
Exploiting Code Symmetries for Learning Program Semantics

Kexin Pei 1 2 Weichen Li 1 Qirui Jin 3 Shuyang Liu 4 Scott Geng 5

Lorenzo Cavallaro 6 Junfeng Yang 1 Suman Jana 1

Abstract

This paper tackles the challenge of teaching code
semantics to Large Language Models (LLMs) for
program analysis by incorporating code symmetries
into the model architecture. We introduce a group-
theoretic framework that defines code symmetries
as semantics-preserving transformations, where
forming a code symmetry group enables precise and
efficient reasoning of code semantics. Our solution,
SYMC, develops a novel variant of self-attention that
is provably equivariant to code symmetries from the
permutation group defined over the program depen-
dence graph. SYMC obtains superior performance
on five program analysis tasks, outperforming state-
of-the-art code models, including GPT-4, without
any pre-training. Our results suggest that code
LLMs that encode the code structural prior via the
code symmetry group generalize better and faster.

1. Introduction
Automated program analysis using Large Language Models
(LLMs) has become widely popular for software engineering
and security tasks (Liu et al., 2023; Maniatis & Tarlow, 2023),
but it remains unclear whether code LLMs can stay robust
and generalize to new code (Henke et al., 2022; Rabin et al.,
2021; Gao et al., 2023b;a; Yefet et al., 2020; Bundt et al., 2022;
Zhang et al., 2023). This paper aims to enhance LLMs by
establishing and preserving fundamental code symmetries,
drawing inspiration from translation and rotation symmetries
that typically hold in vision.

Code symmetry. Intuitively, symmetry of code refers to any
transformation applied to a code block that preserves the seman-
tics (i.e., input-output behavior) of the original code. Consider

1Columbia University 2The University of Chicago 3University
of Michigan 4Huazhong University of Science and Technology
5University of Washington 6University College London. Corre-
spondence to: Kexin Pei<kpei@cs.uchicago.edu>, Suman Jana
<suman@cs.columbia.edu>.

Proceedings of the 41st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by the
author(s).

a (sequential) code fragment x=2;y=4. Reordering the in-
structions to y=4;x=2 does not change the semantics of the
code. Of course, any code analysis task that depends solely on
the semantics of the code (e.g., bug detection) needs to preserve
these symmetries by staying invariant to the transformations.
Otherwise, if a bug detector flips its prediction from correct to
buggy due to such simple semantics-preserving permutations,
developers will lose confidence in the tool (Bessey et al., 2010).
Formally, given a code block c and a set of symmetries G, an
LLM m should ensure ∀g∈G,m(g(c))=m(c). Incorporating
such an invariant property in the model has proven an effective
approach in many domains to enforce domain-specific rules
and improve generalization (Cohen & Welling, 2016).

Limitations of existing approaches. A popular way to train
LLMs to be robust to code symmetries is via large-scale
pre-training, where the pre-training dataset likely includes many
semantically equivalent code samples (Roziere et al., 2023).
While this approach improves the generalization, it is inherently
a best-effort attempt and does not guarantee invariance for the
pre-trained model. Without the guarantee, the trained model
lacks assurance when deployed for program analysis (Ullah
et al., 2023), e.g., the malware can be easily transformed to
evade detection. In fact, we find that state-of-the-art LLMs
break desired invariances at an alarmingly high rate, e.g., 18%
in CodeLlama in predicting function names (Table 1) even for
simple code symmetries like a two-statement permutation.

A more direct approach is to explicitly enumerate the code
symmetries via data augmentation. However, it is prohibitively
expensive due to the sheer number of possible symmetries and
their compositions. Similar to pre-training, even exhausting
the code symmetries in the augmented training set does not
provide any guarantee that the trained model stays invariant to
the observed code symmetries. An alternative strategy involves
approximating code symmetry structures as priors within the
model’s architecture, e.g., data and control flow graphs, using
Graph Neural Nets (GNNs) (Allamanis et al., 2017). Such
approaches are argued to offer a better generalization, e.g., as
evidenced in Table 1 where GGNN has the lowest violation
rate among the baselines. However, graph architectures often
restrict a model’s expressiveness relative to LLM architec-
tures (Ying et al., 2021). Moreover, the existing common
practice of encoding code structures into GNNs does not
explicitly preserve code symmetries and thus lacks guarantee

1

Exploiting Code Symmetries for Learning Program Semantics

Table 1: Invariance violation
rate across different code
models (darker colors
indicate more violations).

Violation

SYMC (Ours) 0%
code2vec 61%
code2seq 52%
CodeLlama 18%
CodeT5 16%
DOBF 41%
GGNN 7%
GPT-4 43%
GraphCodeBERT 31%
WizardCoder 14%

c1: assert a > 0
c2: assert b > 0
c3: area = a * b
c4: return area

c2: assert b > 0
c1: assert a > 0
c3: area = a * b
c4: return area

"calculate_area"

...

(a) SYMC (Ours)

"calculate_area"

...

"check"

c1: assert a > 0
c2: assert b > 0
c3: area = a * b
c4: return area

c2: assert b > 0
c1: assert a > 0
c3: area = a * b
c4: return area

(b) Existing code LLMs

Figure 1: (a) SYMC as a G-invariant function name predictor where G is a group of semantics-
preserving statement permutations g. (b) Code LLMs not preserving the symmetries in G and thus
mispredict the label.

that the code symmetries are indeed preserved (see §6).

Our approach. In this paper, we investigate how to modify
expressive architecture like Transformers to provably impose
semantic priors like code symmetries while still preserving
the learning capacity. We introduce a group-theoretic
framework to precisely define code symmetries in terms of
semantics-preserving statement permutations and create LLM
architectures that inherently preserve these symmetries by
construction. Importantly, such a group-theoretic framework
expresses semantic priors in a syntax-agnostic way while being
amenable to be encoded in neural architectures (Cohen &
Welling, 2016; Romero & Cordonnier, 2020). This makes
symmetries an ideal option to represent program semantics as
the inductive bias for code LLM architectures.

Using this framework, we present SYMC, a variant of LLM
architecture designed to provably guarantee invariance to
semantics-preserving statement permutations. This is achieved
through a G-equivariant code representation (r) followed by
a G-invariant prediction (p), with G determined based on the
graph automorphisms of the code block’s interpretation graph
(a generalization of program dependence graph).

Figure 1a shows a concrete example of the benefit of SYMC
when deployed for function name prediction. The code snippets
illustrate a semantics-preserving statement reordering. SYMC
enforces its output to stay invariant via keeping its learned
representation G-equivariant, where the code representation
(e1,e2,e3,e4) is transformed into (e2,e1,e3,e4), followed by a
G-invariant prediction module. By contrast, Figure 1b shows
an existing code model (Jin et al., 2022) that does not preserve
permutation symmetry. In this case, the code representation
(e1,...,e4) is transformed into a completely different set of em-
beddings (e′1,...,e

′
4), leading to a changed prediction. In fact, the

t-SNE visualization in Figure 2 shows that the learned code em-
beddings of existing code models are highly dispersed when the
code is under semantics-preserving permutations, and a large

dispersion:0.00, violation:0.00

(a) SYMC (ours)

dispersion:2.82, violation:0.62

(b) code2vec

dispersion:0.13, violation:0.27

(c) CodeT5

dispersion:3.53, violation:0.59

(d) CodeLlama-7b

Figure 2: Each cluster represents the learned embeddings of
a code block and its semantics-preserving permuted versions.
The cluster’s dispersion (variances to the mean) indicates
that the permutation changes the embeddings, while the color
turning from blue to red indicates the changed predictions.
We take the mean of SYMC’s embedding so it becomes
permutation-invariant (§3.5).

fraction of the permuted samples have their labels mispredicted.

Result summary. We evaluate SYMC on five program analysis
tasks against 12 source code and binary analysis baselines.
For semantics-preserving permutations, SYMC is guaranteed
to stay invariant while the state-of-the-art code LLMs, e.g.,
CodeLlama, violate the invariance by 31.4% on average.
As a result, SYMC outperforms the extensively pre-trained
baselines by up to 67.5%, even though SYMC is only trained

2

Exploiting Code Symmetries for Learning Program Semantics

from scratch without requiring any pre-training. For unseen
semantics-preserving source code transformations beyond per-
mutations, SYMC surpasses the state-of-the-art code baselines
by up to 30.8%, while maintaining 104.8× smaller model
size. On sophisticated code transformations introduced by
compiler optimizations and obfuscations, SYMC outperforms
the extensively pre-trained binary analysis baseline by 30.7%.

2. Preliminaries
This section briefly describes the symmetry groups. See
Appendix A for a more formal description.

A symmetry group (G,◦) consists of a non-empty set G of
transformations and a binary operator ◦ :G×G→G, where
◦ operates on two elements in G, e.g., x,y∈G, and produces
a new transformation z = x◦y,z ∈G. The binary operator
has to be associative, invertible, and there exists an identity
∃1∈G,∀x∈G,x◦1=1◦x.

