
Using Model Checking to Find Serious
File System Errors

Junfeng Yang, Paul Twohey, Dawson Engler

Stanford University

Madanlal Musuvathi

Microsoft Research

Authors

Junfeng Paul

Dawson

Madan

FS Errors are Destructive

• Kernel crash, FS corruption

• Recovery code is error-prone

– Crash at any point, must recover

• Hard to test

– Slow reboot, reconstruction

– many crash possibilities, hard to cover all

FiSC = File System Model Checker

• Leverages CMC [OSDI 02, NSDI 04]
– Implementation-level Model Checker

• Generic and FS-specific checks

• Good at enumerating failures/crashes

• 32 Bugs on JFS, ReiserFS and ext3
– 10 unrecoverable losses of ‘/’, hard to get

with static analysis

– 3 security holes

– 30 confirmed and 21 fixed quickly

Outline

• How FiSC works

• Two consistency checks

• How to plug a file system into FiSC

• Checking crashes during recovery

• Results

Idealized Checking Process

mkdir

root

file0

root
root

dir0

…

Galactic View of FiSC

Test Driver

Disk r/w

FS operations

fsck

libc interceptor

libc r/w

ext3

FiSC

Disks

U
s
e
r M

o
d
e
 L

in
u
x

CMC

root

file0

root

file0 dir1

scheduler

kernel

threads

create

mkdir

…

The Checking Loop

checkers

state seen? permuter

drop

state

queue disk writes

Will talk about permuter later…

T
e
s
t D

rive
r

Err!
Err!

Our modified scheduler will

enumerate through all kernel threads

and file system operations

Difference With Randomized Testing

• Randomized testing = only one possible
execution

• Our approach = guided search

– Systematic: enumerate through all actions

– Better controlled: choose what to explore

– Visibility: see all events

– Repeatable: bugs are replicable

• loss of an extent of inodes!

• 3 years old, ever since the first version!

• Caused serious data-loss

– Dave Kleikamp (IBM JFS): “I'm sure this
has bitten us before, but it's usually hard
to go back and find out what causes the
file system to get messed up so bad”

• Fixed in 2 days with our complete trace

Long-lived JFS fsck Bug Fixed in 2 Days

Outline

• How FiSC works

• Two consistency checks

• How to plug a file system into FiSC

• Checking crashes during recovery

• Results

Checking FS Operations are Correct

root

file0 dir1

Abstract FS

Current State

root

file0

Abstract FS

 block

 cache

Next State

dirty

blocks

actual_mkdir

• Abstract FS: model of a file system. Currently
tracks topology and file sizes. Can be extended

• Reference model, run in parallel with the actual FS

abstract_mkdir a
b
s
tra

c
t

a
c
tu

a
l

Checking FS Operations are Correct

root

file0 dir1

Abstract FS

Next State

dirty

blocks

• Generic, implemented by FiSC

root

file0 dir1

Actual FS

=

a
b
s
tra

c
t

a
c
tu

a
l

abstract = marshal the
actual FS, record the
topology and file sizes,
throw away details

?

root

file0

root

file0 dir1

scheduler

kernel

threads

create

mkdir

…

checkers

state seen? permuter

drop

state

queue disk writes

T
e
s
t D

rive
r

Err!
Err!

Permuter: Write Schedules are Recoverable

Permuter: Write Schedules are Recoverable

• Stable FS: what FS should recover to after crash

• FS-Specific, provided by FS developers

Current State

root

file0

Stable FS

 block

 cache

Next State

dirty

 blocks

root

file0

Stable FS

mkdir

Permuter: Write Schedules are Recoverable

Next State

dirty

blocks

root

file0

Stable FS
root

file0

Recovered

permute clone = fsck writes

=
?

Outline

• How FiSC works

• Two consistency checks

• How to plug a file system into FiSC

• Checking crashes during recovery

• Results

Plugging an FS into FiSC

1. FS utilities: mkfs, fsck

2. Dirty buffers
– Not needed if using standard system mark_dirty

3. Minimum disk and memory sizes
– 2MB, 16 pages for ext3

4. Function to compute the Stable FS
– Stable FS: What FS should recover to, FS-specific

..

