EXPLODE: a Lightweight, General System
for Finding Serious Storage System Errors

Junfeng Yang, Can Sar, Dawson Engler
Stanford University

Why check storage systems?

0 Storage system errors are among the worst
« kernel panic, data loss and corruption

0 Complicated code, hard to get right
= Simultaneously worry about speed, failures and crashes

0 Hard to comprehensively test for failures, crashes

Goal: comprehensively check many storage
systems with /itt/e work

EXPLODE summary

0 Comprehensive: uses ideas from model checking

Q Fast, easy
= Check new storage system: 200 lines of C++ code
= Port o new OS: 1 device driver + optional instrumentation

Q General, real: check live systems.
« Canrun (on Linux, BSD), can check, even w/o source code

Q Effective

« checked 10 Linux FS, 3 version control sof tware, Berkeley
DB, Linux RAID, NFS, VMware 65X 3.2/Linux

» Bugsinall, 36 in total, mostly data loss

0 Subsumes our old work FiSC [OSDI 2004]

Checking complicated stacks

All real

Stack of storage
systems

= subversion: an
open-source
version control
software

User-written
checker on top

Recovery tools run

after EXPLODE-
simulated crashes

subversion ok?
checker

loo pback _

=

Outline

>Core idea

0 Checking interface
0 Implementation
0 Results

0 Related work, conclusion and future work

Core idea: explore all choices

0 Bugs are often triggered by corner cases

a How to find: drive execution down to these
tricky corner cases

When execution reaches a point in program that can do
one of N different actions, fork execution and in first
child do first action, in second do second, etc.

External choices

0 Fork and do every possible operation

Users write code to
check FS valid.
EXPLODE "amplifies”
the check

X
cf\'q’o

\'\“\‘

Explore generated
& states as well

Speed hack: hash states, discard if seen

Internal choices

0 Fork and explore all internal choices

X
ﬁ

kmalloc returns NULL

Buffer cache misses

How to expose choices

0 To explore N-choice point, users instrument
code using

0 : N-way fork, return K in K'th kid

void* kmalloc(size s) {

... // normal memory allocation

>

a We instrumented 7 kernel functions in Linux

Crashes

0 Dirty blocks can be written in any order, crash

at any point

iy

¢
>

buffer
cache

Users write code to

check recovered FS

fsck

— check

Write all
subsets

fsck

— check

fsck

— check

Outline

a Core idea: explore all choices

>Checking interface

- What EXPLODE provides

« What users do to check their storage system
0 Implementation

a Results

a Related work, conclusion and future work

What EXPLODE provides

Q . conceptual N-way fork, return K in
K'th child execution

0 : check all crashes that
can happen at the current moment
« Paper talks about more ways for checking crashes

« Users embed non-crash checks in their code.
EXPLODE amplifies them

0 : record trace for deterministic replay

What users do

[FS checker]

0 Example: ext3 on RAID

Ext3
Raid

NS
Q checker: drive ext3 to do something: mutate(),
then verify what ext3 did was correct: check()

a storage component: set up, repair and tear down
ext3, RAID. Write once per system

0 assemble a checking stack

const char *dir = "/mnt/sbdo/";
const char *file = "/mnt/sbd0/test-file";
void FsChecker::mutate(void) {

|iwitch(choose(4)] {
. qufpm]@(ne:hg }ntest\n > %S", ﬁle),
0 FS Checker if (choose(2)| == 0)

. mutate sy frefi—

else| {
doMsync(file);
Q // fsync parent to commit the new directory entry

kdo_fsync("/mnt/sbd0");

eck_crash_now();|// invokes check() for each crash
ak;

stemf (" rm %4st—f1¥); break;

0 case, X systemf("mkdir %s%d®; dir,[choose(5)); break;
case 3:_systemi("rmdir%s%d", dir,[choose(b)); break;
}
} ‘%‘
creat file rm file mkdir rmndir
/\ -

sync| | fsync LJOL 203114 ../01 1] 2] 314

0 FS Checker

« check

void FsChecker::check(void) {

ifstream in(file); Check file exists
if(!in) —
error("fs", "file gone!");

char buf[1024];

. . _ Check file
%n.read(buf, sizeof buf); contents match
in.close();
if(strncmp(buf, "test", 4) 1= 0)

error("fs", "wrong file contents!");

Found JFS fsync bug, caused by re-
using directory inode as file inode

Checkers can be simple (50 lines) or
very complex(5,000 lines)

Whatever you can express in C++, you
can check

0 ext3
Component

a storage component: initialize,
repair, set up, and tear down your
system

= Mostly wrappers to existing uftilities.
"mkfs”, "fsck", "mount”, "umount”

returns list of kernel
thread IDs for deterministic error
replay

a0 Write once per system, reuse to
form stacks

a Real code on next slide

0 ext3
Component

void Ext3::init(void) {
// create an empty ext3 FS with
// user-specified block size
systemf("mkfs.ext3 -F -j -b %d %s",
get_option(blk_size), children[0]—>path());
b

void Ext3::recover() {
systemf("fsck.ext3 -y %s", children[0]—>path())
b
void Ext3::mount(void) {
int ret = systemf("sudo mount -t ext3 %s %s",
children[0]—>path(), path());
if(ret < 0) error("Corrupt FS: Can’t mount!");
b
void Ext3::umount(void) {
systemf("sudo umount %s", path());
b
void Ext3::threads(threads_t &thids) {
int thid;
if ((thid=get_pid("kjournald")) != —1)
thids.push_back(thid);
else
explode_panic("can’t get kjournald pid!");

a 0 assemble a checking stack

a Let EXPLODE know how

- subsystems are connected
together, so it can initialize, set
up, tear down, and repair the
entire stack

a Stack

Ext3

0 Real code on next slide

Raid

il
il

// Assemble F'S + RAID storage stack step by step.
void assemble(Component *&top, TestDriver *&driver) {
// 1. load two RAM disks with size specified by user
0 ekm_load_rdd(2, get_option(rdd, sectors));

