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Abstract
The world’s fast-growing data has become highly con-

centrated on enterprise or cloud storage servers. Data
deduplication reduces redundancy in this data, saving
storage and simplifying management. While existing
systems can deduplicate computations on this data by
memoizing and reusing computation results, they are in-
secure, not general, or slow.

This paper presents UNIC, a system that securely dedu-
plicates general computations. It exports a cache service
that allows applications running on behalf of mutually
distrusting users on local or remote hosts to memoize and
reuse computation results. Key in UNIC are three new
ideas. First, through a novel use of code attestation, UNIC
achieves both integrity and secrecy. Second, it provides
a simple yet expressive API that enables applications to
deduplicate their own rich computations. This design
is much more general and flexible than existing systems
that can deduplicate only specific types of computations.
Third, UNIC explores a cross-layer design that allows the
underlying storage system to expose data deduplication
information to the applications for better performance.

Evaluation of UNIC on four popular open-source ap-
plications shows that UNIC is easy to use, fast, and with
little storage overhead.

1 Introduction

The world’s data has been fast exploding for many years.
It is estimated that in 2011 alone, 1.8 zettabytes of data
were created, and the overall data will grow by 50× by
2020 [21]. This massive amount of data comes in greatly
varying forms, ranging from personal photos and videos,
to office documents and web pages, to source files, bi-
nary programs, and virtual machine images, and to data
collected from user clicks or physical sensors.

Meanwhile, the storage of this data has become highly
concentrated. It is common practice for enterprises

to store data on centralized, powerful storage servers
for ease of management [34]. The cloud computing
paradigm has migrated data into the cloud so that the
computations can be closer to the data. For instance,
several organizations have put 56 public data sets to-
taling 761.2TB onto Amazon Web Services [2]. Even
consumers are beginning to aggregate their personal data
into the cloud for convenience. For instance, Google,
Dropbox, Amazon, and Microsoft all provide the option
for users to automatically upload pictures and videos shot
using their mobile devices. Facebook stores over 260 bil-
lion personal photos [6].

This highly concentrated, massive data poses chal-
lenges for storage provisioning and management. For-
tunately, prior work has shown that a significant portion
of the data is redundant [22] and that data deduplication
can hugely reduce the storage needed to hold the data
and simplify management [13]. For instance, file dedu-
plication detects when multiple files have the same data
and stores the unique data only once [8]. This scheme is
particularly useful when the same file is copied, such as
when a user makes a copy of her friend’s shared video
on Dropbox. Block deduplication breaks files down to
variable [20, 24] or fixed [36] size blocks and stores each
unique block of data once. This scheme is particularly
useful for files that are similar but not exactly identi-
cal, such as different versions of a document and virtual
machine images built from the same OS family. These
deduplication schemes have been long prevalent in en-
terprise storage servers [13]. With the trend of moving
consumer data into the cloud, these schemes have also
become popular among cloud storage providers such as
Dropbox [31].

Not only can data be redundant, the computations on
top of the data can also be redundant. For instance, a user
may scan her Dropbox files for viruses, while another
user runs the same virus scanner on a similar set of files.
Different users may be doing the same computations on
the public data sets in AWS, such as building an inverted
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index for the web pages in CommonCrawl [11]. Given
the same input data, the same deterministic computation
always produces the same result. Thus, if the computa-
tion is slow, it is typically more efficient to memoize [23]
and reuse the result than redoing the computation. We
term this technique computation deduplication.

Several prior systems deduplicate computations
(e.g., [9, 15]). However, three main challenges prevent
these systems from effectively deduplicating computa-
tions in today’s cloud or enterprise environments:

First, how can we deduplicate computations done by
mutually distrusting users? Storage providers such as
Dropbox aggregate data from many users who do not
necessarily trust each other. Even in an enterprise setting,
users frequently have different data access permissions.
One naı̈ve approach is to memoize computation results
in a cache every user can read or write, but this approach
provides neither integrity or security. A malicious user
can easily poison the cache, by for instance marking files
that contain viruses safe. She can also read results in the
cache even though she has no permission to access the
actual data in the results. Although this challenge may
be solved with information flow tracking or access con-
trol systems, these systems are known to be difficult to
configure and use.

Second, how can we deduplicate general computa-
tions? Prior systems deduplicate computations purely
at the system level, assuming no cooperation from ap-
plication developers. As a result, they handle only spe-
cific computations. For instance, ccache [9] dedupli-
cates only the compilations of C/C++ programs, and
Nectar [15] deduplicates the computations of programs
written only in DryadLINQ [35], a specially designed
language for large scale data-parallel workloads. How-
ever, the computations that users want to do on their data
can be extremely rich, and it is unrealistic to require stor-
age providers to understand all of them. For instance,
while it may be feasible for Amazon to run some ba-
sic virus scanning software on the files it hosts, it is im-
possible for Amazon to understand every advanced virus
scanner, every compression tool, and every image/video
manipulation utility users want to run on their data.

Third, how can we effectively deduplicate computa-
tions on top of deduplicated data? Prior systems rely
on custom methods to detect that data is redundant. For
instance, ccache computes a hash of a preprocessed
C/C++ source file and uses this hash to search its com-
pilation cache. These methods incur unnecessary over-
head when the data is deduplicated because the underly-
ing storage system already knows what data is redundant.