The elements of a G are abstract transformations that become
concrete when they act on some set X, i.e., they transform
x ∈ X into x′ ∈ X while keeping some properties of x
invariant. Formally, an action • of a G is a binary operation
defined on a set of objects X, i.e., • :G×X →X, where it
is also associative and has an identity.

It is common in the group theory literature to use ◦ to
denote both action and composition, when it is clear from
the context (Higgins et al., 2018). It is also customary to
interchange g(x) and g ◦ x. Therefore, we treat g • (h • x),
g◦(h◦x), and g(h(x)) as the same in the rest of this paper.

A symmetry group comes with two properties, namely
invariance and equivariance, that formalize the concept of
preservation of some properties when a set X is acted upon
by G. Let f be a function that maps each element x∈X to a
corresponding element y in the set Y , indicating the property’s
value for that particular element. f is called G-invariant if
∀g∈G,∀x∈X,f(g◦x)=f(x). f is called G-equivariant if
∀g∈G,∀x∈X,f(g◦x)=g◦f(x).

3. Method
This section describes the construction of group-equivariant
self-attention layers and the group-invariant code model.

3.1. Invariance & Equivariance for Code Models

Code representation units. We establish formal definitions
of the code space as a collection of code blocks, which serve
as the input space for representation learning.
Definition 3.1. A code representation unit (e.g., procedure)
c consists of n instructions from an instruction set I, i.e., c∈In.
The code space In is the set of all code representation units
of interest.

A typical Code Representation Unit (CRU) is a method with
well-defined interfaces, ensuring controlled interaction with
other methods, without arbitrary control transfers. Below, we
provide formal definitions for learning program representation
and predictive learning.

We establish formal properties for code analysis models with
explicit representation learning r and predictive learning p
based on G-equivariance/invariance.
Definition 3.2 (G-equivariant code representation learning).
Let G be a symmetry group consisting of semantics-preserving
transformations applied to a CRU c ∈ In. A representation
function r :In→Rd×n is G-equivariant if for every g∈G and
c∈In, we have g◦r(c)=r(g◦c) (d denotes the dimension of
the embedding to which each instruction is mapped).

Note that here the input space of r (In) and its output space
(Rd×n) are both sets of size n, where each instruction I is
mapped to a Rd vector by the representation function. This
consideration is necessary to ensure the symmetry group can
act on both sets appropriately.
Definition 3.3 (G-invariant code predictive learning). Let
G be a symmetry group consisting of semantics-preserving
transformations applied to program representation vector
c ∈ In. A predictive learning function p : Rd×n → RL is
G-invariant if ∀g∈G,∀e∈Rd×n, p(g◦e)=p(e).

Stacking p on top of r, p ◦ r, leads to a G-invariant model
according to Lemma 5.

3.2. Semantics-Preserving Program Symmetries

A code symmetry is a program transformation that preserves
the input-output behavior of a CRU when interpreted by the
program interpretation function f . The program interpretation
function takes a CRU c∈ In as input. We use I to represent
the set of all input values to execute CRU, and produce output
values represented by the set O.
Definition 3.4. A semantics-preserving code symmetry g
is a transformation acting on c ∈ In (g : In → In) such that
∀in∈I,∀out∈O,f(g◦c,in)=f(c,in)=out.
Definition 3.5. A semantics-preserving program symmetry
group G is a set of semantics-preserving program symmetries
that also satisfy the group axioms.

3.3. Aut(IG): A Program Symmetry Group

In this paper, we focus on a specific symmetry group that main-
tains the structural integrity of CRUs by utilizing their inherent
compositional structure. However, note that this approach is
not the only way to form code symmetry groups and does not
encompass all possible code symmetries. We leave further ex-
ploration in these directions to future work. Next, we describe
the compositional structure of the program interpreter f operat-
ing on a CRU, enabling us to define the program interpretation

3

Exploiting Code Symmetries for Learning Program Semantics

graph that links CRUs to their input-output behavior.

Compositional structure of program interpreter f . The
interpreter function f (defined in §3.2) can be represented as a
composition of individual per-instruction interpreter functions
{f1,...,fn}. Each fi :Ii→Oi interprets a single instruction ci
from the instruction set I (Definition 3.1), takes the input values
ini∈Ii, and produce the output values outi∈Oi. The output
of fi can include both data flow elements (e.g., variables or
memory locations with values assigned by fi) and control flow
elements (e.g., addresses of next interpreter functions fj ∈ f
assigned by fi). Consequently, we can express f as the compo-
sition of different individual interpreters, i.e., fn◦...◦f1, where
later instructions act on the output of previous instructions.

Program interpretation graph (IG). Programs often involve
different control flow paths, such as if-else statements, leading
compositions between individual interpreter functions to a
directed graph instead of a linear sequence. This graph is
referred to as the program interpretation graph. For a given
CRU c, there can be multiple execution paths, each exercising
different subsets of {f1,...,fn}.

To construct the interpretation graph IG=(V,E), we consider
all feasible execution paths of c. In IG, each node Vi ∈ V
corresponds to fi, and each directed edge Ei,j∈E (connecting
Vi to Vj) represents at least one execution path where fj takes
the output of fi as input, i.e., Ei,j=(outi,inj).

Automorphism group of interpretation graph. Our objective
is to find a group of symmetries that act on c while preserving
its input and output behavior as interpreted by f in terms of
I and O (Definition 3.4). Intuitively, as IG represents all ex-
ecution paths of c, any transformations that preserve IG should
also preserve the execution behavior of c. Therefore, we aim to
uncover a group of symmetries that preserve IG (Theorem 1),
and such a group can guide us to construct code analysis model
that can stay invariant to all symmetries of the group (§3.4).

To achieve this, we consider a specific set of symmetries
called the automorphisms of IG, denoted as Aut(IG). An
automorphism is a group of symmetries σ ∈ Aut(IG) that
act on the interpretation graph IG=(V,E). Intuitively, graph
automorphisms can be thought of as permutations of nodes
that do not change the connectivity of the graph. Aut(IG) is
formally defined as follows:
Definition 3.6 (IG Automorphism). IG automorphism is a
group of symmetries σ∈Aut(IG) acting on an interpretation
graph IG=(V,E), where σ is a bijective mapping: σ :V →V ,
such that for every edge Ei,j ∈E, i.e., connecting fi and fj,
there is a corresponding edge (σ(fi),σ(fj))∈E.

We now show how the automorphism σ∈Aut(IG) preserves
all input and output behavior of {f1,...,fn} in the space of
I and O. As mentioned earlier, graph automorphism is a
permutation on the set of nodes in IG such that the edges
Ei,j = (outi,inj) are preserved in the transformed IG′. As

each fi∈{f1,..,fn} operates on ci∈c, we have the following
(see Appendix B for the proof):
Theorem 1. The set of automorphisms σ ∈Aut(IG) forms
a program symmetry group.

3.4. Aut(IG)-Equivariant Code Representation

Existing program analyses using Transformer typically involve
an embedding layer followed by applying l self-attention
layers Al. A prediction head F is then placed on top of Al

for downstream analysis tasks. We can thus consider the
representation learning r as the composition of the embedding
layer and Al, with F as the predictive learning p (§3.1). We
now present the development of a new self-attention layer that
is Aut(IG)-equivariant.

Self-attention. The standard self-attention computation can
be succinctly represented as wv · s(wT

k ·wq), where wv, wk,
and wq are learnable parameters for transforming value, key,
and query, respectively, and s(·) represents scaling by

√
d and

applying Softmax (see Appendix A).

It is easy to show that the existing self-attention layer is
equivariant to permutations (Appendix B). However, we want
to make the self-attention layers equivariant only to Aut(IG),
not all permutations. In the following, we describe how to
build Aut(IG)-equivariant self-attention.

Biasing self-attention with a distance matrix. To build
Aut(IG)-equivariant self-attention layers, denoted as
GA, we add a customized distance matrix dIG to GA:
GA(e)=wve ·s(wke

T ◦wqe+dIG). Such a distance matrix
is a superset of the adjacency matrix of IG, encoding a richer
topology structure of the graph. We relax the definition of
distance matrix dIG here to be no longer symmetrical, as
long as it satisfies the following two properties: (1) dIG stays
invariant when σ∈Aut(IG) acts on IG: dIG =σ(dIG), and
(2) dIG commutes with permutation matrix pσ (σ∈Aut(IG)).

We will describe a concrete instantiation of dIG in §4.2. Based
on the two properties, we have the following Theorem (with
its proof in Appendix B.
Theorem 2. Self-attention GA(e)=wve·s(wke

T ·wqe+dIG)
is Aut(IG)-equivariant.

As the embedding layer is trivially Aut(IG)-equivariant,
composing it with Aut(IG)-equivariant self-attention layers
remains Aut(IG)-equivariant (Lemma 4).

3.5. Aut(IG)-Invariant Predictor

We describe two prediction modules that are inherently
Aut(IG)-invariant, so stacking them on top of the Aut(IG)-
equivariant self-attention layers leads to an Aut(IG)-invariant
code model (Lemma 5).

