
EXPLODE: a Lightweight, General System
for Finding Serious Storage System Errors

Junfeng Yang, Can Sar, Dawson Engler
Stanford University

Why check storage systems?

 Storage system errors are among the worst
 kernel panic, data loss and corruption

 Complicated code, hard to get right
 Simultaneously worry about speed, failures and crashes

 Hard to comprehensively test for failures, crashes

Goal: comprehensively check many storage
systems with little work

EXPLODE summary

 Comprehensive: uses ideas from model checking

 Fast, easy
 Check new storage system: 200 lines of C++ code
 Port to new OS: 1 device driver + optional instrumentation

 General, real: check live systems.
 Can run (on Linux, BSD), can check, even w/o source code

 Effective

 checked 10 Linux FS, 3 version control software, Berkeley
DB, Linux RAID, NFS, VMware GSX 3.2/Linux

 Bugs in all, 36 in total, mostly data loss

 Subsumes our old work FiSC [OSDI 2004]

Checking complicated stacks

 All real

 Stack of storage
systems
 subversion: an

open-source
version control
software

 User-written
checker on top

 Recovery tools run
after EXPLODE-
simulated crashes

subversion

checker

NFS client

NFS server

loopback

JFS

software

RAID1

checking

disk

subversion

checking

disk

%fsck.jfs

%mdadm --assemble

 --run

 --force

 --update=resync

%mdadm -a

crash

disk

%svnadm.recover

crash

disk

ok?

crash

Outline

 Core idea

 Checking interface

 Implementation

 Results

 Related work, conclusion and future work

Core idea: explore all choices

 Bugs are often triggered by corner cases

 How to find: drive execution down to these
tricky corner cases

When execution reaches a point in program that can do
one of N different actions, fork execution and in first
child do first action, in second do second, etc.

External choices

/root

b a

c

unlink

…

…

 Fork and do every possible operation

Explore generated
states as well

Speed hack: hash states, discard if seen

Users write code to
check FS valid.
EXPLODE “amplifies”
the check

Internal choices

/root

b a

c

Buffer cache misses

kmalloc returns NULL

 Fork and explore all internal choices

How to expose choices

 To explore N-choice point, users instrument
code using choose(N)

 choose(N): N-way fork, return K in K’th kid

 We instrumented 7 kernel functions in Linux

void* kmalloc(size s) {
 if(choose(2) == 0)

 return NULL;
 … // normal memory allocation

}

Crashes

/root

b a

c

 Dirty blocks can be written in any order, crash
at any point

Write all
subsets

fsck

fsck

fsck

buffer
cache

check

check

check

Users write code to
check recovered FS

Outline

 Core idea: explore all choices

 Checking interface

 What EXPLODE provides

 What users do to check their storage system

 Implementation

 Results

 Related work, conclusion and future work

What EXPLODE provides

 choose(N): conceptual N-way fork, return K in
K’th child execution

 check_crash_now(): check all crashes that
can happen at the current moment
 Paper talks about more ways for checking crashes

 Users embed non-crash checks in their code.
EXPLODE amplifies them

 error(): record trace for deterministic replay

 Example: ext3 on RAID

 checker: drive ext3 to do something: mutate(),
then verify what ext3 did was correct: check()

 storage component: set up, repair and tear down
ext3, RAID. Write once per system

 assemble a checking stack

What users do

Ext3

Raid

RAM Disk RAM Disk

FS checker

 FS Checker
 mutate

 ext3
Component

 Stack

choose(4)

mkdir rmdir rm file creat file

…/0 2 3 4 1 …/0 2 3 4 1 sync fsync

 FS Checker
 check

 ext3
Component

 Stack

Check file exists

Check file
contents match

Found JFS fsync bug, caused by re-
using directory inode as file inode

Checkers can be simple (50 lines) or
very complex(5,000 lines)

Whatever you can express in C++, you
can check

 FS Checker

 ext3
Component

 Stack

 storage component: initialize,
repair, set up, and tear down your
system
 Mostly wrappers to existing utilities.