This paper presents UNIC,1 a system that securely
deduplicates general computations. It exports a cache

1We name our system UNIC (pronounced “unique”) because it is
conceptually similar to the Unix uniq utility applied to computations.

service that allows applications running on behalf of mu-
tually distrusting users on local or remote hosts to memo-
ize and reuse computation results. Key in UNIC are three
new ideas:

First, through a novel use of code attestation, a clas-
sic primitive to attest what code is running to a (remote)
party [29, 30], UNIC achieves both integrity and secrecy.
To insert or query the result cache that UNIC maintains,
UNIC generates a secure, non-forgeable key that attests
to both the application code and the input data. This key
strongly isolates applications from each other in the re-
sult cache. For instance, if a malicious user modifies the
code of a virus scanner in attempt to poison the cached
results of this virus scanner, the attempt would fail be-
cause the modified code leads to a different key. In ad-
dition, since this key is not forgeable, a malicious user
cannot query UNIC’s cache without already knowing the
application code and the input. Since the user knows the
code and input already, she can already compute the re-
sult by herself.

Second, UNIC provides a simple yet expressive API
that enables applications to deduplicate their own rich
computations. From a high level, this API supports an
application to (1) insert input→ result to the result cache
UNIC maintains; and (2) query the cache with input and
get back the cached result if any. This application-level
computation deduplication design is much more general
and flexible than prior system-level designs.

Third, UNIC explores a cross-layer design that allows
the underlying storage system to expose data deduplica-
tion information to the applications for speed. Applica-
tions thus do not need to re-detect whether the input data
is redundant. For instance, suppose two files A and B are
identical so the filesystem deduplicates them, and UNIC
exposes this data deduplication information to the appli-
cations. After a virus scanner scans file A, it can im-
mediately skip file B without reading any data from B,
significantly increasing its scanning speed.

Our implementation of UNIC stores cached results in
Redis, a fast, scalable, replicated key-value store [27].
UNIC implements code attestation in a dynamically load-
able Linux kernel module and considers the kernel to
be trusted. It implements the computation deduplica-
tion API as a library, which applications link with. UNIC
leverages ZFS [36], a file system that supports both file
and block deduplication, to detect when data is dedupli-
cated on behalf of the applications running with UNIC.

Evaluation of UNIC on four popular open-source ap-
plications shows that (1) it is easy to use (to support each
application, we needed to change fewer than 1% lines of
source code); (2) it is fast (it sped up applications by up to
21.4×); and (3) it incurs little storage overhead (it needed
only 3.45% additional storage to cache the results).

The remainder of this paper is organized as follows.
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The next section discusses the security model and UNIC’s
design. §3 describes UNIC’s API and usage. §4 presents
how UNIC leverages deduplicated data. §5 describes the
implementation. §6 shows evaluation results. §7 dis-
cusses UNIC’s security implications, §8 describes related
work, and §9 concludes.

2 Security Model and Design

We begin with UNIC’s assumptions, threat model, and the
design of UNIC’s protocol.

2.1 Assumptions and Non-assumptions

First, UNIC relies on a code attestation mechanism for
integrity and secrecy of the cached results. It leverages
this mechanism to bind a result to the code and input
data that together produce the result. This mechanism
can be implemented in multiple ways with different se-
curity strengths. For instance, UNIC could use TPM and
isolation technologies such as Intel TXT [18] to realize
code attestation, but doing so would incur both deploy-
ment and runtime overhead, negating our goal of being
easy to use and fast. Therefore, for practical reasons,
UNIC assumes that the OS is trusted and provides a func-
tion to attest the application code, and that the user does
not have superuser privileges to interfere with that mech-
anism. This assumption matches well with many of to-
day’s mobile devices that run Chrome OS [14], iOS, and
Android.

Second, UNIC assumes correct application code. For
instance, when using UNIC, an application developer
should use UNIC’s API correctly. She should only mem-
oize computations with deterministic results. UNIC also
assumes that the application is free of vulnerabilities
such as buffer overflows. We note that this assumption
is common to almost all prior code attestation work.

Third, UNIC assumes that its underlying storage sys-
tem provides reasonable security guarantees. To reuse
results across sessions, UNIC persists them in an under-
lying storage system such as a file system. UNIC assumes
that this storage system is properly configured such that
an attacker cannot access the data stored without going
through UNIC. This guarantee and UNIC’s security mech-
anisms described in §2.3 together ensure the integrity and
secrecy of its cache of computation results.

2.2 Threats

UNIC enables deduplicating computation among mutu-
ally distrusting users. Two attacks are particularly seri-
ous for UNIC: cache poisoning attacks UNIC’s integrity,
and query forging attacks UNIC’s secrecy.

Cache poisoning. A malicious user may write a new ap-
plication or modify an existing application in an attempt
to poison the result cache. Her application may attempt
to insert or overwrite entries belonging to a legitimate
application. UNIC prevents this attack by isolating appli-
cations in the result cache: it guarantees that the cached
data for one application can never be accessed by another
application. Specifically, UNIC securely binds the com-
putation code and the input data to the computation result
leveraging a code attestation mechanism.

