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Abstract
Among all classes of parallel programming abstractions, lock-free
data structures are considered one of the most scalable and efficient
thanks to their fine-grained style of synchronization. However, they
are also challenging for developers and tools to verify because of
the huge number of possible interleavings that result from fine-
grained synchronizations.

This paper addresses this fundamental problem between perfor-
mance and verifiability of lock-free data structure implementations.
We present TXIT, a system that greatly reduces the set of possible
interleavings by inserting transactions into the implementation of a
lock-free data structure. We leverage hardware transactional mem-
ory support from Intel Haswell processors to enforce these artificial
transactions. Evaluation on six popular lock-free data structure li-
braries shows that TXIT makes it easy to verify lock-free data struc-
tures while incurring acceptable runtime overhead. Further analysis
shows that two inefficiencies in Haswell are the largest contributors
to this overhead.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel programming;
D.2.4 [Software/Program Verification]: Model checking;
B.8.2 [Performance Analysis and Design Aids]

General Terms
Design, Verification, Performance, Measurement

Keywords
Lock-free data structures, software model checking, state space
reduction, artificial transactions, transactional memory

1. Introduction
Parallel programs have become increasingly pervasive, driven
by the rise of multicore hardware and the massive computations
needed by the cloud and big data applications. A crucial building
block for these programs is lock-free data structures, which export
high-level, intuitive interfaces, such as a stack, queue, or hash table
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interface, and synchronize concurrent operations via only low-level
primitives of shared memory accesses and atomic instructions. For
instance, a lock-free stack’s push operation may get the current
stack top, append the new element, set the stack top to the new el-
ement using an atomic compare-and-swap instruction (CAS), and
repeat if the CAS fails. (See §2 for a code example.)

Compared to typical lock-based code, lock-free data structures
offer two key advantages. First, they often run faster and scale bet-
ter with the number of cores, especially under high contention [19,
27]. This is because they synchronize in a more fine-grained man-
ner, eliminating unnecessary waits and context switches when oper-
ations access different parts of shared memory. Second, they guar-
antee system-wide progress regardless of scheduling, by definition.
This lock-freedom property soundly eliminates issues of deadlock,
live lock, convoying, and priority inversion that plague lock-based
code [20].

Because of these advantages, it is unsurprising that lock-
free data structures are used in widespread applications such as
MySQL1 and at companies such as Facebook [2]. Almost every
high-level programming language environment has a (semi-)standard
lock-free library, including C++’s boost::lockfree [1], and portions
of C#’s System.Collections.Concurrent namespace [6] and Java’s
java.util.concurrent package [3].

Despite their importance, lock-free data structures remain ex-
tremely hard to get right, even for experts, as evidenced by subtle
bugs in a substantial amount of lock-free code published at good
magazines and referred journals [5]. A key reason is that concurrent
executions of lock-free data structures produce a vast set of possible
shared memory access interleavings, or schedules; the number of
schedules grows exponentially with the number of shared memory
accesses performed. Each schedule may lead to a different, some-
times correct and sometimes buggy, result, so all schedules must be
validated for correctness, a daunting task for developers.

While much effort [17, 23, 28, 29, 33–37] is dedicated to build-
ing effective tools to check parallel programs, few handle lock-free
data structures. This is because of fine-grained nature of lock-free
algorithms, which produce an extremely large state space even after
advanced state space reduction techniques [15, 16, 18, 30].

This paper presents TXIT, a system that simplifies the verifi-
cation2 of lock-free data structures. TXIT dramatically reduces the
set of schedules by instrumenting the code of a lock-free data struc-
ture to group instructions into artificial transactions, each of which
is guaranteed to run atomically. These transactions are added post
facto after developers have written the code, hence we call them

1 mysys/lf {dynarray,alloc-pin,hash}.c in MySQL 5.6.20.
2 Instead of verifying data structures by itself, TXIT reduces the num-
ber of possible schedules to a manageable size that one can exhaustively
check/verify with other tools. By combining TXIT with our modified dBug
model checker, we showed that it is possible to verify all schedules for a
data structure with respect to one test-case program.



artificial. A tool now needs to verify only the schedules of ar-
tificial transactions, an exponential reduction from the set of all
shared memory access schedules. Once the data structure is de-
ployed in production, TXIT continues to enforce these transactions
for correctness, and leverages hardware support to reduce the over-
head of transactions. TXIT thus automatically offers high assurance
for legacy and new applications that use lock-free data structures,
while retaining performance better than typical lock-based code.

