
EXPLODE: a Lightweight, General System 
for Finding Serious Storage System Errors 

Junfeng Yang, Can Sar, Dawson Engler 
Stanford University 

 



Why check storage systems? 

  Storage system errors are among the worst 
 kernel panic, data loss and corruption 

 

 Complicated code, hard to get right 
 Simultaneously worry about speed, failures and crashes 

 

 Hard to comprehensively test for failures, crashes 

Goal: comprehensively check many storage 
systems with little work 



EXPLODE summary 

 Comprehensive: uses ideas from model checking 
 

 Fast, easy 
 Check new storage system: 200 lines of C++ code 
 Port to new OS: 1 device driver + optional instrumentation 

 

 General, real: check live systems.  
 Can run (on Linux, BSD), can check, even w/o source code 

 
 Effective 

 checked 10 Linux FS, 3 version control software, Berkeley 
DB, Linux RAID, NFS, VMware GSX 3.2/Linux 

 Bugs in all, 36 in total, mostly data loss 
 

 Subsumes our old work FiSC [OSDI 2004] 



Checking complicated stacks 

 All real 
 

 Stack of storage 
systems 
 subversion: an 

open-source 
version control 
software 
 

 User-written 
checker on top 
 

 Recovery tools run 
after EXPLODE-
simulated crashes  
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 Core idea 
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Core idea: explore all choices 

 Bugs are often triggered by corner cases 
 

 How to find: drive execution down to these 
tricky corner cases 

 

 

 

 

When execution reaches a point in program that can do  
one of N different actions, fork execution and in first  
child do first action, in second do second, etc. 



External choices 

/root 

b a 

c 

unlink 

… 

… 

 Fork and do every possible operation 

Explore generated 
states as well 

Speed hack:  hash states, discard if seen 

Users write code to 
check FS valid. 
EXPLODE “amplifies” 
the check 



Internal choices 

/root 

b a 

c 

Buffer cache misses 

kmalloc returns NULL 

 Fork and explore all internal choices 



How to expose choices 

 To explore N-choice point, users instrument 
code using choose(N) 

 

 choose(N): N-way fork, return K in K’th kid 
 

 

 

 

 

 

 We instrumented 7 kernel functions in Linux 

void* kmalloc(size s) { 
  if(choose(2) == 0) 

     return NULL; 
  …  // normal memory allocation 

} 



Crashes 

/root 

b a 

c 

 Dirty blocks can be written in any order, crash 
at any point 

Write all 
subsets 
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Users write code to 
check recovered FS 



Outline 

 Core idea: explore all choices 
 

 Checking interface 

 What EXPLODE provides 

 What users do to check their storage system 

 
 Implementation 

 
 Results 

 
 Related work, conclusion and future work 



What EXPLODE provides 

 choose(N): conceptual N-way fork, return K in 
K’th child execution 

 

 check_crash_now(): check all crashes that 
can happen at the current moment 
 Paper talks about more ways for checking crashes 

 Users embed non-crash checks in their code.  
EXPLODE amplifies them 

 

 error(): record trace for deterministic replay 



 Example: ext3 on RAID 

 

 

 

 checker: drive ext3 to do something: mutate(), 
then verify what ext3 did was correct: check() 

 

 storage component: set up, repair and tear down 
ext3, RAID.  Write once per system 

 

 assemble a checking stack 

 

What users do 

Ext3

Raid

RAM Disk RAM Disk

FS checker



 FS Checker  
 mutate 

 

 ext3 
Component 

 

 

 Stack 

choose(4) 

mkdir rmdir rm file creat file 

…/0 2 3 4 1 …/0 2 3 4 1 sync fsync 



 FS Checker  
 check 

 

 ext3 
Component 

 

 

 Stack 

Check file exists 

Check file 
contents match 

Found JFS fsync bug, caused by re-
using directory inode as file inode 

Checkers can be simple (50 lines) or 
very complex(5,000 lines) 
 
Whatever you can express in C++, you 
can check 



 FS Checker 
 

 

 ext3 
Component 

 

 

 Stack 

 storage component: initialize, 
repair, set up, and tear down your 
system 
 Mostly wrappers to existing utilities. 

