliminate the crash after
the write to B3. Figure 6(2) shows that we can safely skip the crash after the
first write to B2. Although there is a read to B2, the read happens after the
first write to B2. In (3), the second write to B2 cannot affect the outcome of
fsck because it is dominated by B2’s first write. There is no need to crash after
the second write to B2. In the final schedule, we only need to check one crash:

2We assume that RSi for fsck(di) is a subset of RSi for fsck(d0). The intuition is fsck should make

progress as it runs, i.e., re-runing fsck on a partially-recovered disk should probably not read more

sectors than running fsck once on the original crashed disk. FiSC can be configured to not skip

rerunning fsck if this assumption does not hold.
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the crash after the write to B1. This crash can be further optimized away if the
value fsckwrites to B1 is identical to content of B1 on disk.

7.2 Checking All Write Orderings

As described, the algorithm can miss many errors. Sector writes can complete
in any order unless, (1) they are explicitly done synchronously (e.g., using the
O DIRECT option on Unix), or (2) they are blocked by a “sync barrier,” such as
the sync system call on Unix, which is believed to only return when all dirty
blocks have been written to disk. Thus, generating all possible disk images after
crashing fsck at any point requires partitioning the writes into “sync groups”
and checking that fsck would work correctly if it was rerun after performing
any subset of the writes in a sync group (the power set of the writes contained
in the sync group). For example, if we write sectors 1 and 2, call sync, then write
sector 4, we will have two sync groups S0 = {1, 2}, and S1 = {4}. The first, S0,
generates three different write schedules: {(1), (2), (1, 2)}. A write schedule is
the sectors that were written before fsck crashed (note that the schedule (2, 1)
is equivalent to (1, 2) since we rerun fsck after both writes complete). Given a
sync group Si our checker does one of two things.

1. If the size of Si is less than or equal to a user-defined threshold, t, the checker
will exhaustively verify all different interleavings.

2. If the size is larger than t, the checker will do a series of trials, where it picks
a random subset of random size within Si. These trials can be deterministi-
cally replayed later because we seed the pseudo-random number generator
with a hash of the involved sectors.

We typically set t = 5 and the number of random trials to 7. Without this
reordering we found no bugs in fsck recovery; with it we have found them in
all four checked file systems.

7.3 Finding the Right Perspective

Unfortunately, while recovery errors are important, reasoning about them is
extremely difficult. For most recovery errors the information the model checker
provides is of the form “you wrote block 17 and block 38 and now your disk
image has no files below ‘/’.” Figuring out (1) semantically what was being done
when this error occurred, (2) what the blocks are for, and (3) why writing these
values caused the problem, can easily take an entire day. Further, this process
has to be replicated by the implementor, who must fix it. Thus, we want to
find the simplest possible error case. The checker has five modes, described
below, roughly ordered in increasing degrees of freedom, and hence difficulty, in
diagnosing errors. (Limiting degrees of freedom also means they are ordered by
increasing cost.) At first blush, five modes might seem excessive. In reality they
are a somewhat desperate attempt to find a perspective that makes reasoning
about an error tractable. If we could think of additional useful views we would
add them.

Synchronous, atomic, logical writes. The first, simplest view is to group
all sector writes into “logical writes” and do these synchronously (in the order
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Table II. We Found 33 errors, 11 of Which Could Cause Permanent Data Loss.

There are 3 Intended Errors Where Programmers Decided to Sacrifice

Consistency for Availability. They are not Shown in this Table

Error type VFS ext2 ext3 JFS ReiserFS XFS total

Lost stable data n/a n/a 1 8 1 1 11

False clean n/a n/a 1 1 2

Security holes 2 2 (minor) 1 5

Kernel crashes 1 10 1 12

Other (serious) 1 1 1 3

Total 2 2 5 21 2 1 33

that they occur in program execution). Here, logical writes means we group all
blocks written by the same system call invocation as one group. If there are
two calls to the write system call, the first writing sectors l0 = (1, 2, 3), and the
second writing sectors l1 = (7, 8), we have two logical operations, l0 and l1. We
apply all the writes in l0, crash, check, apply the writes in l1 crash, and check.