Token-level. Token-level predictor is often employed when

4

Exploiting Code Symmetries for Learning Program Semantics

c1: int a=1;
c2: int b=2;
c3: int a+=b;
c4: int d=b+a;
c5: return d;

c1 c2

c3

c4

c5

0 1e4 0 0 0

1e4 0 0 0 0

1 1 0 0 0

2 2 1 0 0

3 3 2 1 0

c1 c2 c3 c4 c5

c5

c4

c3

c2

c1

c1 c2 c3 c4 c5

e1 e2 e3 e4 e5

PDG
dPDG

Aut(PDG)-Equivariant Self-Attention

c2 c1 c3 c4 c5

e2 e1 e3 e4 e5

c2 c1 c3 c4 c5

e'1 e'2 e'3 e'4 e'5

Aut(PDG)-Equivariant Self-Attention

Aut(PDG)-Equivariant Self-Attention

Equivariant to Semantics-
Preserving Permutation

Non-Equivariant to Semantics-
Breaking Permutation

Code Block

Bias

Figure 3: Simplified SYMC architecture, which takes as input
the code block and its program dependence graph (PDG) to
construct the Aut(PDG)-equivariant self-attention head.

each input token needs a label, e.g., predicting memory region
per instruction (§5). As the automorphism acts on the input
sequence e but not individual tokens, i.e., the value of the
embedding vectors, the automorphism σ does not apply to
the query vector qi (§3.4). Therefore, we have Lemma 1. See
Appendix B for complete proof.
Lemma 1. The biased self-attention computing the embedding
e′i=GA(ei) is Aut(IG)-invariant.

Pooling-based. Another popular Aut(IG)-invariant predictor
involves pooling the embedding sequence e′ = GA(e),
e.g., using max or mean. Pooling operators are invariant
to permutations, thus to Aut(IG), e.g., the mean pooling
µ(e′)=(Σn

i=1e
′
i)/n is not sensitive to the order of (e′1,...,e

′
n).

Pooling-based predictor is often employed when we aim to pre-
dict the property for the entire input sequence, e.g., predicting
the function signature, detecting function similarity, etc. (§5).

4. SYMC Implementation
This section elaborates on the design choices to implement
Aut(IG)-invariant code analysis. Figure 3 shows the
simplified steps of biasing the self-attention layers to be
equivariant to the semantics-preserving permutation group.

4.1. Relaxing IG to Program Dependence Graph

§3.4 demonstrated how to build Aut(IG)-equivariant self-
attention layers. However, directly constructing IG is compu-
tationally impractical as we need to enumerate all possible exe-

cution paths. To address this, we consider program dependence
graph (PDG), a sound over-approximation to IG that explicitly
captures the control/data dependencies and can be computed
statically and efficiently. PDG (VPDG,EPDG) is a super graph
of IG due to the conservative data flow analysis, sharing the
same vertices but having a superset of edges (EPDG⊇EIG).
Enforcing PDG to be a super graph of IG is crucial because
a subgraph’s automorphism group is a subgroup of the super
graph’s automorphism group (Aut(PDG)⊇Aut(IG)). Thus,
if the self-attention layer is Aut(PDG)-equivariant, it is
guaranteed to be Aut(IG)-equivariant.

PDG construction. We construct PDG edges based on
data and control dependencies between instructions. We
consider three types of data dependencies: read-after-write,
write-after-read, and write-after-write. Additionally, control
dependencies are included to determine the execution order.
These dependencies create a partial order of instructions,
preventing permutations that would violate the edge directions
and potentially alter the program’s input-output behavior.(§3.3).

To identify the control and data dependencies, we employ a
computationally efficient, conservative static analysis approach.
This method is efficient and thus scalable to large datasets, as
demonstrated in Appendix E.2 and Figure 11. For instance,
we treat any two statements that access memory as dependent.
However, this conservative approach may overlook potential
symmetries. We aim to integrate more accurate analyses in the
future, such as alias analysis through abstract interpretation or
dynamic analysis, to reduce overapproximation while managing
the trade-off of increased overhead. Interleaving standard de-
pendency analysis with training/inference to minimize analysis
overhead presents a promising direction for future exploration.

Implementing the static analysis to identify symmetries
presents an additional challenge, as symmetries are defined
at the level of tokens as seen by LLMs, whereas compilers
and other program analysis tools typically perform data
dependency analysis at the Intermediate Representation (IR)
level. It requires significant engineering effort to correlate
IR-level dependencies with source-level tokens and subtokens
for the self-attention layers. Hence, for our initial prototype,
we developed our analysis method based on the source-level
ASTs (as described in §D.1) to simplify the mapping from the
analysis results back to the source code tokens and subtokens.
We note that integrating more sophisticated dependency
analysis routines from existing compiler frameworks to identify
symmetries is a promising area for future work.

4.2. Encoding Graph Structure

This section presents a concrete instance of the distance matrix
defined on PDG, which enables us to prove Aut(PDG)-
equivariance for the resulting self-attention layers.

Distance matrix. Let d denote the distance matrix of PDG

5

Exploiting Code Symmetries for Learning Program Semantics

where dij represents the distance between nodes Vi and Vj.
Each entry dij is a 2-value tuple (pij, nij), indicating the
longest path from the lowest common ancestor of Vi and Vj,
denoted as Tij, to Vi and Vj, respectively. We call pij the
positive distance and nij the negative distance.

We incorporate d into the Multi-Head Self-Attention (MHA) to
ensure Aut(PDG)-equivariance with specific modifications
to the attention heads to handle positive and negative distances.
Particularly, the first half of the attention heads MHAi(e), for
i∈ [1,h/2], are combined with the matrix dp formed by the
positive distances in d (denoted as dpij=pij). The second half
of the attention heads MHAi(e), for i∈ [h/2+1,h], are com-
bined with the matrix dn formed by the negative distances in
d (denoted as dnij=nij). The modified attention heads are de-
fined as: (1) MHAi(e)=wve·s(wke

T ·wqe+dp),i∈ [1,h/2],
(2) MHAi(e)=wve·s(wke

T ·wqe+dn),i∈ [h/2+1,h].

It is easy to show d satisfies the two properties defined in §3.4
(see Appendix B). We thus have:
Lemma 2. The distance matrix d of PDG remains invariant
under the action of σ∈Aut(PDG).
Lemma 3. The distance matrix d of PDG commutes with
permutation matrix pσ of the automorphism σ∈Aut(PDG):
d·pσ=pσ ·d.

Based on these two properties, we can prove each head in
MHA is Aut(PDG)-equivariant, following the same proof
steps to Theorem 2. Therefore, according to Lemma 4, MHA
composed by multiple Aut(PDG)-equivariant heads is also
Aut(PDG)-equivariant.

5. Experimental Setup
This section briefly describes the evaluation tasks and code
transformations. We put the detailed description, e.g., baselines,
evaluation dataset and metrics, etc., in Appendix D.

Task selection. We consider program analysis tasks that take as
input the program code and output different program properties
(see below). These tasks require comprehending code semantics
and behavior, so the model performing these tasks is expected to
stay invariant to code symmetries. We do not consider code gen-
eration tasks, where the input to the program is natural language
or other formal specifications. We leave the study of enforcing
code symmetry constraints in the output as the future work.

Specifically, we consider (1) function name prediction, which
performs an “extreme summarization” of the function behavior.
(2) defect prediction, which detects whether a code block has an
error. (3) function similarity detection, which predicts if a pair
of functions are semantically similar; (4) function signature pre-
diction, which predicts the types (int, float, etc.) of func-
tion arguments; and (5) memory region prediction, which pre-
dicts the memory region (stack, heap, etc.) that each memory-
accessing instruction can possibly access. For (3)-(5), we focus

on analyzing stripped binaries considering is broad applications
in security, e.g., vulnerability detection and security retrofitting.

Code transformations. We consider a set of real-world
semantics-preserving transformations beyond PDG auto-
morphisms to evaluate SYMC’s generalization by staying
Aut(PDG)-equivariant. Instruction permutation occasionally
forms the basis for these transformations. In particular, we
consider two categories of binary code transformations:
(1) compiler optimizations from GCC-7.5 and Clang-8,
some of which reorder instructions for scheduling purposes
(-fdelayed-branch, -fschedule-insns); and (2)
compiler-based obfuscations, where we consider 5 obfuscations
following Jin et al. (2022), such as control flow flattening,
indirect branching, etc.

In addition to binary transformations, we consider six source
code transformations following Rabin et al. (2021) and Wang
et al. (2022): variable rename (VR) - changes the identifier
names; statement permute (SP) – semantics-preserving
permutations; loop exchange (LX) – switches for and
while; boolean exchange (BX) – flips the boolean variables
and negates all their uses by tracking their def-use chain;
unused statement (US) – injects unused string declaration into
a randomly chosen basic block; switch to if (SI) – transforms
switch from/to if statements.