“mkfs”, “fsck”, “mount”, “umount” 

 threads(): returns list of kernel 
thread IDs for deterministic error 
replay 

 

 Write once per system, reuse to 
form stacks 

 

 Real code on next slide 



 FS Checker 
 

 

 ext3 
Component 

 

 

 Stack 



Ext3

Raid

RAM Disk RAM Disk

 FS Checker 
  

 

 ext3 
Component 

 

 

 Stack 

 assemble a checking stack 

 

 Let EXPLODE know how 
subsystems are connected 
together, so it can initialize, set 
up, tear down, and repair the 
entire stack  

 

 Real code on next slide 
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Outline 

 Core idea: explore all choices 
 

 Checking interface: 200 lines of C++ to check a system 
 

 Implementation 
 Checkpoint and restore states 
 Deterministic replay 
 Checking process 
 Checking crashes 
 Checking “soft” application crashes 

 
 Results 

 
 Related work, conclusion and future work 



Recall: core idea 

 “Fork” at decision point to explore all choices 

state: a snapshot of 
the checked system 

…
 



How to checkpoint live system? 

S0 

S 

…
 

 Hard to checkpoint live 
kernel memory 
 VM checkpoint heavy-weight 

 
 checkpoint: record all 

choose() returns from S0 
 

 restore: umount, restore 
S0, re-run code, make K’th 
choose() return K’th 
recorded values 
 

 Key to EXPLODE approach 
 

2 

3 

S = S0 + redo choices (2, 3) 



Deterministic replay 

 Need it to recreate states, diagnose bugs 

 

Sources of non-determinism 

 Kernel choose() can be called by other code 
 Fix: filter by thread IDs.   No choose() in interrupt 

 Kernel scheduler can schedule any thread 
 Opportunistic hack: setting priorities.  Worked well 

 Can’t use lock: deadlock.  A holds lock, then yield to B 

 Other requirements in paper 

 

 Worst case:  non-repeatable error.  Automatic 
detect and ignore 



EXPLODE: put it all together 

EXPLODE Runtime
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 Core idea: explore all choices 
 

 Checking interface: 200 lines of C++ to check a 
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EXPLODE core lines of code 

3 kernels: Linux 2.6.11, 2.6.15, FreeBSD 6.0. 
FreeBSD patch doesn’t have all functionality yet 

Lines of code 

Kernel patch 

Linux  1,915 (+ 2,194 generated) 

FreeBSD 1,210 

User-level code 6,323 



Checkers lines of code, errors found 

Storage System Checked Component Checker Bugs 

10 file systems 744/10 5,477 18 

Storage 

applications 

CVS 27 68 1 

Subversion 31 69 1 

“EXPENSIVE” 30 124 3 

Berkeley DB 82 202 6 

Transparent 

subsystems 

RAID 144 FS + 137 2 

NFS 34 FS 4 

VMware 

GSX/Linux 
54 FS 1 

Total 1,115 6,008 36 



Outline 

 Core idea: explore all choices 
 

 Checking interface: 200 lines of C++ to check 
new storage system 
 

 Implementation 
 

 Results 
 Lines of code 
 Errors found 

 
 Related work, conclusion and future work 



FS Sync checking results 

App rely on sync operations, yet they are broken 

indicates a failed check 



ext2 fsync bug 

Mem 

Disk 

A 

B 

A 
truncate A 

creat B 

write B 

fsync B …
 

…
 

B 

Events to trigger bug 

fsck.ext2 

Bug is fundamental due to ext2 asynchrony 

crash! 

B 

Indirect block 



Classic app mistake: “atomic” rename 

 All three version control app. made this mistake 

 

 Atomically update file A to avoid corruption 

 

 

 

 

 

 Problem: rename guarantees nothing abt. Data 

 

 

fd = creat(A_tmp, …); 
write(fd, …); 
 
close(fd); 
rename(A_tmp, A); 

fsync(fd); // missing! 



Outline 

 Core idea: explore all choices 
 

 Checking interface: 200 lines of C++ to check a 
system 
 

 Implementation 
 

 Results: checked many systems, found many 
bugs 
 

 Related work, conclusion and future work 



Related work 

 FS testing 
 IRON 

 

 Static analysis 
 Traditional software model checking 

 Theorem proving 

 Other techniques 



Conclusion and future work 

 EXPLODE 
 Easy: need 1 device driver.  simple user interface 
 General: can run, can check, without source 
 Effective: checked many systems, 36 bugs 

 
 Future work: 

 Work closely with storage system implementers to 
check more systems and more properties 

 Smart search 
 Automatic diagnosis 
 Automatically inferring “choice points” 
 Approach is general, applicable to distributed 

systems, secure systems, … 
 