This is the strongest logical view one can have of disk: all operations complete
in the order they were issued and all the writes in a single logical operation
occur atomically. It is relatively easy to reason about these errors since it just
means that fsck was not reentrant.

Synchronous, nonatomic, left-to-right logical writes. Here we still
treat logical writes as synchronous, but write their contained sectors nonatom-
ically, left-to-right. Write the first sector in a logical group, crash, check, then
write the next, and so on. These errors are also relatively easy to reason about
and tend to be localized to a single invocation of a system call where a data struc-
ture that was assumed to be internally consistent straddled a sector boundary.

Reordered, atomic logical writes. This mode reorders all logical writes
within the same sync group, checking each permutation. These errors can often
be fixed by inserting a single sync call.

Synchronous, nonatomic logical writes. This mode writes the sectors
within a logical operation in any order, crashing after each possible schedule.
These errors are modular, but can have interesting effects.

Reordered sector writes. This view is the hardest to reason about, but
the sternest test of file system recovery: reorder all sectors within a sync group
arbitrarily. We do not like these errors, and if we hit them will make every
attempt to find them with one of the prior modes.

8. RESULTS

Table II summarizes the errors we found, broken down by file systems and
categories. All errors were reported to the respective developers. We found 33
serious bugs in total; 21 have been fixed and 9 of the remaining 12, confirmed.3

The latter were complex enough that no patch has been submitted. There were
11 errors where supposedly stable, committed data, and metadata (typically
entire directories), could be lost. JFS has higher error counts in part due to
the immediate responses from the JFS developers, which enabled us to patch

3The errors reported in this article can be found at page http://keeda.stanford.edu/∼junfeng/
osdi-fisc-bugs.html, titled “OSDI FiSC Bugs.”

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.



412 • J. Yang et al.

the errors and continue checking JFS. ReiserFS’s large memory requirement
limited us to checking only 142 states (Table I). It is also very conservative
in that it panics very often, even upon memory allocation failures. These may
explain its low error count. Linux XFS implementation has a complicated buffer
cache layer, which was directly ported from SGI XFS, and its fsck utility cannot
replay the log in a crashed XFS partition. Therefore, we checked this file system
only briefly.

We discuss the bug categories in more detail below, highlighting the more
interesting errors.

8.1 Unrecoverable Data Loss

The most serious errors we found caused the irrevocable loss of committed, sta-
ble data. There were 11 such errors, where an execution sequence would lead
to the complete loss of metadata (and its associated data) that was committed
to the on-disk journal. In several cases, all or large parts of, long-lived directo-
ries, including the root directory “/”, were obliterated. Data loss had two main
causes: (1) invalid write ordering of the journal and data during recovery, and
(2) buggy implementations of transaction abort and fsck.

Invalid recovery write ordering. There were three bugs of this type.
During normal operation of a journaling file system the journal must be flushed
to disk before the data it describes. The file systems we checked seemed to get
this right. However, they all got the inverse of this ordering constraint wrong:
during recovery, when the journal is being replayed, all data modified by this
roll forward must be flushed to disk before the journal is persistently cleared.
Otherwise, if a crash occurs, the file system will become corrupt or lose data,
but the journal will be empty and hence unable to repair the file system.

Figure 7 gives a representative error from the ext3 fsck program. The chain
of mishaps is as follows:

1. recover ext3 journal rolls the journal forward by calling journal recover.

2. journal recover replays the journal, writing to the file system using cached
writes. It then calls fsync no super to flush all the modified data back to
disk. However, this macro has been defined to do nothing due to an error
made moving the recovery code out of the kernel and into a separate fsck
process.