6. Evaluation
6.1. Invariance and Generalization

Evaluating Aut(PDG)-invariance. As SYMC is provably
invariant to Aut(PDG), we aim to study how other baselines
perform under varying percentages of semantics-preserving
statement permutations. Table 2 shows that all baselines, even
having much larger model sizes and extensively pre-trained,
are susceptible to slight permutations, i.e., with their prediction
changed by 31.4% on average for function name prediction.
On defect prediction, SYMC outperforms the pre-trained
baselines by 11.4% on average; even we already fine-tuned
the open-sourced ones, e.g., CodeT5, using the same samples
and steps as SYMC, while SYMC is trained from scratch.
Table 3 shows SYMC outperforms the state-of-the-art
baseline, PalmTree, by 67.5% and remains robust across all
semantics-preserving permutations.

Generalization to unseen transformations. Figure 4 shows
that SYMC’s performance on new samples introduced
by unseen semantics-preserving transformations beyond
permutations, outperforming the model specialized for
this task, e.g., code2seq, by 30.8%. It also outperforms
the two LLMs, GPT-4 and WizardCoder, by 16.1% and
1.63%, respectively. However, we observe that Code Llama
outperforms SYMC by 10%, although SYMC achieves better
results on statement permutation (SP). We attribute this to
Code Llama’s better understanding of natural language due

6

Exploiting Code Symmetries for Learning Program Semantics

Table 2: Comparing SYMC to baselines against semantics-
preserving permutations. We include the F1 score for both
prediction tasks before and after the testing samples are
permuted. The violation rate measures how many samples get
their labels changed after permutation.

Model Size Before After Violate

Function Name Prediction
SYMC (ours) 68.4M 36.3 36.3 0%
code2seq 6.3M 25.5 24.7 61%
code2vec 348M 17.7 19.6 52%
CodeLlama 7B 31.7 31.4 18%
CodeT5 770M 25.4 25.4 16%
DOBF 428M 16.3 20.1 41%
GGNN 53M 1.6 1.6 7%
GPT-4 N/A 30.3 30.7 43%
GraphCodeBERT 481M 20.8 20.6 31%
WizardCoder 3B 33.9 34.6 14%

Defect Prediction
SYMC (Ours) 67.7M 68.8 68.8 0%
CodeBERT 476M 62.2 61.7 4.1%
CodeLlama 7B 51.03 51.39 3.4%
CodeT5 770M 63.3 60 6%
DOBF 428M 62.4 61.5 2.7%
GPT-4 N/A 51.56 50 13.5%
GraphCodeBERT 481M 61.7 61.7 1.3%
UnixCoder 504M 67.1 67.1 2.9%
WizardCoder 3B 49.24 49.24 6.8%

to its extensive pre-training on both code and text, which is
especially beneficial for function name prediction. Nonetheless,
SYMC retains the edge of having a much smaller model size
(104.8×) without the need of any pre-training.

Besides the source-level transformations, we compare SYMC
to baselines on more sophisticated code transformations
introduced by unseen compiler optimizations and obfuscations.
Figure 5 shows that SYMC outperforms PalmTree (see
Appendix D) across all binary analysis tasks (we exclude
memory region prediction as the dataset does not have this
categorization) by 33.8% and 30.7% on seen and unseen
transformations, respectively. While the compiler optimizations
and obfuscations often involve more sophisticated transforma-
tions not directly related to instruction permutations, SYMC
maintains its superior generalization.

6.2. Training Efficiency

Besides the improved robustness and generalization, SYMC is
efficient in avoiding expensive training efforts, e.g., some may
take up to 10 days (Jin et al., 2022). As shown in §6.1, SYMC,
without any pre-training, outperforms the pre-trained baselines.

SymC
code2seq

code2vec
CodeLlama

GGNN
GPT-4

VR SP LX BX US SI
0.0

0.2

0.4

F1

Figure 4: The performance (F1) of SYMC and baselines
against different unseen code transformations defined in §5.

Therefore, in this section, we aim to study SYMC’s perfor-
mance under the limited training resources. Figure 6 shows
that SYMC’s performance (on memory region prediction)
remains the highest when we reduce the model size and
training iterations, outperforming PalmTree by 36.9% and
21.4%, respectively. Even in the most strict scenario, SYMC
remains 38.2% and 15.3% better in both settings.

6.3. Ablations

Equivariance vs. Invariance. We compare the Aut(PDG)-
equivariant self-attention layers to the Aut(PDG)-invariant
ones, an alternative design choice to implement Aut(PDG)-
invariant code models. Figure 7a shows that setting layers
invariant early hinders prediction performance. SYMC with
equivariant layers has an average 0.73 F1 across all training
iterations and outperforms the second-best setting by 60.7%.
This observation confirms the empirical findings that making
earlier layers equivariant instead of invariant leads to better
performance (Higgins et al., 2018).

Adding pre-training. We explore the impact of pre-training
SYMC with masked language modeling (Devlin et al., 2018).
We compare SYMC (without pre-training by default) to
pre-trained versions (and then fine-tuned them for memory
region prediction) with varying pre-training iterations. Fig-
ure 7b shows that pre-training with even one epoch results
in a significantly improved F1 score, e.g., by 10.8%, with
much faster convergence. However, additional pre-training
epochs show diminishing returns, likely due to the limited
training samples, e.g., the F1 score only improves by 3.2%
with pre-training five epochs compared to 1 epoch.

Non-Aut(PDG)-equivariant baselines. We aim to confirm
the performance of SYMC comes from preserving the
symmetry, as opposed to the increased capacity from the
distance matrix in the self-attention layers. To test this
hypothesis, we compare SYMC with the baselines using
the same exact architecture, but only changing the distance
matrix whose entries are (1) kept exactly the same (i.e.,
fully permutation equivariant baseline), and (2) derived from
the relative distance between the monotonically increasing
positions (i.e., non-equivariant relative positional embedding).

7

Exploiting Code Symmetries for Learning Program Semantics

Table 3: Comparing SYMC to binary analysis baselines against semantics-preserving permutations. Function signature and
memory region prediction are measured in F1. Function similarity detection is measured using AUC (area under the ROC curve).
Similar to Table 2, the magnitude of the violation rate is highlighted in red .

Model Function Signature Memory Region Function Similarity
Before After Violate Before After Violate Before After Violate

SYMC 0.88 0.88 0% 0.86 0.86 0% 0.96 0.96 0%
PalmTree 0.59 0.41 24% 0.57 0.43 18% 0.72 0.69 31%
PalmTree-O 0.49 0.41 6% 0.57 0.44 11% 0.8 0.72 35%
PalmTree-N 0.19 0.41 86% 0.32 0.2 32% 0.71 0.72 38%

SymC Palmtree PalmTree-O PalmTree-N

Seen Unseen
0.2

0.4

0.6

0.8

1.0

AU
C

(a) Cross-OPT similarity
Seen Unseen

0.2

0.4

0.6

0.8

1.0

F1

(b) Cross-OPT signature
Seen Unseen

0.2

0.4

0.6

0.8

1.0

AU
C

(c) Cross-OBF similarity
Seen Unseen

0.2

0.4

0.6

0.8

1.0

F1

(d) Cross-OBF signature

Figure 5: Evaluation on unseen optimization and obfuscation (marked in pink). We also include the testing results on seen
optimizations and obfuscations (but the testing samples are non-overlapping with the training) on the left.

SymC Palmtree PalmTree-O PalmTree-N

100% 50% 25% 12.5%

0.4

0.6

0.8

F1

(a) Reduce model size
8k 4k 2k 1k

0.4

0.6

F1

(b) Reduce training iterations

Figure 6: Comparing SYMC and baselines when we (a) reduce
the model weights, and (b) reduce the number of training
iterations, and observe how that affects the performance.

Figure 7c shows the comparison of testing F1 score by training
the three models on memory region prediction tasks. Note that
both baselines adopt the same shape of the distance matrix as
SymC, so their number of parameters is identical with SYMC
as well. The results demonstrate that SymC outperforms the
fully permutation equivariant one and the non-equivariant one
by 14.5% and 36.4%, respectively.

7. Limitations and Future Work
Overhead. While SYMC incurs additional overhead in
generating PDG for each sample, we have demonstrated that
our graph construction is relatively cheap (Appendix E.2,
Figure 11), and we can interleave it with the training/inference

to further improve the efficiency.

In essence, SYMC imposes the equivariance constraints regard-
less of training. This implies that a slight finetuning to help the
model simply adapt to the symmetry constraints while special-
izing for downstream tasks would be likely enough (Basu et al.,
2023). This is exactly why SYMC can obtain strong results
by training the model from scratch using the typical fine-tuning
tasks (not next token prediction or masked language modeling).

Other code symmetries. Our current framework focuses on the
permutation group, but it extends to all transformations as long
as they form a group. For example, variable name renaming is
also a permutation over the entire vocabulary. SymC can also be
readily applied to token permutation, e.g., a=a+1 to a=1+a
is a symmetry with a proper type inference, e.g., ensuring a
is not a string and + is not a string concatenation operator.