Disk *d1 = new Disk("/dev/rdd0");
Disk *d2 = new Disk("/dev/rdd1");

// 2. plug a mirrored RAID array onto the two RAM disks.
a Raid *raid = new Raid("/dev/md0", "raidi");
raid—>plug-_child(d1);

raid—>plug-child(d2);

// 8. plug an ext3 system onto RAID

Ext3 *ext3 = new Ext3("/mnt/sbd0");
ext3—>plug-child(raid);

Q Stack top = ext3; // let eXplode know the top of storage stack

Ext3

maid // 4. attach a file system test driver onto ext3 layer

driver = new FsChecker(ext3);

il
il

Outline

0 Core idea: explore all choices

0 Checking interface: 200 lines of C++ to check a system

‘Implemen’ra‘non

Checkpom’r and restore states
Deterministic replay

. Checkmg process

» Checking crashes

= Checking "soft" application crashes

0 Results

0 Related work, conclusion and future work

Recall: core idea

a "Fork" at decision point to explore all choices

state: a snapshot of
the checked system

How to checkpoint live system?

0 Hard to checkpoint live
kernel memory
= VM checkpoint heavy-weight

a checkpoint: record all
returns from SO

Q restore: umount, restore
S0, re-run code, make K'th
return K'th
recorded values

0 Key to EXPLODE approach S = SO + redo choices (2, 3)

Deterministic replay

0 Need it to recreate states, diagnose bugs

Sources of non-determinism

a Kernel can be called by other code
= Fix: filter by thread IDs. No in interrupt

0 Kernel scheduler can schedule any thread

= Opportunistic hack: setting priorities. Worked well
= Can't use lock: deadlock. A holds lock, then yield to B

0 Other requirements in paper

0 Worst case: hon-repeatable error. Automatic
detect and ignore

EXPLODE: puT it all together

N
EXPLODE Runtime Y o
FS Checker 5
y, ®
Model ? S
Checking o Ext3 Component =
Loop < g
1 Rald Component Q
\ -]

Ext3
Raid

@
9lIPO

. o
void* —
kmalloc| (size_t s, int fl) { =

if(fl & | GFP_NOFAIL) S

if(chobse(2) ==
return NULL;

0)

Hardware

EXPLODE User code EKM = EXPLODE

device driver

Outline

a Core idea: explore all choices

0 Checking interface: 200 lines of C++ to check a
system

0 Implementation

>Resul’rs

- Lines of code
- Errors found

0 Related work, conclusion and future work

EXPLODE core lines of code

Lines of code

Linux 1,915 +€194 generate@
Kernel patch
FreeBSD 1,210

User-level code 6,323

3 kernels: Linux 2.6.11, 2.6.15, FreeBSD 6.0.
FreeBSD patch doesn't have all functionality yet

Checkers lines of code, errors found

Storage System Checked | Component| Checker | Bugs
10 file systems 44/10 5,477 18
CVS 27 8 1
Storage Subversion 31 69 1
applications | “ExpENSIVE” 30 124 3
Berkeley D 82 02 6
RAID 144 S+ 137 2
Transparent NFS 34 FS 4

subsystems

asximy/| | 5 [|\FS_| 1
Total 1,115 | | (6,008 | 36

Outline

a Core idea: explore all choices

0 Checking interface: 200 lines of C++ to check
hew storage system

0 Implementation

a Results
« Lines of code

» Errors found

0 Related work, conclusion and future work

FS Sync checking results

FS sync | mount sync | fsync | O.SYNC
ext2 X @

ext3
ReiserFS X
Reiserd
JES
XFS
MSDOS
VFAT
HFS
HFS+

X
X

XX XX
XXX XX
XXX XX XX XX

X Indicates a failed check

App rely on sync operations, yet they are broken

ext2 fsync bug

Events to trigger bug

truncate A

creat B Mem

write B Dick

fsync B

crashl!

fsck.ext? Indirect block

Bug is fundamental due to ext2 asynchrony

Classic app mistake: "atomic” rename

a All three version control app. made this mistake

0 Atomically update file A to avoid corruption

fd = creat(A_tmp, ...);
write(fd, ...);

fsync(fd); // missing!
close(fd);
rename(A_tmp, A);

Q Problem: rename guarantees nothing abt. Data

Outline

a Core idea: explore all choices

0 Checking interface: 200 lines of C++ to check a
system

0 Implementation

Q Results: checked many systems, found many
bugs

>Rela‘red work, conclusion and future work

Related work

a FS testing
- TRON

0 Static analysis
= Traditional software model checking
« Theorem proving
= Other techniques

Conclusion and future work

o EXPLODE

- Easy: need 1 device driver. simple user interface
« General: can run, can check, without source
- Effective: checked many systems, 36 bugs

a Future work:

= Work closely with storage system implementers to
check more systems and more properties

= Smart search
= Automatic diagnosis
« Automatically inferring "choice points”

= Approach is general, applicable to distributed
systems, secure systems, ...