3. Control returns to recover ext3 journal, which then calls e2fsck journal
release, which writes the now cleared journal to disk. Unfortunately, the
lack of sync barriers allows this write to reach disk before the modified data.
As a result, a crash that occurs after this point can obliterate parts of the
file system, but the journal will be empty—causing data loss.

When this bug was reported, the developers immediately released a patch.
ReiserFS and JFS both had similar bugs (both now fixed), but in these systems
the code lacked any attempt to order the journal clear with the writes of journal
data.

Buggy transaction abort and fsck. There were five bugs of this type, all
in JFS. Their causes were threefold.

ACM Transactions on Computer Systems, Vol. 24, No. 4, November 2006.



Using Model Checking to Find Serious File System Errors • 413

Fig. 7. Journal write ordering bug in ext3 fsck.

First, JFS immediately applies all journaled operations to its in-memory
metadata pages. Unfortunately, doing so makes it hard to roll back aborted
transactions since their modifications may be interleaved with the writes of
many other ongoing or committed transactions. As a result, when JFS aborts a
transaction, it relies on custom code to carefully extricate the side effects of the
aborted transactions from nonaborted ones. If the writer of this code forgets to
reverse a modification, it can be flushed to disk, interlacing many directories
with invalid entries from aborted transactions.

Second, JFS’s fsck makes no attempts to recover any valid entries in such
directories. Instead, its recovery policy is that if a directory contains a single
invalid entry it will remove all the entries of the directory, and attempt to recon-
nect subdirectories and files into “lost+found.” This opens a huge vulnerability:
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Fig. 8. Incorrect JFS fsck optimization, which causes unrecoverable loss of inodes and their as-

sociated data.

any file system mistake that results in persistently writing an invalid entry to
disk will cause fsck to deliberately destroy the violated directory.

Third, JFS fsck has an incorrect optimization that allows the loss of com-
mitted subdirectories and files. JFS dynamically allocates and places inodes
for better performance, tracking their location using an “inode map.” For speed,
incremental modifications to this map are written to the on-disk journal rather
than flushing the map to disk on every inode allocation or deletion. During
reconstruction, the fsck code can cause the loss of inodes because while it cor-
rectly applies these incremental modifications to its copy of the inode map,
it deliberately does not overwrite the out-of-date, on-disk inode map with its
correct reconstructed copy.

Figure 8 shows this bug, which has been in the JFS code since the initial
version of JFS fsck over three years ago. The implementors incorrectly believed
that if the file system was marked dirty, flushing the inode map was unnecessary
because it would be rebuilt later. While the fix is trivial (always flushing the
map), this bug was hard to find without a model checker; the JFS developers
believe they have been chasing manifestations of it for a while [Kleikamp 2004,
private communication]. After we submitted the bug report with all the file
system events (operations and sector writes), and choices made by the model
checker, a JFS developer was able to create a patch in a couple of days. This was
a good example of the fact that model checking improves on testing by being
more systematic, repeatable, and better controlled.

Other data loss bugs. A JFS journal that spans three or more sectors has
the following vulnerability. JFS stores a sequence number in both the first
and last sector of its journal but not in the middle sectors. After a crash,
JFS fsck checks that these sequence numbers match and, if so, replays the
journal. Without additional checking, inopportune sector reorderings can obvi-
ously lead to a corrupt journal, which will badly mutilate the file system when
replayed.

The XFS data loss bug is interesting because it can cause the root directory
to be corrupted even on a clean file system. By default, whenever the XFS repair
utility runs, it will remove the “lost+found” directory and recreate it. A crash
during the creation of “lost+found” can corrupt the root directory, effectively
vaporizing the entire file system. We reported the bug to XFS developers and
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they did not intend to fix it because they unrealistically assumed that no crash
could ever occur during recovery.

Both JFS and ext3 had a bug where a crashed file system’s superblock could
be falsely marked as “clean.” Thus, their fsck program would not repair the
system, potentially leading to data loss or a system crash.