Query forging. A malicious user may write a new ap-
plication or modify an existing application in attempt to
query entries in the result cache that she cannot access,
and gain information. UNIC prevents this attack again by
isolating applications. When an application queries the
cache, UNIC generates a search key that attests to both
the code and the input data that generate the query. This
key is unique to each application. One application thus
cannot query entries of another application.

Several other attacks are possible, some of which can
be prevented using simple mechanisms such as rate-
limiting queries sent to UNIC. We briefly describe how
they can be prevented in §7, and leave the implementa-
tion for future work.

2.3 Design
UNIC novelly leverages code attestation to cryptographi-
cally bind the result with the code and the input that pro-
duced the result, preventing cache poisoning and query
forging attacks.

UNIC assumes a trusted OS that securely computes
SHA-1 hash and HMAC. A secret key K is shared
among trusted OSes. (Existing work [30] details how to
distribute this key. We use symmetric key for efficiency;
however asymmetric key works, too.) An attacker cannot
forge HMAC(data,K) without knowing K.

UNIC leverages code attestation to bind result to code
and input that produced result. Specifically, it uses code
attestation to compute two things:

(1) result = code(input)
// Run code on input to compute result.

(2) sig = HMAC(hash(code)||hash(input)||result,K)
// Bind code, input, and result. We use || as the con-
catenation operator.

The assumptions on trusted OS, unprivileged user, and
correct application code together guarantee that result is
the correct result of running code on input. This code at-
testation mechanism further guarantees that (a) sig cryp-
tographically attests that result is indeed produced by
running code on input, which anyone with access to
code, input, result, and K can verify; and (b) sig can-
not be forged.
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hash(code)||hash(input), result, sig

compute result = code(input)
and sig = HMAC(hash(code)||hash(input)||result, K)

validate sig and update cache

(a) cache hit

(b) cache miss

Figure 1: UNIC protocol.

UNIC protocol. The UNIC cache is a mapping of

hash(code)||hash(input)→ result

Since the hash function is collision resistant, the cache
space for different computations are isolated.

When an application wants to compute code(input),
it sends hash(code)||hash(input) to the UNIC cache.
If cache exists (Figure 1a), UNIC sends back re-
sult. If cache does not exist (Figure 1b), the ap-
plication computes both result and sig, and sends
hash(code)||hash(input), result, and sig to the UNIC
cache. The UNIC cache validates that sig is in-
deed HMAC(hash(code)||hash(input)||result,K), and
updates the cache.

2.4 Security Analysis
The design of UNIC prevents cache poisoning as follows.
Suppose an attacker replaces result with bad result when
inserting into UNIC. Because of code attestation, she can-
not forge sig, so UNIC cannot validate sig. Suppose she
modifies code into bad code and computes bad result to
poison the cache. Because UNIC validates sig, she can
only insert

hash(bad code)||hash(input)→ bad result

which cannot affect the cache entry of
hash(code)||hash(input). To avoid a malicious client
from polluting the cache space, UNIC can employ a
quota mechanism to limit the cache space for each client
application.

This design also prevents an attacker from forging a
query to steal result. To query cache, she must send
hash(code)||hash(input), so she must already have code
and input because otherwise she would not be able to

1: void simple virus scanner(file, options) {
2: buffer = read(file);
3: result = scan signature(buffer, options);
4: print(result);
5: }

Figure 2: A simple virus scanning application.

compute the hashes. Once an attacker has code and in-
put, she can already compute result simply by running
code on input herself. Thus, she cannot gain additional
information with this query other than whether there is a
result in the cache. §7 further discusses its implications.

3 UNIC API and Usage

UNIC provides a simple yet expressive API for applica-
tions to deduplicate their own rich computations. We first
motivate our API design through an example, and then
formally describe its interface.

3.1 Example
We motivate the design of UNIC API through a step-by-
step example showing how a simple virus scanning ap-
plication could use memoization to deduplicate compu-
tation. Conceptually, the application works like Figure 2.
It reads the file content into a buffer, executes virus scan-
ning algorithm on the buffer, and outputs the result.

In this piece of code, line 2 reads the file content from
disk, potentially a time-consuming I/O operation. Line 3
performs some CPU-bound virus signature matching al-
gorithm, potentially another time-consuming operation.
Line 4 prints the result, which is relatively fast because
the length of the scanning result (e.g., “no virus found”)
is much smaller than the original file content. Therefore,
we want to improve the performance on lines 2 and 3.

Memoizing Computations. We first examine how to
use memoization to avoid duplicate computation on line
3. Since scan signature() is a deterministic function
over the input buffer and the signature-scanning options,
if we could memoize the result the first time we perform
the computation, we would be able to safely reuse the
result later on the same input. To do so, we modify the
application into Figure 3, using three functions that UNIC
provides: exists(), get(), and put(). It first checks
if the computation for the given buffer and options exists
in the result cache (line 3). If so, it simply gets the mem-
oized result (line 4). Otherwise, it performs the compu-
tation as before (line 6) and then puts the result into the
cache (line 7).