Adding artificial transactions on execution can be quite danger-
ous, as in arbitrary code it may introduce deadlocks or live locks,
demonstrated in prior study [11]. Fortunately, TXIT does not suffer
from this problem thanks to the obstruction-freedom of lock-free
algorithms, where a thread can always make progress with arbi-
trary transactions enforced.

A key challenge TXIT faces is the tradeoff of performance vs
verifiability (i.e., the number of schedules to verify). The granular-
ity of artificial transactions determines the performance and verifi-
ability of a lock-free data structure. Small transactions may not re-
duce the number of schedules adequately, while larger transactions
yield fewer schedules, making the data structure much easier to ver-
ify, but increasing increase the probability of transaction conflicts,
causing higher overhead for handling transaction aborts and retries.
Thus, it is crucial for TXIT to select a good plan to place transac-
tions such that (1) all schedules of the data structure can be verified
given a testing time budget and (2) the data structure with the in-
serted artificial transactions gives close to maximum performance
under this testing budget. To tackle the challenge, we designed a
heuristic search engine for empirically finding a high-performing
transaction placement plan given a testing budget (§2).

We implemented TXIT for C/C++ lock-free data structures. It
leverages the LLVM compiler [24] to instrument programs and
insert artificial transactions, the Pyevolve genetic programming
engine [8] to search for an optimal transaction placement plan,
the dBug model checker [31] to systematically check schedules
of transactions, and TSX – the hardware transactional memory
support readily available in the 4th generation Intel Core processors
(codenamed “Haswell”) [10] –to enforce artificial transactions (§3).

Evaluation on six popular lock-free data structures (§4) shows
that:

1. TXIT computes transaction placement plans such that the resul-
tant data structures on the given test cases can be verified within
several minutes by dBug.

2. The normalized execution time of TXIT ranges from 1.55–
4.30× using Haswell TSX.

3. According to our micro-benchmarking results, the overhead is
primarily due to performance pathologies in Haswell TSX. For
instance, transactional reads are (1) up to 1.63× slower than
non-transactional ones and (2) are almost always slower than
transactional writes.

Contributions. To the best of our knowledge, TXIT is the first
system that leverages transactional memory to aid verification of
lock-free data structures. Our additional contributions include the
idea of artificial transactions, the heuristic search engine for plac-
ing transactions, the results of verifying several popular lock-free
data structures, and the discovery of the performance pathologies
in the Haswell TSX support, along with our suggestions for im-
provements which we believe will benefit others wanting to use
this feature.

2. Overview
In this section, we show a lock-free data structure example to
illustrate the difficulty of writing and verifying such data structures;

void push(stack *s, element *e) {
element *top;
do {

push.1: top = s->top;
push.2: e->last = top;
push.3: } while (CAS(&s->top, top, e) != top);

}

element *pop(stack *s) {
element *top, *last;
do {

pop.1: top = s->top;
pop.2: last = top->last;
pop.3: } while (CAS(&s->top, top, last) != top);

return top;
}

(a)

stack *s is initialized as A→B→C→D
thread 1 thread 2

element *x, *y;
t1.1: x = pop(s);
t1.2: y = pop(s);
t1.3: free(y)

element *x, *y;
t2.1: x = pop(s);
t2.2: y = pop(s);
t2.3: push(s, x);
t2.4: free(y)

(b)

Figure 1. A lock-free stack (a) and a failure-causing test case (b).

we show how TXIT makes it easy to verify the example; and we
describe the recommended usage of TXIT.