“mkfs”, “fsck”, “mount”, “umount”

 threads(): returns list of kernel
thread IDs for deterministic error
replay

 Write once per system, reuse to
form stacks

 Real code on next slide

 FS Checker

 ext3
Component

 Stack

Ext3

Raid

RAM Disk RAM Disk

 FS Checker

 ext3
Component

 Stack

 assemble a checking stack

 Let EXPLODE know how
subsystems are connected
together, so it can initialize, set
up, tear down, and repair the
entire stack

 Real code on next slide

Ext3

Raid

RAM Disk RAM Disk

 FS Checker

 ext3
Component

 Stack

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check a system

 Implementation
 Checkpoint and restore states
 Deterministic replay
 Checking process
 Checking crashes
 Checking “soft” application crashes

 Results

 Related work, conclusion and future work

Recall: core idea

 “Fork” at decision point to explore all choices

state: a snapshot of
the checked system

…

How to checkpoint live system?

S0

S

…

 Hard to checkpoint live
kernel memory
 VM checkpoint heavy-weight

 checkpoint: record all

choose() returns from S0

 restore: umount, restore
S0, re-run code, make K’th
choose() return K’th
recorded values

 Key to EXPLODE approach

2

3

S = S0 + redo choices (2, 3)

Deterministic replay

 Need it to recreate states, diagnose bugs

Sources of non-determinism

 Kernel choose() can be called by other code
 Fix: filter by thread IDs. No choose() in interrupt

 Kernel scheduler can schedule any thread
 Opportunistic hack: setting priorities. Worked well

 Can’t use lock: deadlock. A holds lock, then yield to B

 Other requirements in paper

 Worst case: non-repeatable error. Automatic
detect and ignore

EXPLODE: put it all together

EXPLODE Runtime

M
o

d
ifie

d
 L

in
u

x

K
e

rn
e

l

Model

Checking

Loop
C

h
e

c
k
in

g
 S

ta
c
k

FS Checker

Ext3 Component

Raid Component

Ext3

Raid

EKM

RAM Disk RAM Disk

void*

kmalloc (size_t s, int fl) {

 if(fl & __GFP_NOFAIL)

 if(choose(2) == 0)

 return NULL;

 ….
B

u
ffe

r

C
a

c
h

e?

?

Hardware

EXPLODE User code EKM = EXPLODE
device driver

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check a
system

 Implementation

 Results
 Lines of code
 Errors found

 Related work, conclusion and future work

EXPLODE core lines of code

3 kernels: Linux 2.6.11, 2.6.15, FreeBSD 6.0.
FreeBSD patch doesn’t have all functionality yet

Lines of code

Kernel patch

Linux 1,915 (+ 2,194 generated)

FreeBSD 1,210

User-level code 6,323

Checkers lines of code, errors found

Storage System Checked Component Checker Bugs

10 file systems 744/10 5,477 18

Storage

applications

CVS 27 68 1

Subversion 31 69 1

“EXPENSIVE” 30 124 3

Berkeley DB 82 202 6

Transparent

subsystems

RAID 144 FS + 137 2

NFS 34 FS 4

VMware

GSX/Linux
54 FS 1

Total 1,115 6,008 36

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check
new storage system

 Implementation

 Results
 Lines of code
 Errors found

 Related work, conclusion and future work

FS Sync checking results

App rely on sync operations, yet they are broken

indicates a failed check

ext2 fsync bug

Mem

Disk

A

B

A
truncate A

creat B

write B

fsync B …

…

B

Events to trigger bug

fsck.ext2

Bug is fundamental due to ext2 asynchrony

crash!

B

Indirect block

Classic app mistake: “atomic” rename

 All three version control app. made this mistake

 Atomically update file A to avoid corruption

 Problem: rename guarantees nothing abt. Data

fd = creat(A_tmp, …);
write(fd, …);

close(fd);
rename(A_tmp, A);

fsync(fd); // missing!

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check a
system

 Implementation

 Results: checked many systems, found many
bugs

 Related work, conclusion and future work

Related work

 FS testing
 IRON

 Static analysis
 Traditional software model checking

 Theorem proving

 Other techniques

Conclusion and future work

 EXPLODE
 Easy: need 1 device driver. simple user interface
 General: can run, can check, without source
 Effective: checked many systems, 36 bugs

 Future work:

 Work closely with storage system implementers to
check more systems and more properties

 Smart search
 Automatic diagnosis
 Automatically inferring “choice points”
 Approach is general, applicable to distributed

systems, secure systems, …