As discussed in §2.3, the cache is not merely a map-
ping from the input to the result, but binds the computa-
tion code together with them. UNIC internally computes
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1 : void simple virus scanner(file, options) {
2 : buffer = read(file);
3 : if (exists(scan signature, buffer, options)) {
4 : result = get(scan signature, buffer, options);
5 : } else {
6 : result = scan signature(buffer, options);
7 : put(scan signature, buffer, options, result);
8 : }
9 : print(result);
10: }

Figure 3: First step: memoize the computation result.

a non-forgeable authentication code that guarantees that
the result (result) is indeed generated by the computa-
tion code (scan signature()) over the input (buffer
and options). The result cache is updated only if it can
verify this authentication code.

Reducing I/O Operations. Memoizing the computation
is good, but it would be better if we could also eliminate
the need of reading the file content on line 2. This is
not trivial because if we did not read the file in the first
place, we would never know if the signature scanning is
performed on the same content. Fortunately, it is possible
if the file is stored on a deduplication-enabled storage.

A deduplication-enabled filesystem, such as ZFS [36],
stores all files with the same content as a single copy.
It does so by identifying the file content using a crypto-
graphically collision-resistant hash (e.g., SHA-256), and
mapping all files with the same content to the same hash.
These hashes are stored on the filesystem metadata, sep-
arate from the actual file content. Therefore, it creates a
perfect opportunity for our application to tell if the file
contents are the same without actually reading them.

Figure 4 shows the final version of the application. In-
stead of reading the file content up front, it now gets the
unique hash of the file directly from the filesystem meta-
data using UNIC’s get file hash() function (line 2),
and uses the hash to identify the memoization (lines 3, 4,
and 8). Since getting the hash is much faster than reading
the whole file, we have further avoided the slow I/O op-
eration when reusing a previously cached computation.

In practice, when using UNIC, the application devel-
oper does not need to worry whether the storage has
deduplication enabled or not — she should always follow
the final version in Figure 4 and use hash to identify the
memoization. This is because UNIC transparently lever-
ages storage deduplication information. Where such in-
formation is absent, UNIC computes and caches the hash
by itself. This process is detailed in §4.

3.2 The API
The previous example illustrates the usage of the UNIC
API which we now formally describe. It wraps OS-

1 : void simple virus scanner(file, options) {
2 : hash = get file hash(file);
3 : if (exists(scan signature, hash, options)) {
4 : result = get(scan signature, hash, options);
5 : } else {
6 : buffer = read(file);
7 : result = scan signature(buffer, options);
8 : put(scan signature, hash, options, result);
9 : }
10: print(result);
11: }

Figure 4: Final version: use filesystem metadata to further re-
duce I/O operations.

and filesystem-specific details by exporting the follow-
ing functions:

• init() initializes UNIC.
• get file hash(file) returns the hash of a file,

where file can be the name of a file, a file descrip-
tor, or an inode number. If the underlying filesystem
has deduplication enabled (e.g., ZFS), it gets the
hash of the file from the filesystem metadata with-
out reading the file content. Otherwise, it computes
the hash from the file content using libcrypto.
• get block hash(file, block) is similar as

above, but returns the hash of a block of a file,
where block specifies the block number. This is
particularly useful if the application’s computation
is based on blocks, such as a bzip2 compression.
The application should decide whether to use get -

file hash() or get block hash() based on its
own logic, which is discussed in §4.
• exists(computation, hash, id) checks if a

given computation and input exists in the result
cache. The parameter hash is the hash of input
data. The parameter id is an optional string iden-
tifier defined by the application, used for differenti-
ating multiple computations performed on the same
input. For example, the virus scanning application
may let id be the signature-scanning options.
• get(computation, hash, id) gets the result of

a given computation and input from the result cache.
• put(computation, hash, id, result, ttl)

puts an entry of computation, input, and result
into the result cache. An optional ttl specifies
its time-to-live in seconds, and the result cache
automatically deletes the entry upon expiration.

4 Leveraging Storage Deduplication

UNIC explores a cross-layer design allowing underlying
storage system to expose data deduplication information
to the applications.
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Typically, a deduplication-enabled filesystem main-
tains the hash of each file as its metadata. Since UNIC
also uses hash to identify the memoization input, it is
both convenient and efficient to leverage such filesystem
metadata. Therefore, when an application needs to get a
hash, UNIC automatically detects the underlying storage
system type, and returns the hash directly from the meta-
data if the filesystem has enabled deduplication. If not,
UNIC reads the file content and computes the hash itself.
In this way, UNIC provides a consolidated interface for
both scenarios, making the storage system details trans-
parent to the applications.

Furthermore, the application does not need to know
whether the underlying storage system is file-level or
block-level deduplicated. It should decide whether to use
get file hash() or get block hash() solely based
on the application’s own logic. Generally, if the appli-
cation’s computation works with the file on a block-by-
block basis, such as the bzip2 compression algorithm, it
should use get block hash(). Otherwise, if the appli-
cation’s computation uses the file as a whole or randomly
accesses the file, such as an anti-virus program, it should
use get file hash().

5 Implementation

We now describe UNIC’s components and implementa-
tion details.

5.1 UNIC Components
Figure 5 shows the architecture of UNIC. It is deployed
on a network of multiple hosts. Each user can log into
multiple hosts, and each host can have many users logged
in. Because of UNIC’s security design (§2), different
users do not need to mutually trust each other.