2.1 An Example
Figure 1 shows a lock-free stack example and a test case ex-

ercising the stack. The push and pop operations appear correctly
implemented because they use CAS to detect that the stack top is
changed and retry accordingly. However, the code actually suffers
from a subtle bug that causes the same element to be popped twice.
Consider this scenario: after thread 1 gets the stack top and sets
last to point to element B, thread 2 pops two elements and the
pushes back element A. Now, when thread 1 runs the CAS instruc-
tion to detect conflicts, the stack top is still A, so the CAS succeeds
but incorrectly sets the stack top to point to B. When thread 1 con-
tinues to pop the next element, it gets B, causing a double free. This
bug is the classic ABA bug [9, 26], which is common in lock-free
data structure implementations.

Finding this bug is hard because even the simple test case shown
in figure 1.(b) has an enormous number of schedules, estimated by
dBug to be 9 × 1022. After utilizing state-of-the-art state space
reduction technique, dynamic partial order reduction (DPOR) [15],
the number of schedules is still estimated to be 2× 107.

2.2 TXIT Work Flow
We describe how to make the stack example easy to verify with
TXIT. To reduce the set of schedules, TXIT inserts artificial trans-
actions. It starts by transforming each operation of the stack into
a transaction, maximizing verifiability. Concretely, TXIT makes
push and pop transactions, reducing the number of schedules down
to only 10, eliminating the ABA bug in pop.

This baseline transaction placement plan may incur high over-
head, so TXIT performs a search to find a good transaction place-
ment plan. It guides the search using an evaluation function that
(1) quantifies performance by measuring the execution time of the
test case and (2) ensures that the estimated number of schedules is
smaller than the testing budget (“estimated” because counting the
precise number requires fully exploring the schedules).



Figure 2. The architecture of TXIT. Placement plans are synthe-
sized into a proposed program, which is profiled and checked, and
which feeds into new placement plans.

After TXIT finds an optimal plan with good performance and a
verifiable set of schedules, it outputs a new stack implementation
with transactions inserted. Developers then run their favorite tools
to verify the correctness of this implementation, and deploy the
implementation in production environments, where transactions are
running under hardware support with minimal overhead.

2.3 Recommended Usage
While in principle developers can use TXIT in any development
stage, we recommend a specific stage—after traditional testing,
but before deployment—because we believe TXIT is the most use-
ful in this stage. During active development, the code frequently
changes, and for each version of the code, TXIT may produce a
different transaction placement plan, so its usefulness is limited.
TXIT provides high assurance by reducing the set of schedules, and
the removed schedules may effectively hide bugs. Thus, developers
should do testing/verification as usual without TXIT to find as many
bugs as possible, and turn on TXIT as a final step to get high assur-
ance in production environments.

3. Implementation
In this section, we show how we utilize the architecture support and
model checker to build TXIT, shrinking the schedule space of lock-
free algorithms using artificial transactions. We will first describe
an overall architecture, then explain each component in detail.

3.1 Architecture
TXIT takes a lock-free data structure and a comprehensive3 test
case for input. The lock-free data structure is given as a library
with exported interface functions. The whole workflow is shown in
Figure 2.

Taking the data structure and test case as input, TXIT gradually
improves the current placement plan by synthesizing checkable
and runnable programs, feeding them into the model checker and
profiler, and using their reports as feedback. After a number of
iterations, the system outputs the best placement plan it has found.

Note that the system does not verify the source program. It finds
a transaction placement plan to reduce the set of schedules needed
to reason about for further verification. The goal is to get the best
performance with a set of schedules that is still verifiable within the
given budget.

3.2 Pre-processing
Given the data structure as a code library, it needs to be pre-
processed before synthesizing and profiling. All the pre-processing
procedures are done using LLVM IR transformations.

We first try to flatten the library so that most function calls
are inlined, which expands the control flow and data flow, so they

3 We rely on experts with domain knowledge to provide test cases with good
coverage for testing desired properties.

become cleaner and easy to deal with statically. Due to theoretical
and resources constraints on the compiler, not all function calls can
be expanded; in which case we leave them untouched. Note that
this may incur more pressure on the L1 code cache. Since the lock-
free data structures are relatively small, in our experiments we did
not observe any slowdown due to the extra pressure.