The last data loss bug happened when JFS incorrectly stored a negative error
code as an inode number in a directory entry; this invalid entry would cause
any later fsck invocation to remove the directory.

8.2 Security Holes

While we did not target security, FiSC found five security holes, three of which
appear readily exploitable.

The easiest exploit we found was a storage leak in the JFS routine jfs link,
used to create hard links. It calls the routine get UCSname, which allocates up
to 255 bytes of memory. jfs link must (but does not) free this storage before
returning. This leak occurs each time jfs link is called, allowing a user to
trivially do a denial of service attack by repeatedly creating hard links. Even
ignoring malice, leaking storage on each hard link creation is generally bad.

The two other seemingly exploitable errors both occurred in ext2, and were
both caused by lookup routines that did not distinguish between lookups that
failed because (1) no entry existed, or (2) memory allocation failed. The first
bug allows an attacker to create files or directories with the same name as
a preexisting file or directory, hijacking all reads and writes intended for the
original file. The second allows a user to delete nonempty directories to which
they do not have write access.

In the first case, before creating a new directory entry, ext2 will call the
routine ext2 find entry to see if the entry already exists. If ext2 find entry
returns NULL, the directory entry is created, otherwise it returns an error code.
Unfortunately, in low memory conditions ext2 find entry can return NULL
even if the directory entry exists. As shown in Figure 9, the routine iterates over
all pages in a directory. If page allocation fails (ext2 get page returns NULL), it
will skip this directory worth of entries and go to the next. Under low memory,
ext2 get page will always fail, no entry will be checked, and ext2 find entry
will always return NULL. This allows a user with write access to the directory
to effectively create files and subdirectories with the same name as an existing
file, hijacking all reads and writes intended for the original file. One potential
exploit of this vulnerability is to steal other users’ identities by hijacking their
ssh-agent sockets created under the world-writable directory “/tmp”.

The second error was similar: ext2 rmdir calls the routine ext2 empty dir
to ensure that the target directory is empty. Unfortunately the return value of
ext2 empty dir is the same if either the directory has no entries, or if memory
allocation fails, allowing an attacker to delete nonempty directories when they
should not have permission to do so.

The remaining two errors occurred in ext3 and were identical to the ext2
bugs except that they were caused by disk read errors rather than low-memory
conditions.
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Fig. 9. Ext2 security hole in ext2 find entry.

8.3 Other Bugs

Kernel crashes. There were 12 bugs that caused the kernel to crash because of
a null pointer dereference. Most of these errors were due to improperly handled
allocation failures. There was one error in the VFS layer, one error in ReiserFS,
and 10 in JFS. The most interesting error was in JFS where fsck failed to
correctly repair a file system, but marked it as clean. A subsequent traversal
of the file system would panic the kernel.

Incorrect code. There were two cases where code just did the wrong thing.
For example, sys create creates a file on disk, but returns an error if a subse-
quent allocation fails. The application will think the file has not been created
when it has. This error was interesting since it was in very heavily tested code
in the VFS layer shared by all file systems.

Leaks. In addition to the leak mentioned above, the JFS routine jfs unmount
leaks memory on every unmount of a file system.

9. EXPERIENCE

This section describes some of our experiences with FiSC: its use during de-
velopment, sources of false positives and false negatives, and design lessons
learned.

9.1 FiSC-Assisted Development

We checked preexisting file systems, and so could not comprehensively study
how well model checking helps the development process. However, the respon-
siveness of the JFS developers allowed us to do a micro-case study of FiSC-
assisted software development by following the evolution of a series of mistaken
fixes:
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1. We found and reported two kernel panics in the JFS transaction abort
function txAbortCommit, when called by the transaction commit function
txCommit if memory allocation failed.

2. A few days later, the JFS developers sent a patch that removed
txAbortCommit entirely and made txCommit call txAbort instead.