However, the expressivity of the code symmetry can be
restrictive to certain transformations. For example, insertion
and deletion operations (e.g., deadcode elimination) are not
invertible. Therefore, a new formalism, i.e., semigroup (Hille
& Phillips, 1996) which relaxes the requirement of invertibility
(§2), is required. Moreover, it is often an expensive manual
effort to identify the symmetry group structure for arbitrary
code transformations. For example, it is unclear how a compiler
optimization pass, e.g., gcc O3, can be expressed using a
sequence of insertion, deletion, and permutation operations. It
would be an interesting future direction to uncover the unknown
code symmetry from these transformations (Huh, 2024).

8

Exploiting Code Symmetries for Learning Program Semantics

1 2 3 4 5 6 7 8 9 10
Training Iterations (k)

0.24

0.26

0.28

0.30

Te
st

in
g

F1

Equivariant SymC F1=0.73
2nd 4th 6th

(a) Equivariant vs. invariant

1 2 3 4 5 6 7 8 9 10
Training Iterations (k)

0.7

0.8

Te
st

in
g

F1

w/o pre-train
pre-train 1 epoch

pre-train 5 epochs
pre-train 10 epochs

(b) Pre-training SYMC

1 2 3 4 5 6 7 8 9 10
Training Iterations (k)

0.5

0.6

0.7

Te
st

in
g

F1

Non-Equivariant Relative Positional Embedding
Fully Permutation Equivariant SymC

(c) Non-Aut(PDG)-equivariant baselines

Figure 7: (a) Setting SYMC’s self-attention layers invariant in earlier layers. (b) Pre-training SYMC with varying pre-training
epochs. (c) Comparing the Aut(PDG)-equivariant layers with the fully permutation equivariant ones (distance matrix with
identical values) and non-equivariant ones (default relative position embeddings (Raffel et al., 2020; Wang et al., 2021)).

8. Related Work
Code representation learning. Previous research aims to auto-
mate software development tasks through code representation
learning (Ding et al., 2023; Feng et al., 2020; Guo et al., 2022;
Ahmad et al., 2021). Typical methodologies involve employing
new model architectures and pre-training objectives with the
goal of learning code representation that can be reused for other
downstream program analysis and understanding tasks (Hel-
lendoorn et al., 2019; Bieber et al., 2020; Pei et al., 2022; 2021;
Allamanis et al., 2017; Sun et al., 2020; Peng et al., 2021; Kim
et al., 2021; Guo et al., 2020). However, unlike our approach,
these approaches do not provide any guarantees that the under-
lying models can be robust against any semantics-preserving
transformations including simple permutations.

An alternative popular setting is to ground the program with its
execution behavior so it learns semantics-aware code represen-
tations (Wen et al., 2024; Pei et al., 2022; Ding et al., 2023; Nye
et al., 2021; Souza & Pradel, 2023; Wang & Su, 2020; Bieber
et al., 2022; Ye et al., 2022). One caveat of incorporating execu-
tion in SYMC is that the dynamic traces are often incomplete to
expose all possible code behaviors. Therefore, it might suffer
from identifying false symmetries. However, as conservative
static analysis can miss many true symmetries, dynamic traces
can assist the analysis in canonicalizing transformations that are
hard to reason about statically. In our current formulation based
on PDG, we only consider symmetries for all input, but it can be
relaxed to a subset of inputs, which is an exciting future work.

Symmetry in deep learning. Symmetry plays a crucial
role in creating efficient neural architectures in various
domains (Reiser et al., 2022; Wang et al., 2020; Bogatskiy et al.,
2020; Perraudin et al., 2019; Cohen & Welling, 2016; Gordon
et al., 2019; Dehmamy et al., 2021). Different architectures,
such as CNNs, GNNs, and Transformers, leverage symmetry
as the inductive bias to build model architectures robust to
geometric transformations such as translations, rotations,

permutations, etc. (Lee et al., 2019; Cohen & Welling, 2016;
Esteves et al., 2018; Hutchinson et al., 2021; Gordon et al.,
2019; Romero & Cordonnier, 2020). SYMC sets the first step
to formalize code semantics learning using symmetry groups.

Recent studies have explored various strategies beyond
symmetry groups to encode the geometric properties of input,
aiming to enhance the model’s robustness, generalization,
and sample efficiency. These efforts include integrating
symbolic operations into the neural architecture (Chaudhuri
et al., 2021; Li et al., 2023; Kim et al., 2017; Hu et al., 2016)
and designing specialized loss functions (Fort et al., 2019;
Basu et al., 2023; Huh, 2024). Neural-symbolic approaches
are particularly appealing for modeling programs, as programs
typically encompass symbolic elements, such as syntactic and
semantic rules, and fuzzy elements, such as natural language
comments and function/variable names. However, developing
differentiable components for symbolic rules might require
extensive effort from the domain expert (Yi et al., 2018; Garcez
et al., 2022). SYMC represents a new alternative to express
program semantics in a way that is amenable to engineering
the neural architecture, thanks to the rich literature in the
domain of geometric deep learning (Bronstein et al., 2017). By
representing program semantics as code symmetry groups, our
approach holds the promise of enhancing inference efficiency
by bypassing the interpretation of symbolic rules, which often
face scalability challenges in traditional program analysis.

9. Conclusion
We studied code symmetries’ impact on code LLM archi-
tectures for program reasoning. We introduced a novel self-
attention variant that guarantees equivariance against code sym-
metries based on the permutation group. We implement SYMC
and evaluate against various semantics-preserving transforma-
tions across different program analysis tasks, demonstrating the
improved generalization in reasoning and analyzing programs.

9

Exploiting Code Symmetries for Learning Program Semantics

Acknowledgement
We thank the anonymous reviewers for their constructive
comments and feedback, which significantly improved this
paper. This work was supported in part by NSF grants
CNS-2154874, CNS-1564055, ONR grant N00014-17-1-2788,
an NSF career award, a Google ASPIRE Award, multiple
Google Cyber NYC awards, Columbia SEAS/EVPR Stimulus
award, Columbia SEAS-KFAI Generative AI and Public
Discourse Research award, and Accenture.

Impact Statement
Security-critical program analysis tools like those used for
vulnerability detection and malware analysis have increasingly
relied upon advanced machine learning, such as Large
Language Models (LLMs), for improved efficiency, precision,
and automation. However, incorrect predictions from learned
code analysis impede the deployment and introduce more
vulnerabilities in the deployed systems. This paper develops
a new language to represent program semantics in a way that
is amenable to being enforced in LLM architectures. Different
from the philosophy of LLMs where all the rules are expected
to be learned in an entirely data-driven manner, we want to
emphasize the formal aspects of our approach to provably
guarantee that the LLMs follow the precisely defined rules.
Overall, this paper aims to advance generative AI technologies
such as LLMs to make them trustworthy for high-assurance
programming systems.

References
Ahmad, W. U., Chakraborty, S., Ray, B., and Chang, K.-W.

Unified pre-training for program understanding and
generation. arXiv preprint arXiv:2103.06333, 2021.

Allamanis, M., Peng, H., and Sutton, C. A convolutional
attention network for extreme summarization of source
code. In International conference on machine learning, pp.
2091–2100. PMLR, 2016.

Allamanis, M., Brockschmidt, M., and Khademi, M. Learn-
ing to represent programs with graphs. arXiv preprint
arXiv:1711.00740, 2017.

Alon, U., Brody, S., Levy, O., and Yahav, E. code2seq:
Generating sequences from structured representations of
code. arXiv preprint arXiv:1808.01400, 2018.

Alon, U., Zilberstein, M., Levy, O., and Yahav, E. code2vec:
Learning distributed representations of code. Proceedings of
the ACM on Programming Languages, 3(POPL):1–29, 2019.

Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi,
F., Wressnegger, C., Cavallaro, L., and Rieck, K. Dos and
don’ts of machine learning in computer security. In 31st

USENIX Security Symposium (USENIX Security 22), pp.
3971–3988, 2022.

Basu, S., Sattigeri, P., Ramamurthy, K. N., Chenthamarakshan,
V., Varshney, K. R., Varshney, L. R., and Das, P. Equi-tuning:
Group equivariant fine-tuning of pretrained models. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 6788–6796, 2023.

Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem,
S., Henri-Gros, C., Kamsky, A., McPeak, S., and Engler, D.
A few billion lines of code later: using static analysis to find
bugs in the real world. Commun. ACM, 53:66–75, February
2010.

Bieber, D., Sutton, C., Larochelle, H., and Tarlow, D. Learning
to execute programs with instruction pointer attention
graph neural networks. Advances in Neural Information
Processing Systems, 33:8626–8637, 2020.

Bieber, D., Goel, R., Zheng, D., Larochelle, H., and Tarlow,
D. Static prediction of runtime errors by learning to execute
programs with external resource descriptions. arXiv preprint
arXiv:2203.03771, 2022.

Biggs, N., Biggs, N. L., and Norman, B. Algebraic graph
theory. Number 67. Cambridge university press, 1993.