After the transformation, we identify all memory accesses in
the library, and intercept them by appending hook functions. This
is much more heavyweight than the original memory accesses. We
only enable this instrumentation during model checking.

3.3 Model Checker Enhancement
To perform model checking on the program under a given transac-
tion placement, we leverage the model checker dBug. dBug inter-
cepts synchronization functions (such as pthread mutex lock) to
track and control the scheduling. But it is not aware of any instruc-
tion level memory accesses, nor transactions. We modified dBug
to support the semantics of transactions, by extending it with two
synchronization primitives: TXBegin() and TXEnd(read set,
write set). TXBegin starts a transaction and TXEnd commits the
transaction with read/write sets collected by instrumentation. dBug
simulates the schedule by enforcing the total order of all synchro-
nizations. During the checking TXBegin suspends all other threads
so that only one transaction can be active for a given time.

3.4 Intel Haswell TSX Runtime
To utilize the hardware TSX support, we wrapped the instruction
level interface into routines, tx begin and tx end, to start and
commit a transaction. The tricky detail is how TSX deals with
conflicts. TSX detects conflicts by monitoring local cache lines in-
volved in the ongoing transactions. Once such a cache line is inval-
idated or degraded (e.g. from “exclusive” state to “shared” state),
TSX will discover the conflict against concurrent transactions in
other threads, and abort the local transaction to resolve the conflict.
This makes the local transaction exit transactional mode, and jump
to a fallback branch prepared before the transaction, which does not
guarantee the progress of transactions. One could let failed transac-
tions retry until success, which could simply lead to a live lock. The
optimization guidelines of TSX [22] require the programs to always
provide a non-transactional fallback path for each transaction and
must not simply let the transaction retry. Since the lock-free code is
not aware of transaction enforcement, we need to provide our own
fallback path. We used an exponential back-off strategy to resolve
the contention in a decentralized way, which we believe is more
scalable than global critical sections as the number of conflicting
objects increases.

There are some situations where transaction aborts are not be-
cause of conflicts. For example, accessing an unmapped page will
cause a page fault and cause an abort unless in a non-transactional
fallback. TSX provides a value in EAX to identify the reason of an
abort. TXIT runtime will detect such situations and fallback to a
global critical section.

TXIT also leverages dBug to evaluate the verifiability of a place-
ment plan. This is done by extracting the schedule space estimation
from dBug. dBug computes this by dividing total number of states
explored by the sum of probability of each explored state.

3.5 Genetic Search
TXIT performs a genetic search on transaction placement plans,
which are represented as boolean vectors. Each element in a plan
vector denotes whether or not to insert a transaction bounary at
a given location. We only consider boundaries before and after
memory access instructions, so the size of a plan vector is fixed
to twice the number of memory access instructions in the given
program. The genetic search maintains a population of placement



Library Data Structures Selected
boost::lockfree [1] stack (BLFS), queue (BLFQ)
folly (Facebook) [2] producer-consumer-queue (FPCQ)
liblfds [4] stack (LFDSS), queue (LFDSQ)
nbds [7] skiplist (NBDSSL)

Table 1. Evaluated lock-free data structures.

plans, and updates the population by randomly picking existing
plans for crossover and mutation. Initially, the population is gen-
erated with random boolean vectors with the fixed size.

4. Evaluation
Our evaluation focuses on three research questions:

• Can artificial transactions reduce the number of schedules ef-
fectively?
• Can TXIT find transaction-placement plans that offer good ver-

ifiability and performance?
• What is the overhead of TXIT with current hardware transac-

tional memory? Where does the overhead come from?

4.1 Evaluation Setup
Our evaluation is performed on a work station with 16 GB of mem-
ory and Intel(R) Core(TM) i7-4770. This CPU has four cores and
up to two hyper-threads per core, but we disabled hyper-threading
per recommendation of the Intel manual. We locked the CPU fre-
quency to 3 GHz to avoid inaccurate measuring caused by fre-
quency scaling. The workstation runs Debian with Linux 3.11.

