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FS Errors are Destructive

Kernel crash, FS corruption

Recovery code is error-prone
— Crash at any point, must recover

Hard to test

— Slow reboot, reconstruction
— many crash possibilities, hard to cover all



FiSC = File System Model Checker

Leverages CMC [OSDI 02, NSDI 04]
— Implementation-level Model Checker

Generic and FS-specific checks
Good at enumerating failures/crashes

32 Bugs on JFS, ReiserFS and ext3

— 10 unrecoverable losses of '/’, hard to get
with static analysis

— 3 security holes
— 30 confirmed and 21 fixed quickly



Outline

How FiSC works

Two consistency checks

How to plug a file system into FiSC
Checking crashes during recovery
Results



Idealized Checking Process %




Galactic View of FiSC
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Difference With Randomized Testing

Randomized testing = only one possible
execution

Our approach = guided search

— Systematic: enumerate through all actions
— Better controlled: choose what to explore
— Visibility: see all events

— Repeatable: bugs are replicable



Long-lived JFS fsck Bug Fixed in 2 Days

loss of an extent of inodes!
3 years old, ever since the first version!

Caused serious data-loss

— Dave Kleikamp (IBM JFS): “I'm sure this
has bitten us before, but it's usually hard
to go back and find out what causes the
file system to get messed up so bad”

Fixed in 2 days with our complete trace
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Checking FS Operations are Correct
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Abstract FS: model of a file system. Currently
tracks topology and file sizes. Can be extended

Reference model, run in parallel with the actual FS



Checking FS Operations are Correct
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Permuter: Write Schedules are Recoverable
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Permuter: Write Schedules are Recoverable

Current State Next State
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Stable FS: what FS should recover to after crash
FS-Specific, provided by FS developers




Permuter: Write Schedules are Recoverable
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Plugging an FS into FiSC

1. FS utilities: mkfs, fsck

2. Dirty buffers
— Not needed if using standard system mark_dirty

3. Minimum disk and memory sizes
— 2MB, 16 pages for ext3

4. Function to compute the Stable FS
— Stable FS: What FS should recover to, FS-specific

Roughly 1-2 weeks for us



Stable FS Trick for Journaling FS

Only log write can update the Stable FS
— Log write =» use fsck to compute Stable FS

— FS write =» fsck and abstract, compare
result to Stable FS

— FS writes cannot change Stable FS
Log write = commit + normal log write

— Only commit can update the Stable FS

— If easy to recognize commit, update Stable
FS on commit




Checking More Thoroughly

Downscale

— Small disks. 2MB for ext3

—Small memory. 16 pages for ext3
—Tiny FS topology. 2-4 nodes

Canonicalization

— General rule: setting things to constants:
e.g. inode generation #, mount count

N\ 77T N\ 7T \\_ /I

—_ F”enames. X ) y ) 7" == \\1"’ \\211’ \\3//



Exposing choice points

Choice point = can abstractly do
multiple actions, practically does one

Want to explore all actions

struct block™ read_block (int 1) { _
struct block *b: return twice,
if (b = cache_lookup(i))) 1s'time return O,
if (fisc_choose(2) ==0) == 2" time return 1
return b; _
return disk_read (i); It there are N
} possible actions,

call fisc_choose(N)
return 0, 1, ..., N-1



Scheduler is a Built-in Choice Point
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The Basic Check

Obtain a crashed disk image D
Run fsck, recording all writes

Simulate a crash during recovery

— Apply prefix to D
— Re-run fsck
— Compare to Stable FS

Repeat until all the prefixes are tried
Effective®©, Speed® (redundant crashes)



Assume: fsck is Deterministic

Same inputs =» same outputs
— Inputs = disk reads , outputs = writes

Is crash after a write redundant?

— A write doesn’t change prior reads =
2"d fsck computes the same write =
redundant crash, can be optimized away

More optimizations in paper
— Obvious: cache fsck results



Equivalent: Write But No Read

Schedule 1: Schedule 2:
read B1 read Bl

write B2 — write B2
crash & re-run
done read Bl

write B2, samel

Same!
done.

No read of B2 prior to write of B2



Equivalent: Dominated Write

Schedule 1: Schedule 2:
read Bl read Bl
write B2 write B2
erte B2 — erte B2
crash & re-run
done read Bl
write B2
2"d write of B2 is
dominated by 1st write B2, same!
write of B2 Samel

done



Results

Error Type | VFS | ext2 | ext3 | JFS | Reiser | total
Data loss N/A | N/A 1 8 1 10
False clean | N/A | N/A 1 1 2
Security 2 2 1 342
Crashes 1 10 1 12
Other 1 1 1 3
Total 2 2 5 21 2 32

32 in total, 21 fixed, 9 of the remaining 11
confirmed




Recovery Write Ordering Bugs

Under Normal operation:

— Changes must first be flushed to log before
they can reach the actual FS

All FS seem to get this right

During Recovery:

— Changes must first be flushed to the actual
FS before the log can be cleared

Found this type of bug in all FS, total 5



ext3 Recovery Bug

recover ext3 journal(...) {
/... /\.J‘\m}mal_recover(...) {
retval = -journal_reCover(journal) | // replay the journal

/... /...
// clear the journal // sync modifications to disk
e2fsck journal release(...) fsync_ng super(...)
/... }
} /

// Error! Empty macro, doesn’t sync data! /
#define fsync_no_super(dev) do {} while (0)

Code was directly adapted from the kernel
But, fsync_no_super was defined as NOP !



Conclusion

FISC, a FS model checker

— On average 1-2 weeks to plug in an FS
— Checked JFS, ReiserFS and ext3

— Serious data-loss bugs in all, 10 in total
Model Checking worked well

— Can crash everywhere. Must always be recoverable.
— Systematic

Future work: anything that must handle failure
correctly, always

— Raid, databases, consensus algorithms...