The UNIC module on each host handles application’s
memoization requests. Since memoization works best
when the reuses of computations are frequent, reading
data from the result cache should be more common than
writing data to it. In light of this, we design UNIC to
make read operations as fast as possible. A trusted mas-
ter cache server handles all write operations. It can be
either standalone or co-located with the enterprise’s stor-
age (e.g., NFS) server. Each host has an optional read-
only slave cache, which periodically syncs from the mas-
ter cache server. If the slave cache is present, all read op-
erations happen locally. For security, all network com-
munications are encrypted with SSL/TLS. To reduce the
handshake latency, the UNIC module on each host estab-
lishes a connection with the master cache server when
the host boots up, and keeps the connection alive.

Because data updates on the slave caches happen asyn-
chronously, it is possible that a host does not have the

Application

UNIC

Master cache server

Host 1

async

Host n

...

Users

Slave cache

Figure 5: UNIC architecture. Additional hosts each have the
same architecture as Host 1, and are omitted here due to limited
space.

latest cached results. However, we point out that memo-
ized computations are deterministic (§2.1), therefore the
consistency on the slave caches should not affect the in-
tegrity of computations. The only contingency would be
that an application may not be able to leverage recently
cached results but have to compute on its own.

UNIC inserts a kernel module into the Linux kernel
as a virtual device for computing hash(code) and sig.
It represents code by the image of the executable pro-
cess, with all libraries statically linked. The secret key
K is inaccessible to the user space. The user-space ap-
plication talks to the kernel module via ioctl. For im-
proved performance, the kernel module internally caches
hash(code) for each caller.

UNIC uses a modified Redis key-value store [27] as the
result cache. It modifies Redis to support UNIC’s proto-
col (§2.3), and removes nonessential functions (such as
KEYS which can list all cache entries) from Redis for se-
curity. Therefore, users cannot access the result cache
except through UNIC.

5.2 Opportunistic Memoization
When using UNIC, the application developer needs to
judge the best opportunity to use memoization because
of two reasons. First, memoizing an already-fast com-
putation may not justify the overhead of accessing the
result cache. Second, abusing memoization for low-
redundancy computations could result in exceeded over-
head for entries that are never reused later. However,
making the optimal decision at compile time is usually
hard because input data cannot be predicted. Therefore,
UNIC provides an optimization to opportunistically en-
able memoization only when the computation is slow and
its reuse happens to be frequent at runtime.

To do so, UNIC internally has a model of
Tput(result size) and Tget(result size), meaning
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how long it would take to put and get a certain size of
result, respectively. This model is independent of the ac-
tual content of the result, and it can be learned from a mi-
crobenchmark upon the installation of UNIC (see §6.2.1
for our evaluation). UNIC also maintains an accumulator
tsave for each computation, initialized to 0, for the total
time that could have been saved for the future.

UNIC further provides two functions for an applica-
tion to mark the boundary of a computation. An applica-
tion calls begin() to indicate that a computation starts,
and UNIC records the current timestamp as tbegin. An
application calls end() to indicate that the computation
has finished, and UNIC records the current timestamp as
tend. When put() is called, UNIC does not put the data
into the result cache immediately, but updates tsave to be

tsave = tsave + tend − tbegin − Tget(result size)

Therefore, the slower and the more frequent a compu-
tation is, the larger tsave becomes. UNIC only per-
forms the put() operation when tsave is greater than
Tput(result size), i.e., the time that could have been
saved from a computation is greater than the time that
would be spent for memoizing the computation. In the
case that tsave < Tput(result size), UNIC ignores the
put() request, and simply updates tsave.

6 Evaluation

We evaluated UNIC on a workstation with an Intel Core
i7-2600 CPU and 32GB RAM, running Fedora 20 with
Linux 3.16.2. The cache server was running Redis
2.6.17. Our goal is to show that UNIC significantly im-
proves performance with memoization while requiring
minimal developers’ effort and storage space.

The rest of this section focuses on three questions:
§6.1 Is UNIC easy to use?
§6.2 Does UNIC reduce computation time?
§6.3 What is UNIC’s storage overhead?

6.1 Application Adaptation Effort
To evaluate whether UNIC is easy to use, we picked four
popular open-source applications that we use daily: (1)
clamav-0.98.1, an anti-virus software that scans a direc-
tory for viruses [10]; (2) pbzip2-1.1.8, a multi-threaded
compression utility that compresses a single file [25]; (3)
grep-2.18, a tool that searches for a regular expression
within one or many files; and (4) the compiler gcc-4.8.3.
We adapted them to use UNIC’s API2. We used file-level
memoization for grep, clamav, and gcc, and block-
level memoization for grep and pbzip2.

2Our adaptation of gcc is based on ccache [9].

Application Total LoC Changes Percentage
clamav (file) 1,732,762 12 <0.01%
pbzip2 (block) 4,376 18 0.41%
grep (file) 9,658 35 0.36%
grep (block) 9,658 69 0.71%
gcc (file) 29,023 30 0.10%

Table 1: Lines of code changed for each application. Paren-
thesis indicates whether the adaptation uses file-level or block-
level memoization. The numbers for gcc are based on ccache.

Table 1 shows the lines of changed code for each ap-
plication to use UNIC’s APIs. Changing dozens of lines
(<1% of total lines) suffices for all these applications.