We selected 6 popular open source implementations of lock-free
data structures, shown in Table 1.

Folly from Facebook contains two data structures claimed to
be lock-free, including FPCQ and atomic hash array. However,
TXIT detects a deadlock after adding transactions to the atomic
hash array. It turns out this data structure is actually not lock-free:
it spin-waits on hash array slots, violating lock-freedom. We thus
leave this data structure out in our evaluation.

We used the following test cases to exercise the data structures.
For general stacks and queues, the test cases spawn three threads,
where each thread pushes two elements onto the stack/queue and
then pops them out. For single consumer/producer queue (FPCQ),
the test case spawns a producer thread and a consumer thread,
where each thread pushes/pops the queue six times. For skip-list,
the test case spawns three threads, where thread i ∈ {0, 1, 2}
inserts an element with keys {i, i + 3, i + 6} into the skip-list,
making the threads fully interleave in the insertion process.

4.2 Reduction on the Number of Schedules
Here we evaluate how artificial transactions reduce the number of
schedules with unified transactions size. Specifically, we show how
the number of schedules grows (or shrinks) as the transaction size
varies. For each test, we group every n shared memory accesses
into a transaction and use dBug to determine the number of sched-
ules. Here sest(1) indicates that each instruction is in its own trans-
action, and sest(∞) indicates that all instructions within an oper-
ation of the lock-free data structure are in one transaction. We run
dBug for up to 104 iterations to estimate the number of schedules;
any Sest smaller than 104 is a exact result. Figure 3 shows the re-
sult with y-axis in log scale, demonstrating huge reduction in the
number of schedules as the transaction size grows.

4.3 Performance and Verifiability Tradeoff Results
In this section, we evaluate how well TXIT makes the performance
and verifiability tradeoffs. Given different testing budgets sbudget

1

100000
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1× 1020

1× 1025

folly pcq

nbds skiplist

boost queue

boost stack

lfds queue

lfds stack

10000

sest(1)
sest(2)
sest(4)
sest(8)

sest(16)
sest(32)
sest(∞)

Figure 3. Number of schedules (in log scale) vs transaction size.
The horizontal line is at 104, and any result below this line is exact.

Budget Base-
line

2×
103

2×
104

2×
105

2×
106

FPCQ 2.458 N/A 2.363 2.601 1.553
NBDSSL 2.166 2.142 1.952 2.355 1.935

BLFQ 3.649 3.628 3.232 3.321 3.063
BLFS 3.747 3.521 3.133 3.308 3.126

LFDSQ 3.184 4.304 2.705 2.569 2.565
LFDSS 2.481 2.776 1.956 2.916 2.047

Table 2. Normalized execution time of the test cases with transac-
tions over without (smaller is better). The baseline column shows
the normalized execution time at the starting point of the search for
each data structure when every operation is made a transaction.

expressed as the number of schedules that developers can afford to
test, TXIT’s heuristic search engine explores the possible transac-
tion placement plans, evaluates the plans according to the resulting
state space and performance reports, and evolves them using ge-
netic algorithms. In a few cases, increasing the testing budget did
not improve performance because a solution for a smaller budget is
faster.

To better understand these cases, we adjusted the evaluation cri-
teria slightly to direct the search toward a solution whose number
of schedules is close to the budget. We used the following genetic
search parameters: population size of 70 and 80 generations, result-
ing in 5600 iterations for each data structure and testing budget.

Table 2 shows the results. Each cell shows the normalized over-
head of running a test case with transactions over without. The
baseline column shows the normalized overhead for the starting
point of the search, i.e., when each operation of the data structure
becomes one transaction and the verifiability is maximized. TXIT
did not find a valid placement plan for FPCQ when sbudget =
2× 103 because that baseline solution already has more schedules
than the budget.

Running the parallel test cases on these placement plans shows
that our searching system is able to reduce the running time of the
baseline enforcement, to between 89.3% and 63.2%. Compared to
the original performance without transactions, the numbers show
the factors from 155.3% to 430.4% across all placement plans from
search.