3. We applied the patch and replayed the original model checking sequence
and verified that it fixed the two panics. However, when we ran full model
checking, we got segmentation faults in the VFS code within seconds. Ex-
amination revealed that the newly created inode was inserted into the VFS
directory entry cache before the transaction was committed. A failed commit
freed the inode and left a dangling pointer in the VFS directory entry cache.
We sent this report back to the JFS developers.

4. As before: a few days later, they replied with a second patch, we applied it, it
again fixed the specific error that occurred. We ran FiSC on the patched code
and found a new error, where fsck would complain that a parent directory
contained an invalid entry, and it would remove the parent directory entirely.
This was quite a bit worse than the original error.

5. This bug is still outstanding.

While there are many caveats that one must keep in mind, model checking
has some nice properties. First, it makes it trivial to verify whether the original
error is fixed. Second, it allows more comprehensive testing of patches than
appears to be done in commercial software houses. Third, it finds the corner-
case implications of seemingly local changes in seconds, and demonstrates that
they violate important consistency invariants.

9.2 False Positives

The false positives we found fell into two groups. Most were bugs in the model
checking harness or in our understanding of the underlying file system and
not in the checked code itself. The latter would hopefully be a minor problem
for file system implementors using our system (though it would be replaced by
problems arising from their imperfect understanding of the underlying model
checker). We have had to iteratively correct a series of slight misunderstandings
about the internals of each of the file systems we have checked.

The other group of false positives stemmed from implementors intentionally
ignoring or violating the properties we check. For example, ReiserFS causes a
kernel panic when disk read fails in certain circumstances. Fortunately, such
false positives are easily handled by disabling the check.

9.3 False Negatives

In the absence of proving total correctness, one can always check more things.
We are far from verification. We briefly describe what we believe are the largest
sources of missed errors.

Exploring thresholds. We do a poor job of triggering system behavior that
only occurs after crossing a threshold value. The most glaring example: be-
cause we only test a small number of files and directories (≤ 15) we miss bugs
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that happen when directories undergo reorganization or change representa-
tions only after they contain a “sufficient” number of entries. Real examples
include the rebalancing of directory tree structures in JFS or using a hashed
directory structure in ext3. With that said, FiSC does check a mixture of large
and small files (to get different inode representations) and file names or direc-
tories that span sector boundaries (for crash recovery).

Multi-threading support. The model checker is single-threaded both above
and below the system call interface. Above, because only a single user process
does file system operations. Below, because each state transition runs atom-
ically to completion. This means many interfering state modifications never
occur in the checked system. In particular, in terms of high-level errors, file
system operations never interleave and, consequently, neither do partially com-
pleted transactions (either in memory or on disk). We expect both to be a fruitful
source of bugs.

White-box model checking. FiSC can only flag errors that it sees. Because
it does not instrument code it can miss low-level errors, such as memory cor-
ruption, use of freed memory, or a race condition, unless they cause a crash or
invariant violation. Fortunately, because we model-check implementation code
we can simultaneously run dynamic tools on it.

Unchecked guarantees. File systems provide guarantees that are not han-
dled by our current framework. These include versioning, undelete operations,
disk quotas, access control list support, and journaling of data or, in fact, any
reasonable guarantees of data block contents across crashes. The latter is the
one we would most like to fix. Unfortunately, because of the lack of agreed-upon
guarantees for non-sync’d data across crashes we currently only check meta-
data consistency across crashes—data blocks that do not precede a “sync” point
can be corrupted and lost without complaint.

File systems are directed acyclic graphs, and often trees. Presumably
events (file system operations, failures, bad blocks) should have topological
independence—events on one subgraph should not affect any other disjoint
subgraph. Events should also have temporal independence in that creating
new files and directories should not harm old files and directories.

One way to broaden the invariants we check would be to infer FS-specific
knowledge using the techniques in Sivathanu et al. [2003].