To further illustrate, we next present how we adapted
grep, the application with the most code changes.

6.1.1 Case Study: grep

GNU grep is a line-based pattern searching utility. To
invoke grep, the user specifies a search pattern and the
path to a file or directory. Then grep iterates through all
files in the directory and search for the pattern.

Common to all applications, the first step is to add a
call to init() at the beginning of main() in order to
initialize UNIC. For grep specifically, there are two de-
sign choices: we can memoize either at file-level or at
block-level. Memoizing at file-level is faster when the
whole file is unchanged, whereas memoizing at block-
level can exploit sub-file similarities for different files.
Next we discuss each of them.

File-level Memoization. Adapting grep for file-level
memoization is relatively straightforward. When grep

works on a new file, we call get file hash() to get the
hash of the file from ZFS and call exists() to check if
there is a corresponding entry in the result cache. If so,
we call get() to retrieve the memoized result, output
it, and move on to the next file. If not, we follow the
original algorithm and call put() to memoize whatever
is output. We also call put() to memoize the number
of matched lines in the current file, which grep uses for
internal bookkeeping purposes.

Block-level Memoization. Adapting grep to memoize
at block-level requires tighter integration with its work-
flow. For each file, grep reads its content in 32KB
chunks, and performs pattern searching one chunk at a
time. However, since the searching is line-based (delim-
ited by ‘\n’), it is possible that lines are not well-aligned
with chunk boundaries. For example, one line may span
across the end of the previous chunk and continue at the
following chunk. In this case, grep adjusts its chunk
boundary to include the residue of the line in the previ-
ous chunk and exclude the partial line at the end of cur-
rent chunk, as shown in the shaded region in Figure 6.
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Figure 6: Misalignment between line and chunk boundaries in
grep. Shaded region is the adjusted chunk for computation.

Unfortunately, this poses a challenge to using UNIC di-
rectly, because ZFS keeps hash metadata only for entire
aligned 32KB disk blocks. On the other hand, we cannot
simply use the hash of the unadjusted chunk to address
the cache, because this would err if two chunks were the
same but their residues in the previous chunk differed.
Our solution is to combine the hash of all chunks from
the beginning of the residue until the current chunk. Note
that this may lose the rare opportunity of reusing memo-
ized results for chunks who only differ at the last partial
line, but it preserves correctness nevertheless.

Our experience with adapting the other three applica-
tions were straightforward. Overall, we found UNIC easy
to use and the adaptation effort was generally little.

6.2 Performance
To understand the performance of UNIC, we first use mi-
crobenchmarks to evaluate the throughput of UNIC’s ba-
sic operations. We then run UNIC on four real-world ap-
plications to see how UNIC reduces application running
time. Next, we study how UNIC is able to reuse previous
computation results for some evolving data. Finally, we
study how UNIC performs with a group of multiple users
whose data are similar yet different.

6.2.1 Microbenchmark

We first use microbenchmarks to evaluate the throughput
of the get() and put() operations. We wrote a program
that calls put() 10,000 times followed by calling get()

10,000 times. The hashes of the 10,000 entries are all
different, and we varied the result size from 1KB to 1MB.

Figure 7 shows the results, where each data point is an
average of 10 individual experiments with an error bar
showing the maximum and minimum value in the 10 ex-
periments. The x-axis is the size of the memoized result.
The y-axis is the total time in performing the 10,000 op-
erations. The solid line is for put() and the dashed line
is for put(). From the results we find that the time for
an operation is on the order of ten microseconds when
the memoized result is small in size (<10KB), which is
mostly the case (see §6.3). Even if the memoized result is
as large as 1MB, the time to get a memoized entry is only
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Figure 7: Throughput of put() and get() operations. The x-
axis is the size of memoized result. The y-axis is the total time
in performing 10,000 put() (solid line) and get() (dashed
line) operations.

0.33ms, which is normally much faster than doing real
computation on that size of data. Therefore, UNIC’s basic
operations are sufficiently fast for doing useful caching
of computations.

6.2.2 Application Performance

We next show how real-world applications benefit from
UNIC, and how storage deduplication further helps.
We conducted the following experiments. (1) We used
clamav to scan for viruses on two data sets. The first
is the linux-3.12 kernel source code tree. The second
is the Dropbox folder for one of the co-authors, which
contains 10.8GB of documents, music, pictures, videos,
and applications. (2) We used pbzip2 to compress
linux-3.12.tar into linux-3.12.tar.bz2. (3) We
ran grep on two data sets. The first is the linux-3.12
kernel source code tree, which consists of 47,336 small
files totaling 508MB. The second is the tags file of the
linux-3.12 kernel source code generated by ctags -R,
which is a single text file of 250MB. For each data set,
we ran a simple query (‘void’) and a complex query
(‘^\s*struct\s+\w+\s+\**\s*\w+\s*=\s*\w+\((\
w+(,)*)+\);’ for the source code tree, which matches
declaring and initializing a structure pointer to the
return value of a function, such as “struct task -

struct *task = get proc task(inode);”, and
‘/[A-Za-z]+\.c.*d.*file’ for the tags file, which
matches a specific type of tag). (4) We used gcc

to compile linux-3.12 kernel with the allnoconfig

configuration. Because gcc has a nontrivial way to
represent input dependencies for cache reusability
rather than a file hash, our adaptation does not leverage
storage deduplication information. All data files are on a
freshly-formatted ZFS disk with cold buffer cache.
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For each application, we compared the running time
(1) without UNIC (the baseline), (2) with UNIC but with-
out filesystem deduplication (the first and second bars on
Figure 8), and (3) with both UNIC and filesystem dedu-
plication support (the third and fourth bars). For experi-
ments with UNIC, we further compared the running time
(1) for execution on an initially empty result cache, caus-
ing cache misses and thus putting entries to the cache (the
first and third bars), and (2) for execution when the result
cache had already been pre-populated, causing cache hits
(the second and fourth bars).