Bogatskiy, A., Anderson, B., Offermann, J., Roussi, M.,
Miller, D., and Kondor, R. Lorentz group equivariant neural
network for particle physics. In International Conference
on Machine Learning, pp. 992–1002. PMLR, 2020.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and
Vandergheynst, P. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Bundt, J., Davinroy, M., Agadakos, I., Oprea, A., and
Robertson, W. Black-box attacks against neural binary
function detection. arXiv preprint arXiv:2208.11667, 2022.

Chaudhuri, S., Ellis, K., Polozov, O., Singh, R., Solar-Lezama,
A., Yue, Y., et al. Neurosymbolic programming. Foun-
dations and Trends® in Programming Languages, 7(3):
158–243, 2021.

Chua, Z. L., Shen, S., Saxena, P., and Liang, Z. Neural nets
can learn function type signatures from binaries. In 26th
USENIX Security Symposium, 2017.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In International conference on machine learning,
pp. 2990–2999. PMLR, 2016.

Dehmamy, N., Walters, R., Liu, Y., Wang, D., and Yu,
R. Automatic symmetry discovery with lie algebra
convolutional network. Advances in Neural Information
Processing Systems, 34:2503–2515, 2021.

10

Exploiting Code Symmetries for Learning Program Semantics

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

Ding, Y., Steenhoek, B., Pei, K., Kaiser, G., Le, W., and Ray,
B. Traced: Execution-aware pre-training for source code.
arXiv preprint arXiv:2306.07487, 2023.

Esteves, C., Allen-Blanchette, C., Makadia, A., and Daniilidis,
K. Learning so (3) equivariant representations with spherical
cnns. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 52–68, 2018.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M.,
Shou, L., Qin, B., Liu, T., Jiang, D., et al. Codebert: A
pre-trained model for programming and natural languages.
arXiv preprint arXiv:2002.08155, 2020.

Fernandes, P., Allamanis, M., and Brockschmidt, M. Structured
neural summarization. arXiv preprint arXiv:1811.01824,
2018.

Fort, S., Hu, H., and Lakshminarayanan, B. Deep en-
sembles: A loss landscape perspective. arXiv preprint
arXiv:1912.02757, 2019.

Gao, F., Wang, Y., and Wang, K. Discrete adversarial attack to
models of code. Proceedings of the ACM on Programming
Languages, 7(PLDI):172–195, 2023a.

Gao, S., Gao, C., Wang, C., Sun, J., Lo, D., and Yu, Y. Two
sides of the same coin: Exploiting the impact of identifiers
in neural code comprehension. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE),
pp. 1933–1945. IEEE, 2023b.

Garcez, A. d., Bader, S., Bowman, H., Lamb, L. C., de Pen-
ning, L., Illuminoo, B., Poon, H., and Zaverucha, C. G.
Neural-symbolic learning and reasoning: A survey and
interpretation. Neuro-Symbolic Artificial Intelligence: The
State of the Art, 342(1):327, 2022.

Gordon, J., Lopez-Paz, D., Baroni, M., and Bouchacourt,
D. Permutation equivariant models for compositional
generalization in language. In International Conference on
Learning Representations, 2019.

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L.,
Duan, N., Svyatkovskiy, A., Fu, S., et al. Graphcodebert:
Pre-training code representations with data flow. arXiv
preprint arXiv:2009.08366, 2020.

Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., and Yin,
J. Unixcoder: Unified cross-modal pre-training for code
representation. arXiv preprint arXiv:2203.03850, 2022.

Guo, W., Mu, D., Xing, X., Du, M., and Song, D. DEEPVSA:
Facilitating value-set analysis with deep learning for

postmortem program analysis. In 28th USENIX Security
Symposium (USENIX Security 19), 2019.

Hellendoorn, V. J., Sutton, C., Singh, R., Maniatis, P., and
Bieber, D. Global relational models of source code. In
International conference on learning representations, 2019.

Henke, J., Ramakrishnan, G., Wang, Z., Albarghouth, A.,
Jha, S., and Reps, T. Semantic robustness of models of
source code. In 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER),
pp. 526–537. IEEE, 2022.

Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L.,
Rezende, D., and Lerchner, A. Towards a definition of dis-
entangled representations. arXiv preprint arXiv:1812.02230,
2018.

Hille, E. and Phillips, R. S. Functional analysis and semi-
groups, volume 31. American Mathematical Soc., 1996.

Hu, Z., Ma, X., Liu, Z., Hovy, E., and Xing, E. Harnessing
deep neural networks with logic rules. arXiv preprint
arXiv:1603.06318, 2016.

HuggingFace and ServiceNow. BigCode is an open
scientific collaboration working on the responsible de-
velopment and use of large language models for code.
https://www.bigcode-project.org/, 2022.

Huh, D. Discovering symmetry group structures via implicit
orthogonality bias. arXiv preprint arXiv:2402.17002, 2024.

Hutchinson, M. J., Le Lan, C., Zaidi, S., Dupont, E., Teh, Y. W.,
and Kim, H. Lietransformer: Equivariant self-attention
for lie groups. In International Conference on Machine
Learning, pp. 4533–4543. PMLR, 2021.

Ji, S., Xie, Y., and Gao, H. A mathematical view of attention
models in deep learning. Texas A&M University: College
Station, TX, USA, 2019.

Jin, X., Pei, K., Won, J. Y., and Lin, Z. Symlm: Predicting
function names in stripped binaries via context-sensitive
execution-aware code embeddings. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1631–1645, 2022.

Just, R., Jalali, D., and Ernst, M. D. Defects4j: A database of
existing faults to enable controlled testing studies for java pro-
grams. In Proceedings of the 2014 international symposium
on software testing and analysis, pp. 437–440, 2014.

Kim, S., Zhao, J., Tian, Y., and Chandra, S. Code prediction
by feeding trees to transformers. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE),
pp. 150–162. IEEE, 2021.

11

https://www.bigcode-project.org/

Exploiting Code Symmetries for Learning Program Semantics

Kim, Y., Denton, C., Hoang, L., and Rush, A. M. Structured
attention networks. arXiv preprint arXiv:1702.00887, 2017.

Knuth, D. Permutations, matrices, and generalized young
tableaux. Pacific journal of mathematics, 34(3):709–727,
1970.

Lachaux, M.-A., Roziere, B., Szafraniec, M., and Lample,
G. Dobf: A deobfuscation pre-training objective for
programming languages. Advances in Neural Information
Processing Systems, 34:14967–14979, 2021.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh,
Y. W. Set transformer: A framework for attention-based
permutation-invariant neural networks. In International Con-
ference on Machine Learning, pp. 3744–3753. PMLR, 2019.

Li, X., Yu, Q., and Yin, H. Palmtree: Learning an assembly
language model for instruction embedding. In 2021 ACM
SIGSAC Conference on Computer and Communications
Security, 2021.

Li, Z., Huang, J., and Naik, M. Scallop: A language for
neurosymbolic programming. Proceedings of the ACM on
Programming Languages, 7(PLDI):1463–1487, 2023.

Liu, D., Metzman, J.,
and Chang, O. AI-
Powered Fuzzing: Break-
ing the Bug Hunting
Barrier. https://
security.googleblog.
com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.
html, 2023.

Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao, C.,
Ma, J., Lin, Q., and Jiang, D. Wizardcoder: Empowering
code large language models with evol-instruct. arXiv
preprint arXiv:2306.08568, 2023.

Maniatis, P. and Tarlow, D. Large sequence
models for software development activities.
https://ai.googleblog.com/2023/05/
large-sequence-models-for-software.
html?m=1, 2023.

Marcelli, A., Graziano, M., Ugarte-Pedrero, X., Fratantonio,
Y., Mansouri, M., and Balzarotti, D. How machine learning
is solving the binary function similarity problem. In 31st
USENIX Security Symposium (USENIX Security 22), pp.
2099–2116, 2022.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., et al. Show your work: Scratchpads for
intermediate computation with language models. arXiv
preprint arXiv:2112.00114, 2021.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N.,
Grangier, D., and Auli, M. Fairseq: A fast, extensible
toolkit for sequence modeling. In 2019 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies:
Demonstrations, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L.,
et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing
systems, 32, 2019.

Pei, K., Guan, J., Broughton, M., Chen, Z., Yao, S., Williams-
King, D., Ummadisetty, V., Yang, J., Ray, B., and Jana,
S. Stateformer: fine-grained type recovery from binaries
using generative state modeling. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, pp. 690–702, 2021.

Pei, K., Xuan, Z., Yang, J., Jana, S., and Ray, B. Trex: Learning
execution semantics from micro-traces for binary similarity.
IEEE Transactions on Software Engineering, 2022.

Peng, H., Li, G., Wang, W., Zhao, Y., and Jin, Z. Integrating tree
path in transformer for code representation. Advances in Neu-
ral Information Processing Systems, 34:9343–9354, 2021.