Missed states. While our state hashing (Section 6.1) can potentially dis-
card too much detail, we do not currently discard enough of the right details,
possibly missing real errors. Using FS-specific knowledge opens up a host of ad-
ditional state optimizations. One profitable example would be if we knew which
interleavings of buffer cache blocks and fsck written blocks are independent
(e.g., those for different files). This would dramatically reduce the number of
permutations needed for checking the effects of a crash.

We have not aggressively verified statement coverage, so all file systems
almost certainly contain many unexercised statements.

9.4 Design Lessons

One hard lesson we learned was a sort of “Heisenberg” principle of checking:
make sure the inspection done by your checking code does not perturb the state
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of the checked system. Violating this principle leads to mysterious bugs. A brief
history of the code for traversing a mounted file system and building a model
drives this point home.

Initially, we extracted the VolatileFS by using a single block device that the
test driver first mutated and then traversed to create a model of the volatile file
system after the mutation. This design deadlocked when a file system operation
did a multi-sector write and the traversal code tried to read the file system after
only one of the sectors was written. The file system code responsible for the write
holds a lock on the file being written, a lock that the traversal code wants to
acquire but cannot. We removed this specific deadlock by copying the disk after
a test driver operation and then traversing this copy, essentially creating two
file systems. This hack worked until we started exploring larger file system
topologies, at which point we would deadlock again because the creation of
the second file system copy would use all available kernel memory, preventing
the traversal thread from being able to successfully complete. Our final hack to
solve this problem was to create a reserve memory pool for the traversal thread.

In retrospect, the right solution is to run two kernels side by side: one
dedicated to mutating the disk, the other to inspecting the mutated disk.
Such isolation would straightforwardly remove all perturbations to the checked
system.

A similar lesson is that the system being checked should be instrumented
instead of modified unless absolutely necessary. Code always contains hidden
assumptions, easily violated by changing code. For example, the kernel we
used had had its kernel memory allocators reimplemented in previous work
[Musuvathi and Engler 2004] as part of doing leak checking. While this
replacement worked fine in the original context of checking TCP, it caused the
checked file systems to crash. It turned out they were deliberately mangling
the address of the returned memory in ways that intimately depended on how
the original allocator (page alloc) worked. We promptly restored the original
kernel allocators.

10. RELATED WORK

In this section, we compare our approach to file system testing techniques,
file system verification, software model checking efforts and other generic bug
finding approaches.

File system testing tools. There are many file system testing frameworks
that use application interfaces to stress a “live” file system with an adversar-
ial environment. While these frameworks are less comprehensive than model
checking they require much less work than that required to jam an entire OS
into a model checker. We view testing as complementary to model checking—
there is no reason not to test a file system and then apply model checking (or
vice versa). It is almost always the case that two different but effective tools will
find different errors, irrespective of their theoretical strengths and weaknesses.

Recently, Prabhakaran et al. [2005] conducted a comprehensive study on
how file systems handle disk failures and corruptions. They developed a testing
framework that uses techniques from SDS [Sivathanu et al. 2003] to infer disk
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block types and then inject “type-aware” block failure and corruption into file
systems. This technique is more precise than random testing. However, the
errors found by this framework should be considered as missing features rather
than real errors. All file systems they check have explicitly made the design
choice not to handle block corruption. Ext2 and ext3 ignore almost all disk write
errors. We initially checked for disk-failure induced bugs but quickly stopped
since developers were reluctant to fix them, especially the ones triggered by
disk write failures. In terms of true errors, they mainly check for a subset of
the failures we check for—failed disk reads and writes—missing all recovery
bugs. Further their framework does not do any systematic exploration of states.

