
EXPLODE: a Lightweight, General System
for Finding Serious Storage System Errors

Junfeng Yang, Can Sar, Dawson Engler
Stanford University

Why check storage systems?

 Storage system errors are among the worst
 kernel panic, data loss and corruption

 Complicated code, hard to get right
 Simultaneously worry about speed, failures and crashes

 Hard to comprehensively test for failures, crashes

Goal: comprehensively check many storage
systems with little work

EXPLODE summary

 Comprehensive: uses ideas from model checking

 Fast, easy
 Check new storage system: 200 lines of C++ code
 Port to new OS: 1 device driver + optional instrumentation

 General, real: check live systems.
 Can run (on Linux, BSD), can check, even w/o source code

 Effective

 checked 10 Linux FS, 3 version control software, Berkeley
DB, Linux RAID, NFS, VMware GSX 3.2/Linux

 Bugs in all, 36 in total, mostly data loss

 Subsumes our old work FiSC [OSDI 2004]

Checking complicated stacks

 All real

 Stack of storage
systems
 subversion: an

open-source
version control
software

 User-written
checker on top

 Recovery tools run
after EXPLODE-
simulated crashes

subversion

checker

NFS client

NFS server

loopback

JFS

software

RAID1

checking

disk

subversion

checking

disk

%fsck.jfs

%mdadm --assemble

 --run

 --force

 --update=resync

%mdadm -a

crash

disk

%svnadm.recover

crash

disk

ok?

crash

Outline

 Core idea

 Checking interface

 Implementation

 Results

 Related work, conclusion and future work

Core idea: explore all choices

 Bugs are often triggered by corner cases

 How to find: drive execution down to these
tricky corner cases

When execution reaches a point in program that can do
one of N different actions, fork execution and in first
child do first action, in second do second, etc.

External choices

/root

b a

c

unlink

…

…

 Fork and do every possible operation

Explore generated
states as well

Speed hack: hash states, discard if seen

Users write code to
check FS valid.
EXPLODE “amplifies”
the check

Internal choices

/root

b a

c

Buffer cache misses

kmalloc returns NULL

 Fork and explore all internal choices

How to expose choices

 To explore N-choice point, users instrument
code using choose(N)

 choose(N): N-way fork, return K in K’th kid

 We instrumented 7 kernel functions in Linux

void* kmalloc(size s) {
 if(choose(2) == 0)

 return NULL;
 … // normal memory allocation

}

Crashes

/root

b a

c

 Dirty blocks can be written in any order, crash
at any point

Write all
subsets

fsck

fsck

fsck

buffer
cache

check

check

check

Users write code to
check recovered FS

Outline

 Core idea: explore all choices

 Checking interface

 What EXPLODE provides

 What users do to check their storage system

 Implementation

 Results

 Related work, conclusion and future work

What EXPLODE provides

 choose(N): conceptual N-way fork, return K in
K’th child execution

 check_crash_now(): check all crashes that
can happen at the current moment
 Paper talks about more ways for checking crashes

 Users embed non-crash checks in their code.
EXPLODE amplifies them

 error(): record trace for deterministic replay

 Example: ext3 on RAID

 checker: drive ext3 to do something: mutate(),
then verify what ext3 did was correct: check()

 storage component: set up, repair and tear down
ext3, RAID. Write once per system

 assemble a checking stack

What users do

Ext3

Raid

RAM Disk RAM Disk

FS checker

 FS Checker
 mutate

 ext3
Component

 Stack

choose(4)

mkdir rmdir rm file creat file

…/0 2 3 4 1 …/0 2 3 4 1 sync fsync

 FS Checker
 check

 ext3
Component

 Stack

Check file exists

Check file
contents match

Found JFS fsync bug, caused by re-
using directory inode as file inode

Checkers can be simple (50 lines) or
very complex(5,000 lines)

Whatever you can express in C++, you
can check

 FS Checker

 ext3
Component

 Stack

 storage component: initialize,
repair, set up, and tear down your
system
 Mostly wrappers to existing utilities.