Figure 8 shows the running time for each experiment.
Each number is an average of 10 individual runs. Al-
though running applications on an empty result cache in-
curs an average overhead of 68.2%, running them on a
warm result cache gives an average speedup of 2.39×. If
filesystem deduplication is available, the average over-
head of cache-miss execution drops to 59.3% and the
average speedup with memoization increases to 7.58×.
Furthermore, complex computations (e.g., scanning for
viruses or compressing a file) benefit the most from
memoization (up to 21.4× speedup), while simple com-
putations (e.g., searching for a short string) suffer more
from the cache-miss overhead. Therefore, opportunisti-
cally enabling memoization would be the best practice.
With our strategy described in §5.2, memoization is en-
abled at the second occurrence of put() for one appli-
cation (“grep tags” with simple query), and at the first
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occurrence for all other applications.

6.2.3 Effectiveness with Evolving Data

The previous evaluation focused on the memoization
benefit on exactly the same computation. Next we show
the effectiveness of memoization if the input data is
evolving, i.e., if UNIC has memoized computation on an
old version of data, how it can speed up computation on
a new version of the data.

We used grep to search for ‘void’ on thirteen major
versions of the Linux kernel source code, from v3.0 to
v3.12. All files are on a freshly-formatted deduplication-
enabled ZFS disk with cold buffer cache. We performed
three sets of experiments. The first one used the origi-
nal grep without UNIC. In the second experiment, we
first populated the result cache when running grep on
v3.0, and then measured the time for running grep on
each version based on the same memoization of v3.0. In
the third experiment, we ran grep on each version in a
“rolling” manner, i.e., each execution was based on the
memoization of the immediate previous version, which
resembles a more practical scenario.

Figure 9 shows the running time for all executions,
where each number is an average of 10 runs. With a sin-
gle memoization of v3.0, the speedup is significant for
running on v3.1 (1.61×), but diminishes along the incre-
ment of version number, and eventually becomes inef-
fective after v3.8, because the source code differs signif-
icantly from the memoized version and the cache hit rate
drops below 0.3. On the other hand, when memoized
the immediate previous version, the speedup is almost
constant, with an average of 1.50×. The reason is that
the amount of source code difference is almost constant
between each two consecutive versions, and many mem-
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oized results can be reused (hit rates are between 0.73
and 0.81). Therefore, UNIC is more effective when the
divergence of the actual input data from the memoized
data is small, which is likely true in a practical scenario.

6.2.4 Effectiveness with Multiple Users

We next evaluate the memoization effectiveness for mul-
tiple users with similar yet different data. We took
the project directories of seven groups of students in a
graduate-level operating system course offered by our
university. The average size of each directory is 1.6GB.
We performed two executions on each group’s directory:
(1) use grep to search for ‘void’, and (2) use clamav

to scan for viruses. This resembles the enterprise setting
where multiple people working on the same project have
similar data and perform common computing tasks such
as virus scanning. The result cache was originally empty,
and was gradually filled by UNIC during the process.

Figure 10 shows the breakdown of each application’s
running time on each group. The trend is that the original
application takes almost the same amount of time for all
groups. With UNIC, although the first group takes longer
time to execute (24.1% for grep and 51.9% for clamav),
all subsequent groups consistently take a much shorter
time (5.17× speedup for grep and 5.57× speedup for
clamav). This is because for the first group, all com-
putations are new and UNIC needs to insert them to the
result cache. Once this is done, all subsequent groups can
benefit from it. The overall speedups for the executions
on all seven groups are 2.94× for grep and 2.71× for
clamav. We foresee that with more number of groups
the overall speedup should be even higher. Therefore,
UNIC is practical for a group of users working together
or doing similar tasks.

6.3 Storage Space

We now evaluate the storage overhead of UNIC. For each
application we used for the performance evaluation in
§6.2.2, we examined the number of entries in the result
cache. To study the total space used for memoization, we
also let Redis dump a snapshot of all data and measured
the size of the dump file.

Table 2 shows the results. Column (a) is the number
of input files. Column (b) is the total size of input files.
Column (c) is the number of entries in the result cache.
Column (d) is the size of the Redis dump file. The rel-
ative storage overhead is thereby Column (d) divided by
Column (b), which is shown in Column (e). The results
depict that the average overhead of the memoization stor-
age for all applications is 3.45%, negligible compared
with the storage of all file data. Therefore, UNIC incurs
little storage overhead.

7 Discussion and Limitations

We discuss UNIC’s security implications and limitations.