• Roughly 1-2 weeks for us

Stable FS Trick for Journaling FS

• Only log write can update the Stable FS

– Log write  use fsck to compute Stable FS

– FS write  fsck and abstract, compare

result to Stable FS

– FS writes cannot change Stable FS

• Log write = commit + normal log write

– Only commit can update the Stable FS

– If easy to recognize commit, update Stable
FS on commit

Checking More Thoroughly

• Downscale

– Small disks. 2MB for ext3

– Small memory. 16 pages for ext3

– Tiny FS topology. 2-4 nodes

• Canonicalization

– General rule: setting things to constants:
e.g. inode generation #, mount count

– Filenames. “x”, “y”, “z” == “1”, “2”, “3”

Exposing choice points

• Choice point = can abstractly do
multiple actions, practically does one

• Want to explore all actions

struct block* read_block (int i) {

 struct block *b;

 if ((b = cache_lookup(i)))

 return b;

 return disk_read (i);

}

 if (fisc_choose(2) == 0)

return twice,

1st time return 0,

2nd time return 1

if there are N

possible actions,

call fisc_choose(N)

return 0, 1, …, N-1

root

file0

root

file0 dir1

scheduler

kernel

threads

create

mkdir

…

Scheduler is a Built-in Choice Point

checkers

state seen? permuter

drop

state

queue disk writes

T
e
s
t D

rive
r

Err!
Err!

Kernel threads and FS operations

are possible actions. Enumerate

through all of them.

Outline

• How FiSC works

• Two consistency checks

• How to plug a file system into FiSC

• Checking crashes during recovery

• Results

The Basic Check

• Obtain a crashed disk image D

• Run fsck, recording all writes

• Simulate a crash during recovery
– Apply prefix to D

– Re-run fsck

– Compare to Stable FS

• Repeat until all the prefixes are tried

• Effective, Speed (redundant crashes)

Assume: fsck is Deterministic

• Same inputs  same outputs

– Inputs = disk reads , outputs = writes

• Is crash after a write redundant?

– A write doesn’t change prior reads 
2nd fsck computes the same write 

redundant crash, can be optimized away

• More optimizations in paper

– Obvious: cache fsck results

Equivalent: Write But No Read

read B1

write B2

read B1

write B2

crash & re-run …

read B1

write B2, same!

…
Same!

• No read of B2 prior to write of B2

Schedule 1: Schedule 2:

=
done

done.

Equivalent: Dominated Write

read B1

write B2

write B2

…

read B1

write B2

crash & re-run

write B2

read B1

write B2

…
Same!

• 2nd write of B2 is
dominated by 1st
write of B2

… …

…

=

write B2, same!

Schedule 1: Schedule 2:

done

done

Results

Error Type VFS ext2 ext3 JFS Reiser total

Data loss N/A N/A 1 8 1 10

False clean N/A N/A 1 1 2

Security 2 2 1 3 + 2

Crashes 1 10 1 12

Other 1 1 1 3

Total 2 2 5 21 2 32

32 in total, 21 fixed, 9 of the remaining 11
confirmed

Recovery Write Ordering Bugs

• Under Normal operation:

– Changes must first be flushed to log before
they can reach the actual FS

• All FS seem to get this right

• During Recovery:

– Changes must first be flushed to the actual
FS before the log can be cleared

• Found this type of bug in all FS, total 5

ext3 Recovery Bug

recover_ext3_journal(…) {

 // …

 retval = -journal_recover(journal)

 // …

 // clear the journal

 e2fsck_journal_release(…)

 // …

}

journal_recover(…) {

 // replay the journal

 //…

 // sync modifications to disk

 fsync_no_super (…)

}

• Code was directly adapted from the kernel

• But, fsync_no_super was defined as NOP !

// Error! Empty macro, doesn’t sync data!

#define fsync_no_super(dev) do {} while (0)

Conclusion

• FiSC, a FS model checker

– On average 1-2 weeks to plug in an FS

– Checked JFS, ReiserFS and ext3

– Serious data-loss bugs in all, 10 in total

• Model Checking worked well

– Can crash everywhere. Must always be recoverable.

– Systematic

• Future work: anything that must handle failure
correctly, always

– Raid, databases, consensus algorithms…