File system verification. Little work has been done on verifying file sys-
tem correctness. Arkoudas et al. [2004] proved the correctness of the read and
write operations for a rudimentary FS they implemented. While their work is
quite encouraging, the FS implementation they verified is orders of magnitude
simpler than a real file system. For example, their FS never addresses anything
regarding cache management and crash recovery. There is still a long way to go
before one can truly verify the full functional correctness of any practical file
system.

The main techniques behind journaling file systems were recently imported
from the database community to speed up file system reconstruction when disks
were getting large. There has been much work on proving the correctness of
database logging and recovery, including but not limited to Lomet and Tuttle
[1995, 2003]. Unlike databases, file systems provide drastically different, ex-
tremely underspecified guarantees, which makes it hardly possible to prove the
general correctness of file system journaling. The fundamental reason behind
this problem is that file systems do not need to provide guarantees as strong
as databases do, so FS implementors enjoy much more freedom in choosing
the durability contracts for their file systems. We believe this problem will not
disappear any time soon.

Software model checking. Model checkers have been previously used to
find errors in both the design and the implementation of software systems
[Holzmann 1997, 2001; Godefroid 1997; Brat et al. 2000; Corbett et al. 2000;
Ball and Rajamani 2001].

We compare our work to two model checkers that are the most similar to
our approach, both of which execute system implementation directly without
resorting to an intermediate description.

Verisoft [Godefroid 1997] is a software model checker that systematically
explores the interleavings of a concurrent C program. Unlike the CMC model
checker we use, Verisoft does not store states at checkpoints and thereby can po-
tentially explore a state more than once. Verisoft relies heavily on partial order
reduction techniques that identify (control and data) independent transitions to
reduce the interleavings explored. Determining such independent transitions
is extremely difficult in systems with tightly coupled threads sharing a large
amount of global data. As a result, Verisoft would not perform well for those
systems, including the Linux file systems checked in this article.

Java PathFinder [Brat et al. 2000] is very similar to CMC and systemati-
cally checks concurrent Java programs by checkpointing states. It relies on a
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specialized virtual machine that is tailored to automatically extract the current
state of a Java program. The techniques described in this article are applicable
to Java Pathfinder as well.

Generic bug finding. There has been much recent work on bug finding,
including both better type systems [DeLine and Fähndrich 2001; Foster et al.
2002; Flanagan and Freund 2000] and static analysis tools [Das et al. 2002; Ball
and Rajamani 2001; Coverity http://coverity.com; Bush et al. 2000; Engler et al.
2000; Flanagan et al. 2002]. Roughly speaking [Engler and Musuvathi 2004],
because static analysis can examine all paths and only needs to compile code
in order to check it, it is relatively better at finding errors in surface properties
visible in the source (“lock is paired with unlock”). In contrast, model checking
requires running code, which makes it much more strenuous to apply (days or
weeks instead of hours) and only lets it check executed paths. However, because
it executes code, it can more effectively check the properties implied by code. (For
example, that the log contains valid records, that fsckwill not delete directories
it should not.) Based on our experiences using static analysis, the most serious
errors in this article would be difficult to get with that approach. But, as with
testing, we view static analysis as complementary to model checking—it is
lightweight enough so that there is no reason not to apply it and then use
model checking.

11. CONCLUSION

This article has shown how model checking can find interesting errors in real
file systems. We found 33 serious errors, 11 of which resulted in the loss of
crucial metadata, including the file system root directory “/”. The majority of
these bugs have resulted in immediate patches.

Given how heavily-tested the file systems we model-checked were, and the
severity of the errors found, it appears that model checking works well in the
context of file systems. This was a relief—we have applied full system model-
checking in other contexts less successfully[Engler and Musuvathi 2004]. The
underlying reason for its effectiveness in this context seems to be because file
systems must do so many complex things right. The single worst source of
complexity is that they must be in a recoverable state in the face of crashes (e.g.,
power loss) at every single program point. We hope that model checking will
show similar effectiveness in other domains that must reason about a vast array
of failure cases, such as database recovery protocols, and optimized consensus
algorithms.
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