Perraudin, N., Defferrard, M., Kacprzak, T., and Sgier, R.
Deepsphere: Efficient spherical convolutional neural net-
work with healpix sampling for cosmological applications.
Astronomy and Computing, 27:130–146, 2019.

Rabin, M. R. I., Bui, N. D., Wang, K., Yu, Y., Jiang, L., and
Alipour, M. A. On the generalizability of neural program
models with respect to semantic-preserving program
transformations. Information and Software Technology, 135:
106552, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
Exploring the limits of transfer learning with a uni-
fied text-to-text transformer. Journal of Machine
Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Ramakrishnan, G., Henkel, J., Wang, Z., Albarghouthi, A., Jha,
S., and Reps, T. Semantic robustness of models of source
code. arXiv preprint arXiv:2002.03043, 2020.

Reiser, P., Neubert, M., Eberhard, A., Torresi, L., Zhou, C.,
Shao, C., Metni, H., van Hoesel, C., Schopmans, H., Som-
mer, T., et al. Graph neural networks for materials science
and chemistry. Communications Materials, 3(1):93, 2022.

Romero, D. W. and Cordonnier, J.-B. Group equivariant
stand-alone self-attention for vision. arXiv preprint
arXiv:2010.00977, 2020.

12

https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://ai.googleblog.com/2023/05/large-sequence-models-for-software.html?m=1
https://ai.googleblog.com/2023/05/large-sequence-models-for-software.html?m=1
https://ai.googleblog.com/2023/05/large-sequence-models-for-software.html?m=1
http://jmlr.org/papers/v21/20-074.html

Exploiting Code Symmetries for Learning Program Semantics

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan,
X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., et al. Code
llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

Souza, B. and Pradel, M. Lexecutor: Learning-guided
execution. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 1522–1534, 2023.

Sun, Z., Zhu, Q., Xiong, Y., Sun, Y., Mou, L., and Zhang,
L. Treegen: A tree-based transformer architecture for code
generation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 8984–8991, 2020.

Ullah, S., Han, M., Pujar, S., Pearce, H., Coskun, A., and
Stringhini, G. Can large language models identify and
reason about security vulnerabilities? not yet. arXiv preprint
arXiv:2312.12575, 2023.

Wang, K. and Su, Z. Blended, precise semantic program
embeddings. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pp. 121–134, 2020.

Wang, R., Walters, R., and Yu, R. Incorporating symmetry into
deep dynamics models for improved generalization. arXiv
preprint arXiv:2002.03061, 2020.

Wang, S., Li, Z., Qian, H., Yang, C., Wang, Z., Shang, M.,
Kumar, V., Tan, S., Ray, B., Bhatia, P., et al. Recode:
Robustness evaluation of code generation models. arXiv
preprint arXiv:2212.10264, 2022.

Wang, Y., Wang, W., Joty, S., and Hoi, S. C. Codet5:
Identifier-aware unified pre-trained encoder-decoder models
for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021.

Wen, Y., Yin, P., Shi, K., Michalewski, H., Chaudhuri, S.,
and Polozov, A. Grounding data science code gener-
ation with input-output specifications. arXiv preprint
arXiv:2402.08073, 2024.

West, D. B. et al. Introduction to graph theory, volume 2.
Prentice hall Upper Saddle River, 2001.

Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., and Song, D.
Neural network-based graph embedding for cross-platform
binary code similarity detection. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 363–376, 2017.

Ye, H., Martinez, M., and Monperrus, M. Neural program re-
pair with execution-based backpropagation. In Proceedings
of the 44th international conference on software engineering,
pp. 1506–1518, 2022.

Yefet, N., Alon, U., and Yahav, E. Adversarial examples for
models of code. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):1–30, 2020.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., and Tenenbaum,
J. Neural-symbolic vqa: Disentangling reasoning from
vision and language understanding. Advances in neural
information processing systems, 31, 2018.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen,
Y., and Liu, T.-Y. Do transformers really perform badly
for graph representation? Advances in Neural Information
Processing Systems, 34:28877–28888, 2021.

Zhang, N. Hikari – an improvement over Obfuscator-LLVM.
https://github.com/HikariObfuscator/
Hikari, 2017.

Zhang, Z., Tao, G., Shen, G., An, S., Xu, Q., Liu, Y., Ye,
Y., Wu, Y., and Zhang, X. Pelican: Exploiting backdoors
of naturally trained deep learning models in binary code
analysis. In 32nd USENIX Security Symposium, 2023.

A. Detailed Preliminaries
This section formally defines the symmetry group and the invari-
ance and equivariance properties against the symmetry group.

Symmetry group. Intuitively, a symmetry is a transformation
or operation on an object that preserves certain properties of
the object. For example, in the context of image classification,
a rotation operation acting on an image of a ball, which does
not change the label of the ball, can be considered a symmetry.
A symmetry group is a set of such symmetries with some
additional properties. An arbitrary set of symmetries does not
always form a symmetry group. To form a symmetry group,
a set of operations must possess certain additional properties
as described below.
Definition A.1. A symmetry group (G, ◦) consists of a
non-empty set G of transformations and a binary operator
◦ : G × G → G, where ◦ operates on two elements (i.e.,
transformations) in G, e.g., x,y ∈ G, and produces a new
transformation z=x◦y. (G,◦) should satisfy four axioms:

• Associativity: ∀x,y,z∈G,x◦(y◦z)=(x◦y)◦z

• Identity: ∃1∈G,∀x∈G,x◦1=1◦x

• Inverse: ∀x∈G,∃x−1∈G,x◦x−1=1

• Closure: ∀x,y∈G,x◦y∈G

Action of a symmetry group. As defined above, the elements
of a G are abstract transformations that become concrete when
they act on some set X, i.e., they transform some object x∈X
into another object x′ ∈X while keeping some properties of

13

https://github.com/HikariObfuscator/Hikari
https://github.com/HikariObfuscator/Hikari

Exploiting Code Symmetries for Learning Program Semantics

the object invariant. Formally, an action of a symmetry group
G is defined as follows:
Definition A.2. An action • of a symmetry group (G, ◦)
is a binary operation defined on a set of objects X, i.e.,
• :G×X→X1, where

• Identity: ∀x∈X,1•x=x

• Compatibility: ∀g,h∈G,x∈X,(g◦h)•x=g•(h•x)

As a concrete example, X can be a set of programs and G
can be all possible instruction permutations that preserve the
input-output behavior of the programs in X. It might seem
unclear at this point how these permutations form a group
(satisfying group axioms). We will formalize the notion of
permutations and their actions on programs in §3.3.

Notation. It is common in the group theory literature to use
◦ to denote both action and composition, when it is clear from
the context which operation is being used (Higgins et al., 2018).
For example, (g◦h)◦x denotes composing the two transfor-
mations g and h and then letting the composite transformation
act on an object x. It is also customary to interchange g(x)
and g◦x where both denote applying a function/action on x.
Therefore, we treat g•(h•x), g◦(h◦x), and g(h(x)) as the
same and follow this convention in the rest of this paper.

Invariance and equivariance. A symmetry group comes
with two properties, namely invariance and equivariance, that
formalize the concept of preservation of some properties when
a set X is acted upon by the symmetry group G. Invariance
refers to the property that remains unchanged under the action
of the symmetry group. Equivariance, on the other hand,
expresses the compatibility between the action of the symmetry
group and the property.

To define this more precisely, we need to introduce a function
f : X → Y , where X is the set under consideration and Y
is the co-domain representing the range of possible values
associated with the property of interest. The function f maps
each element x∈X to a corresponding element y in the set
Y , indicating the property’s value for that particular element.
We now define the equivariance and invariance of f operating
on X against the group operations in G.
Definition A.3. Let f :X → Y be a function where X and
Y are two sets and G be the symmetry group that acts on both
sets X and Y .2

• Invariant: f is called G-invariant if ∀g ∈ G, ∀x ∈
X,f(g◦x)=f(x).

1In group theory literature, this is often called the left action, but we
will omit “left” as it is the only type of action we will use in this paper.

2We assume that X and Y have the same number of elements for
the action of G to be defined on both X and Y .

• Equivariant: f is called G-equivariant if
∀g∈G,∀x∈X,f(g◦x)=g◦f(x).

Given the definition of G-equivariant function, we have the
following lemmas:
Lemma 4. Let f1, f2 be two functions that are both
G-equivariant and h=f1◦f2 be the new function composed
by f1 and f2. h is also G-equivariant.
Lemma 5. Let f1, f2 be two functions where f1 is G-
equivariant and f2 is G-invariant, and h = f2 ◦ f1 be the
function composed by f1 and f2. h is G-invariant.

Self-attention layers. Given the embeddings of all vertices fi
from IG, we consider a sequence of embeddings by flattening
IG following the order of instructions in c. Let this sequence
of embeddings be denoted as e=(e1,...,en). The self-attention
computation, denoted as A, takes e as input and produces
another sequence of embeddings, denoted as (e′1,...,e

′
n).