To understand what costs contributed to the overhead, we rerun
these plans but using test cases that spawn only one thread; results



Budget Base-
line

2×
103

2×
104

2×
105

2×
106

FPCQ 1.273 N/A 1.539 1.530 1.863
NBDSSL 1.155 1.159 1.193 1.363 1.222

BLFQ 1.291 1.369 1.326 1.409 1.443
BLFS 1.299 1.399 1.404 1.476 1.378

LFDSQ 1.080 1.380 1.491 1.440 1.584
LFDSS 1.090 1.175 1.253 1.405 1.392

Table 3. Normalized execution time of single-threaded test cases
with transactions over without (smaller is better).

1 MOVL %eax, 0x000(%rdi) ---- start of the first pass
...

256 MOVL %eax, 0x1F8(%rdi) ---- end of the first pass
257 MOVL %eax, 0x000(%rdi) ---- repeat (second pass)

...

Figure 4. Microbenchmark for evaluating TSX overhead.

from these experiments measure the operational cost of the trans-
actions without any conflicts.

Table 3 shows the results. Operational cost is quite high, ranging
from 17.5% to 53.9%. Even if we insert only one transaction for
each operations, as in the baseline, the operational cost is still
observable (8% to 29.9%). The implication is that the operational
cost of Haswell transactional memory is relatively large compared
to the size of the transactions we insert. We examine this cost in
greater detail below.

4.4 Understanding Haswell TSX overhead
We have seen that transactions in the current Haswell implementa-
tion carry significant overhead even if there is no conflict. Since the
operations of the evaluated lock-free data structures take hundreds
to thousands of cycles, we wrote a microbenchmark at the same
scale to study the behavior of Haswell transactions.

Microbenchmark. We designed the microbenchmark to be mem-
ory intensive to resemble the behavior of lock-free data structures.
The benchmark consists of auto-generated functions that access a
given work space of memory that fits in L1 data cache (2 KB in our
experiments). We first generate a instruction sequence that accesses
the work space with a given stride, then we generate the benchmark
function by repeating the sequence up to a given total instruction
length. The structure of the microbenchmark is shown in Figure 4.

Cache Settings To compare the performance under different
cache settings, we prepare a separate memory space to fill out
the L1 cache, so that we can observe the overhead comparison of
cold and warm cache. We place data in L1 for the warm case and
in L2 for the cold case (to avoid L3 or main memory delay). We
also run tests where the relevant L1 cache lines are all initially in
a modified state, and where they are in an exclusive state. There is
a significant flushing cost (compared to cache hit without eviction)
when evicting modified cache lines, since TSX needs to flush dirty
cache lines even for cache hits. Taking all combinations into ac-
count, we have four cases: WarmModified (WM), WarmExclusive
(WE), ColdModified (CM) and ColdExclusive (CE).

We measured the TSX characteristics in each case. According to
the structure of the microbenchmark, there ought to be two phases:
the first phase touches all cache line in the read/write set, incurring
extra cost; after that all data are warmed in the cache, ameliorating
the performance. In the experiments, the first phase lasts from line 1
to 256. We calculate the per-instruction overhead for the first phase.
For comparison, we conducted the same experiments under non-

Cache Setting CE CM WE WM
TX Mode? Mem Op

Yes Read 1.45 1.44 1.13 1.42
No Read 1.10 1.13 0.54 0.54
Yes Write 1.20 1.17 1.07 1.70
No Write 1.17 1.17 1.07 1.07

Table 4. Comparison of load and store instruction cycles under different
conditions.

transaction mode. Table 4 shows the results. Transactional load and
store instructions are quite costly in TSX in almost all cases:

• Transactional reads are 27% to 163% slower than reads in
normal mode, especially under WarmModified condition.
• Under WarmModified condition, transactional writes also have

significant overhead (59%).
• Additionally, TSX shows a 70-cycle average overhead per

transaction in all experiments. This may come from the memory
barrier effect on the boundaries of transactions.