Denial-of-service attacks. A malicious user may issue a
large number of put requests on manufactured inputs, and
pollute the result cache with useless results. Several ap-
proaches can be used to defend against it. For example,
UNIC may rate-limit puts to the result cache, employ a
quota mechanism to limit the cache space for each client
application, or enforce time-to-live limits on cached re-
sults. We argue that even if the result cache is full, the
worst outcome would be that future computations cannot
be memoized and have to be recomputed, yet the secrecy
and integrity of computations are not violated.

Side-channel information leakage. A malicious user
may enumerate through a large set of inputs on an appli-
cation, and observe if some executions are significantly
faster than others. Based on the observed timings, she
may infer what computations have been done by other
users and what have not. While defending against this
side-channel attack is out of the scope of this paper, we
note that the application developers may defend against
it by rate-limiting queries to the result cache or randomly
forcing cache misses even if the result exists in the cache.

Brute-force attacks. A malicious user may enumerate
through all possible hash values of the application code
and input, in hopes of getting cached results. We argue
that the possibility for an unprivileged user to get a valid
hash is minimal. Even if she manages to get an entry,
she only knows the result, but she cannot generate the
original code and input from the hash. In the example
of virus scanning, she might brute-force a hash and dis-
cover the result of scanning some file, but she cannot de-
termine the original content of that file. Again, UNIC
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Application (a) File count (b) File size (c) Entry count (d) Dump size (e) Overhead
clamav (Linux) 47,336 508.1MB 44,277 2.8MB 0.55%
clamav (Dropbox) 2,792 10.8GB 82,061 4.4MB 0.04%
pbzip2 1 544.0MB 4,151 106.4MB 19.55%
grep linux (simple) 47,336 508.1MB 70631 11.2MB 2.21%
grep linux (complex) 47,336 508.1MB 51532 4.2MB 0.83%
grep tags (simple) 1 250.0MB 2 5.3MB 2.13%
grep tags (complex) 1 250.0MB 2 4.5MB 1.80%
gcc3 47,336 508.1MB 522 2.3MB 0.46%

Table 2: Storage overhead. Columns are: (a) the number of input files, (b) total size of input files, (c) number of entries in the result
cache, (d) size of the Redis dump file, and (e) relative storage overhead.

may defend against this attack by rate-limiting queries to
the result cache. Furthermore, if the result is sensitive
by itself (e.g., cat), the application developer may en-
crypt it before putting it to the result cache, or the system
administrator may disable UNIC for such applications.

Application bugs. Ensuring bug-free code is a hard
problem orthogonal to UNIC and code attestation. If
the application contains a bug such as buffer overflow,
a malicious user may exploit the bug to poison the result
cache. Existing systems such as baggy bounds check-
ing [1] and AddressSanitizer [28] can prevent many
memory access bugs. Other countermeasures include
letting the application rerun the computation and ver-
ify the cached result periodically, and purging the result
cache when a bug is found. In addition, using hardware-
enforced isolation mechanisms such as Intel TXT [18]
with TPM, or Intel SGX [5, 17] may avoid this issue.

8 Related Work

Storage deduplication. Storage deduplication reduces
data redundancy at either file-level [22] or block-
level [12, 32]. ZFS [36] is a widely used cross-platform
filesystem that does block deduplication at the time data
is written. These works are orthogonal to UNIC, and
UNIC’s cross-layer design allows it to transparently lever-
age storage deduplication information.

Ad-hoc caching. Many applications use ad-hoc caching
to improve performance, but they either trust all users,
or simply disallow cross-user caching. For example,
ccache [9] caches compiler outputs on the local filesys-
tem, but the cache can be easily exploited or poisoned by
any user. On the other hand, clamav [10] only caches
virus scanning results within a single session, rendering
cross-session and cross-user caching impossible. UNIC
improves the status quo with strong security guarantees.

Memoization. Memoization [19, 23, 26] is a technique
that reuses prior computation results of functions with-

3Not all files are used for compilation due to our experiment con-
figuration.

out side effects. Vesta [16] uses memoization for soft-
ware configuration management. Nectar [15] memoizes
intermediate results from DryadLINQ [35] programs. In-
coop [7] uses memoization to build a MapReduce frame-
work for incremental computations. However, these sys-
tems handle only specific computations, and it is non-
trivial to generalize their use cases. UNIC can be used to
deduplicate general computations.

Code attestation. Many code attestation techniques ex-
ist to provide integrity of computations. For example,
result-checking [33] verifies the result produced by a pro-
gram by computing it in two ways. Secure boot mech-
anisms [3, 4] verify the integrity of the software stack
after booting. BIND [30] ties the proof of what compu-
tation has been run to the result that the computation has
produced. Pioneer [29] provides code integrity guaran-
tees for running software on an untrusted system. UNIC
makes novel use of the code attestation mechanism to
protect the secrecy and integrity of memoization.

9 Conclusion

We presented UNIC, a general system for applications
to securely deduplicate their rich computations. It uses
code attestation mechanism to achieve both secrecy and
integrity. It explores a cross-layer design that allows ap-
plications to leverage storage deduplication information
for speed. Evaluation results show that UNIC is easy to
use, speeds up applications by up to 21.4×, and incurs
little storage overhead.
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