Using Model Checking to Find Serious
File System Errors

Junfeng Yang, Paul Twohey, Dawson Engler
Stanford University

Madanlal Musuvathi
Microsoft Research

Authors

FS Errors are Destructive

Kernel crash, FS corruption

Recovery code is error-prone
— Crash at any point, must recover

Hard to test

— Slow reboot, reconstruction
— many crash possibilities, hard to cover all

FiSC = File System Model Checker

Leverages CMC [OSDI 02, NSDI 04]
— Implementation-level Model Checker

Generic and FS-specific checks
Good at enumerating failures/crashes

32 Bugs on JFS, ReiserFS and ext3

— 10 unrecoverable losses of '/’, hard to get
with static analysis

— 3 security holes
— 30 confirmed and 21 fixed quickly

Outline

How FiSC works

Two consistency checks

How to plug a file system into FiSC
Checking crashes during recovery
Results

Idealized Checking Process %

Galactic View of FiSC

Test Driver
]:[FS operations

ext3 fsck

1:[Disk riw |
libc r/iw

FISC | < >>libc interceptor

XNUul7 SPON 18SN
)
Y,

The Checking Loop

SN——

fileO

I’?Ot

_—

\

G

State

drop

Err!

schedu
ough a

}1‘” ggta@i@é
segst

shat@lsegst@m opere

:

checkers

/

fileO dirl

gg kernel
threads

_l

~ Ccreate
P9

= mkdir &

/]
er will _ _
disk writes
~ - 4

tiong ot

permuter

@ Err!

Willtalk about permuter later...

Difference With Randomized Testing

Randomized testing = only one possible
execution

Our approach = guided search

— Systematic: enumerate through all actions
— Better controlled: choose what to explore
— Visibility: see all events

— Repeatable: bugs are replicable

Long-lived JFS fsck Bug Fixed in 2 Days

loss of an extent of inodes!
3 years old, ever since the first version!

Caused serious data-loss

— Dave Kleikamp (IBM JFS): “I'm sure this
has bitten us before, but it's usually hard
to go back and find out what causes the
file system to get messed up so bad”

Fixed in 2 days with our complete trace

Outline

How FiSC works

Two consistency checks

How to plug a file system into FiSC
Checking crashes during recovery
Results

Checking FS Operations are Correct

Current State Next State
® [Abstract FS\ abstract_mkdir [Abstract FS\
o
7] root | S root
D / RN
=\ file0 _file0 dirl
3 @[block J Iactual_mkd£ [lldirtyJ
S cache blocks

Abstract FS: model of a file system. Currently
tracks topology and file sizes. Can be extended

Reference model, run in parallel with the actual FS

Checking FS Operations are Correct

Next State
[Actual FS\ 5 [Abstract FS\ o)
root ks root g
RN — N Q
_fileO dirlj _fileO dirlj —

\

abstract = marsha Jint g
actual FS, record the ‘3, [.. Ir yJ =
‘ blocks)| &

topology and file sizes,
throw away details

Generic, implemented by FiSC

Permuter: Write Schedules are Recoverable

>
fileO

state)

gg kernel
threads

_l

-Create Q

g

~ mkdir c_<g
)

gqueue /ﬁl disk writes
_ > 4

State seen?

9{ permuter

@ Err!

drop } checkers / fileO dirl
Err

Permuter: Write Schedules are Recoverable

Current State Next State
[Stable FS\ [Stable FS\
root root

/ /
_ fileO) _ fileO)

kdi
@[block J —_— [ll dirtYJ
cache blocks

Stable FS: what FS should recover to after crash
FS-Specific, provided by FS developers

Permuter: Write Schedules are Recoverable

O = fsck writes

Recovered
root

pEmeute

-~

Next State

4 Stable FS\

root
/

_ file0

[ll dirty}
blocks

Outline

How FiSC works

Two consistency checks

How to plug a file system into FiSC
Checking crashes during recovery
Results

Plugging an FS into FiSC

1. FS utilities: mkfs, fsck

2. Dirty buffers
— Not needed if using standard system mark_dirty

3. Minimum disk and memory sizes
— 2MB, 16 pages for ext3

4. Function to compute the Stable FS
— Stable FS: What FS should recover to, FS-specific

Roughly 1-2 weeks for us

Stable FS Trick for Journaling FS

Only log write can update the Stable FS
— Log write =» use fsck to compute Stable FS