“mkfs”, “fsck”, “mount”, “umount”

 threads(): returns list of kernel
thread IDs for deterministic error
replay

 Write once per system, reuse to
form stacks

 Real code on next slide

 FS Checker

 ext3
Component

 Stack

Ext3

Raid

RAM Disk RAM Disk

 FS Checker

 ext3
Component

 Stack

 assemble a checking stack

 Let EXPLODE know how
subsystems are connected
together, so it can initialize, set
up, tear down, and repair the
entire stack

 Real code on next slide

Ext3

Raid

RAM Disk RAM Disk

 FS Checker

 ext3
Component

 Stack

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check a system

 Implementation
 Checkpoint and restore states
 Deterministic replay
 Checking process
 Checking crashes
 Checking “soft” application crashes

 Results

 Related work, conclusion and future work

Recall: core idea

 “Fork” at decision point to explore all choices

state: a snapshot of
the checked system

…

How to checkpoint live system?

S0

S

…

 Hard to checkpoint live
kernel memory
 VM checkpoint heavy-weight

 checkpoint: record all

choose() returns from S0

 restore: umount, restore
S0, re-run code, make K’th
choose() return K’th
recorded values

 Key to EXPLODE approach

2

3

S = S0 + redo choices (2, 3)

Deterministic replay

 Need it to recreate states, diagnose bugs

Sources of non-determinism

 Kernel choose() can be called by other code
 Fix: filter by thread IDs. No choose() in interrupt

 Kernel scheduler can schedule any thread
 Opportunistic hack: setting priorities. Worked well

 Can’t use lock: deadlock. A holds lock, then yield to B

 Other requirements in paper

 Worst case: non-repeatable error. Automatic
detect and ignore

EXPLODE: put it all together

EXPLODE Runtime

M
o

d
ifie

d
 L

in
u

x

K
e

rn
e

l

Model

Checking

Loop
C

h
e

c
k
in

g
 S

ta
c
k

FS Checker

Ext3 Component

Raid Component

Ext3

Raid

EKM

RAM Disk RAM Disk

void*

kmalloc (size_t s, int fl) {

 if(fl & __GFP_NOFAIL)

 if(choose(2) == 0)

 return NULL;

 ….
B

u
ffe

r

C
a

c
h

e?

?

Hardware

EXPLODE User code EKM = EXPLODE
device driver

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check a
system

 Implementation

 Results
 Lines of code
 Errors found

 Related work, conclusion and future work

EXPLODE core lines of code

3 kernels: Linux 2.6.11, 2.6.15, FreeBSD 6.0.
FreeBSD patch doesn’t have all functionality yet

Lines of code

Kernel patch

Linux 1,915 (+ 2,194 generated)

FreeBSD 1,210

User-level code 6,323

Checkers lines of code, errors found

Storage System Checked Component Checker Bugs

10 file systems 744/10 5,477 18

Storage

applications

CVS 27 68 1

Subversion 31 69 1

“EXPENSIVE” 30 124 3

Berkeley DB 82 202 6

Transparent

subsystems

RAID 144 FS + 137 2

NFS 34 FS 4

VMware

GSX/Linux
54 FS 1

Total 1,115 6,008 36

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check
new storage system

 Implementation

 Results
 Lines of code
 Errors found

 Related work, conclusion and future work

FS Sync checking results

App rely on sync operations, yet they are broken

indicates a failed check

ext2 fsync bug

Mem

Disk

A

B

A
truncate A

creat B

write B

fsync B …

…

B

Events to trigger bug

fsck.ext2

Bug is fundamental due to ext2 asynchrony

crash!

B

Indirect block

Classic app mistake: “atomic” rename

 All three version control app. made this mistake

 Atomically update file A to avoid corruption

 Problem: rename guarantees nothing abt. Data

fd = creat(A_tmp, …);
write(fd, …);

close(fd);
rename(A_tmp, A);

fsync(fd); // missing!

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check a
system

 Implementation

 Results: checked many systems, found many
bugs

 Related work, conclusion and future work

Related work

 FS testing
 IRON

 Static analysis
 Traditional software model checking

 Theorem proving

 Other techniques

Conclusion and future work

 EXPLODE
 Easy: need 1 device driver. simple user interface
 General: can run, can check, without source
 Effective: checked many systems, 36 bugs

 Future work:

 Work closely with storage system implementers to
check more systems and more properties

 Smart search
 Automatic diagnosis
 Automatically inferring “choice points”
 Approach is general, applicable to distributed

systems, secure systems, …