Summary of TSX overhead Based on our microbenchmark re-
sults, we believe the performance pathologies of TSX come from
the following sources:

• Cache Impact. To isolate the memory accesses of transactions,
TSX keeps the write set in local cache, which means the original
value must be saved somewhere else. When instructions in a
transactional region access a local cache line which has been
previously modified but not touched in the current transaction,
the CPU needs to backup the value to lower level cache in
order to save the original value. This is similar to evicting dirty
cache lines, but here the CPU is “cleaning” the dirty cache line.
This only happens in transactional mode, and make a L1 cache
hit effectively a write back to L2. We suggest that TSX has a
specialized write back buffer to resolve this issue.
• Memory Barrier. According to Intel’s manual [21], a success-

fully executed transaction has the same memory ordering se-
mantic as “lock” prefixed instructions. When TSX is used heav-
ily in fine-grained, memory throughput will be reduced because
of the effect of memory operation serializing.
• Time Window Inflation. Because of the hardware overhead,

the time window of a transactional region is greatly inflated.
This makes the transaction more likely to abort because of
conflicts, and thus waste more time on retrying. Under the
best effort protocol of TSX, which always fails the transaction
that accesses the data first, time window inflation makes the
transaction much harder to proceed under contention.

We expect these issues to be fixed in the next generation of TSX.

5. Related Work
Concurrent Program Verification. As concurrent programs have
become more widespread, techniques have been developed to per-
form verification on them. Checkfence [12] converts C source code
into a SAT formula, which is given to a standard SAT solver to
prove correctness under relaxed memory models. Sinha et al. [32]
focus on improving the way that model-checkers can represent
multithreaded programs as SAT formulae. Line-Up [13] can es-
tablish linearizability for concurrent methods. All of these tech-
niques focus on converting a program (or an abstraction thereof)
into a format such as a SAT formula that can be analyzed by a
model-checker. All these tools suffer from the state space explo-
ration problem, and a number of reduction techniques have been



proposed. Partial order reduction [15, 16] exploits the commuta-
tivity of transitions, eliminating redundant schedules that produce
the same state. Interface reduction [18] partitions the system into
components and interfaces, eliminating state coupling. Symmetric
reduction [30] exploits the structural symmetries of states in the
system. All of these works are orthogonal to TXIT, and may be
plugged into TXIT to check lock-free data structures after artificial
transactions are added. Since TXIT dramatically reduces the set of
schedules, these tools and techniques may become more powerful
with TXIT.

Artificial Transaction Enforcement. Because of the useful guar-
antees that transactional memory provides, many systems leverage
it to improve program reliability. BulkSC [14] proposes an imple-
mentation of a sequentially consistency memory model over the
underlying relaxed memory model, by dynamically grouping in-
structions into “chunks”, and executing chunks in the relaxed mem-
ory model. The “chunks” effectively provide artificial transactions
which appear as a stronger memory model to the program. A sys-
tem based on BulkSC called Atomic-Aid [25] proposes an architec-
ture to hide atomic violations that have the potential to expose data
races, by setting up “chunks” through dynamic analysis results.
Both of these systems improve the program reliability through en-
forcing transactions, but they lack the correctness guarantees, since
transactions are added to the dynamic execution streams of instruc-
tions and can be changed, where bugs may still be triggered. They
are not designed to solve the fundamental trade-off between perfor-
mance and verifiability.

6. Conclusion
We have presented TXIT, a system for making it easy to verify
lock-free data structures, one of the most scalable and efficient
among all classes of parallel programming abstractions. The key
idea is to insert artificial transactions to reduce the set of schedules,
while enforcing the transactions in production environment for
correctness. Leveraging recent advances in hardware transactional
memory support – specifically Intel Haswell TSX – TXIT achieves
acceptable performance. The granularity of artificial transactions
affects the performance and verifiability: larger transactions yield
fewer schedules and better verifiability, but reduce performance
because of the increased probability of transaction aborts. In our
evaluation, we have demonstrated that TXIT reduces the set of
schedules enough that tools can exhaustively check them all. In
understanding the performance of TXIT, we have also uncovered
several performance pathologies in TSX, knowledge of which will
help other (potential) TSX users.
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