— FS write =» fsck and abstract, compare
result to Stable FS

— FS writes cannot change Stable FS
Log write = commit + normal log write

— Only commit can update the Stable FS

— If easy to recognize commit, update Stable
FS on commit

Checking More Thoroughly

Downscale

— Small disks. 2MB for ext3

—Small memory. 16 pages for ext3
—Tiny FS topology. 2-4 nodes

Canonicalization

— General rule: setting things to constants:
e.g. inode generation #, mount count

N\ 77T N\ 7T _ /I

—_ F”enames. X) y) 7" == \\1"’ \\211’ \\3//

Exposing choice points

Choice point = can abstractly do
multiple actions, practically does one

Want to explore all actions

struct block™ read_block (int 1) { _
struct block *b: return twice,
if (b = cache_lookup(i))) 1s'time return O,
if (fisc_choose(2) ==0) == 2" time return 1
return b; _
return disk_read (i); It there are N
} possible actions,

call fisc_choose(N)
return 0, 1, ..., N-1

Scheduler is a Built-in Choice Point

gg kernel
threads

r?ot | _|
- Create
_fileO _ PO
~___ _ =,
= mkdir 3
state :
UEUE s and F B E disk writes
AR essble [actions]

througih all of themf
Ve checkers
Err!

fileO dirl

Outline

How FiSC works

Two consistency checks

How to plug a file system into FiSC
Checking crashes during recovery
Results

The Basic Check

Obtain a crashed disk image D
Run fsck, recording all writes

Simulate a crash during recovery

— Apply prefix to D
— Re-run fsck
— Compare to Stable FS

Repeat until all the prefixes are tried
Effective®©, Speed® (redundant crashes)

Assume: fsck is Deterministic

Same inputs =» same outputs
— Inputs = disk reads , outputs = writes

Is crash after a write redundant?

— A write doesn’t change prior reads =
2"d fsck computes the same write =
redundant crash, can be optimized away

More optimizations in paper
— Obvious: cache fsck results

Equivalent: Write But No Read

Schedule 1: Schedule 2:
read B1 read Bl

write B2 — write B2
crash & re-run
done read Bl

write B2, samel

Same!
done.

No read of B2 prior to write of B2

Equivalent: Dominated Write

Schedule 1: Schedule 2:
read Bl read Bl
write B2 write B2
erte B2 — erte B2
crash & re-run
done read Bl
write B2
2"d write of B2 is
dominated by 1st write B2, same!
write of B2 Samel

done

Results

Error Type | VFS | ext2 | ext3 | JFS | Reiser | total
Data loss N/A | N/A 1 8 1 10
False clean | N/A | N/A 1 1 2
Security 2 2 1 342
Crashes 1 10 1 12
Other 1 1 1 3
Total 2 2 5 21 2 32

32 in total, 21 fixed, 9 of the remaining 11
confirmed

Recovery Write Ordering Bugs

Under Normal operation:

— Changes must first be flushed to log before
they can reach the actual FS

All FS seem to get this right

During Recovery:

— Changes must first be flushed to the actual
FS before the log can be cleared

Found this type of bug in all FS, total 5

ext3 Recovery Bug

recover ext3 journal(...) {
/... /\.J‘\m}mal_recover(...) {
retval = -journal_reCover(journal) | // replay the journal

/... /...
// clear the journal // sync modifications to disk
e2fsck journal release(...) fsync_ng super(...)
/... }
} /

// Error! Empty macro, doesn’t sync data! /
#define fsync_no_super(dev) do {} while (0)

Code was directly adapted from the kernel
But, fsync_no_super was defined as NOP !

Conclusion

FISC, a FS model checker

— On average 1-2 weeks to plug in an FS
— Checked JFS, ReiserFS and ext3

— Serious data-loss bugs in all, 10 in total
Model Checking worked well

— Can crash everywhere. Must always be recoverable.
— Systematic

Future work: anything that must handle failure
correctly, always

— Raid, databases, consensus algorithms...