The core operations in self-attention A involve updating each
embedding ei through the following steps:

1. First, it maps each embedding ei to three embeddings
(query, key, and value): qi=fq(ei), ki=fk(ei), vi=fv(ei),
where fq, fk, and fv are affine transformations (i.e.,
fully-connected linear layers) parameterized by wq, wk, and
wv, respectively.

2. Next, it computes the attention score aij between every
pair of embeddings ei and ej by taking the dot product
between the query qi of ei and the key kj of ej: aij=qi·kj.
The attention scores form a square matrix, where each cell
aij indicates the attention that ei should pay to ej. The
attention scores are then divided by

√
d (the dimension of

the embedding vectors), scaled using the softmax function
to ensure they sum up to 1: âij=

exp(aij)∑n
j=1exp(aij)

. These two
operations are denoted by s.

3. Finally, the scaled attention score âij is multiplied by vj,
and a vector sum is computed: e′i=

∑n
j=1âijvij.

B. Complete Proofs
Lemma 4. Let f1 and f2 be two functions that are both
G-equivariant and h=f1◦f2 be the new function composed
by f1 and f2. h is also G-equivariant.

14

Exploiting Code Symmetries for Learning Program Semantics

Proof. For all g∈G and any input x, we have

h(g◦x)=(f1◦f2)(g◦x)
=f1(f2(g◦x)) ▷ Associativity

=f1(g◦f2(x)) ▷ f2 is equivariant to g

=g◦f1(f2(x)) ▷ f1 is equivariant to g

=g◦(f1◦f2)(x) ▷ Associativity

=g◦h(x)

Therefore, h(g◦x)=g◦h(x), so h is G-equivariant.

Lemma 5. Let f1 and f2 be two functions where f1 is G-
equivariant f2 is G-invariant, and h=f2◦f1 be the new func-
tion composed by applying f1 and then f2. h is G-invariant.

Proof. For all g∈G and any input x, we have

h(g◦x)=(f2◦f1)(g◦x)
=f2(f1(g◦x)) ▷ Associativity

=f2(g◦f1(x)) ▷ f1 is equivariant to g

=f2(f1(x)) ▷ f2 is invariant to g

=(f2◦f1)(x) ▷ Associativity

=h(x)

Theorem 1. The set of automorphisms σ ∈Aut(IG) forms
a program symmetry group.

Proof. Consider an arbitrary σ ∈ Aut(IG). Definition 3.6
states that for all fi∈{f1,...,fn}, σ(fi) have the same edges
as IG before σ was applied. As σ is a permutation and there
is also a bijective mapping between fi and ci, i.e., fi always
interprets ci, we have σ(fi)=fi(σ◦ci,ini). Definition 3.6 also
states that σ(fi) is connected with the same edges. Therefore,
the output ofσ(fi)=outi. We thus have fi(σ◦ci,ini)=outi=
fi(ci,ini),∀σ∈Aut(IG) and ∀fi∈{f1,...,fn}. Therefore, all
σ ∈Aut(IG) are semantics-preserving program symmetries,
according to Definition 3.4. Moreover, it is well known in the
literature that the automorphisms of any graph form a group by
satisfying group axioms (Definition A.1) (Biggs et al., 1993;
West et al., 2001). Therefore, Aut(IG) forms a group of pro-
gram symmetries, according to Definition 3.5: Aut(IG)∈G.

Permutation matrix. Let π be a symmetry in the permutation
group that permutes input embeddings e ∈ Rd×n to the
self-attention layer. Applying π is done by e with a permutation
matrix pπ ∈ {0,1}n×n (Knuth, 1970). pπ is an orthogonal
binary matrix with a single 1 in each column and row, and 0s
elsewhere. Right-multiplying e with pπ permutes columns, and
left-multiplying eT with pTπ permutes rows.

Lemma 1. The biased self-attention layer computing the
embedding e′i=GA(ei) is Aut(IG)-invariant.

Proof.

e′i=GA(σ·ei)
=wvσ(e)·s(wkσ(e)

T ·wqei+σ(di))

di is a column vector, so permuting the row of di is achieved
by pTσdi (see §3.4):

=wvepσ ·s((wkepσ)
T ·wqei+pTσdi)

=wvepσ ·s(pTσ (wke)
T ·wqei+pTσdi)

=wve(pσp
T
σ)·s((wke)

T ·wqei+di)

pσ is an orthogonal matrix (see §3.4):

=wve·s((wke)
T ·wqei+di)

=GA(ei)

Lemma 2. The distance matrix d of PDG remains invariant
under the action of σ∈Aut(PDG).

Proof. We need to show that the longest path pσ(i)σ(j) from
σ(Tij) to σ(Vi) remains the same as pij (the same applies to
nσ(i)σ(j)). Without loss of generality, we focus on proving
pσ(i)σ(j)=pij.

Assume there exists a longest path P = (Tij, ..., Vi). Let
P ′ =(σ(Tij),...,σ(Vi)) be the corresponding longest path in
σ(PDG) under the automorphism σ. We need to demonstrate
two properties.

First, P ′ is a valid path from σ(Tij) to σ(Vi). Since P is a
valid path, Tij is adjacent to its next node in P (denoted as Vm),
and this holds for every pair of neighboring nodes until Vi. As
σ is an automorphism, the same adjacency relationship holds
for P ′, where σ(Tij) is adjacent to σ(Vm) and so on, until
σ(Vi). Hence, P ′ is a valid path from σ(Tij) to σ(Vi) in PDG.

Second, we aim to show that |P | = |P ′|, meaning
pσ(i)σ(j)=pij. Suppose, for contradiction, that pσ(i)σ(j)≠pij.
Let’s consider the case where pσ(i)σ(j)>pij. This implies that
the length of the path P ′=(σ(Tij),σ(Vm),...,σ(Vn),σ(Vi)) is
longer than pij.

Now, let’s apply σ−1 to each node in P ′, resulting in σ−1(P ′).
Since σ−1 is also in Aut(PDG) and σ−1(σ(V)) = V
(Definition A.1), each pair of adjacent nodes in P ′, after
applying σ−1, remains adjacent. Furthermore, the path formed
by these adjacent nodes has a length of pσ(i)σ(j), connecting
Tij and Vi in the original PDG.

Therefore, we obtain a path in PDG connecting Tij and Vi
that is longer than pij, contradicting the fact that pij is the
longest path in PDG between Tij and Vi. Thus, we reject the
assumption that pσ(i)σ(j)<pij.

15

Exploiting Code Symmetries for Learning Program Semantics

Similarly, we can prove that pσ(i)σ(j) > pij is also false by
demonstrating its contradiction with the fact that pσ(i)σ(j) is
the longest path in σ(PDG).

Hence, we conclude that pσ(i)σ(j) = pij, and as a result, the
positive distance matrix dp remains invariant under the action
of σ∈Aut(PDG).

By following the same steps, we can prove that nσ(i)σ(j)=nij,
demonstrating the invariance of the negative distance matrix
dn under the action of σ∈Aut(PDG).

Therefore, the distance matrix d remains invariant.

Lemma 3. The distance matrix d of PDG commutes with
permutation matrix pσ of the automorphism σ∈Aut(PDG):
d·pσ=pσ ·d.

Proof. According to Lemma 2, we have:

pTσ ·d·pσ=d

pσ ·pTσ ·d·pσ=pσ ·d ▷ Apply pσ on both side

d·pσ=pσ ·d ▷ pσ is orthogonal

Lemma 6. Standard self-attention layer A is equivariant to
the group of all permutations of input sequences.

Proof. Based on the operations performed by the self-attention
layer and the permutation matrix, we can show the equivariance
property as follows (Ji et al., 2019):

A(π·e)
=wvπ(e)·s(wkπ(e)

T ·wqπ(e))

=wvepπ ·s((wkepπ)
T ·wqepπ) ▷ Apply pπ

=wvepπ ·s(pTπ (wke)
T ·wqepπ)

=wve(pπp
T
π)·s((wke)

T ·wqe)pπ

=wve·s((wke)
T ·wqe)pπ ▷ pπ is orthogonal

=π(A(e))

Based on Lemma 2 and Lemma 3, we now prove Theorem 2
– the biased self-attention layer is Aut(IG)-equivariant.

Proof.

GA(σ·e)
=wvσ(e)·s(wkσ(e)

T ·wqσ(e)+σ(dIG))

σ(·) denotes applying the permutation matrix pσ. As we have
σ(dIG)=dIG (the first property of dIG):

=wvepσ ·s((wkepσ)
T ·wqepσ+dIG)

Softmax s is permutation equivariant, and dIG ·pσ=pσ ·dIG
(the second property of dIG):

=wve(pσp
T
σ)·s((wke)

T ·wqe·pσ+dIG ·pσ)
=wve·s((wke)

T ·wqe+dIG)·pσ
=σ(GA(e))

C. SYMC Implementation Details
Input sequences to self-attention. The Transformer self-
attention layer takes an input sequence of embeddings e
generated by the embedding layer Emb. It consists of four
input sequences: the instruction sequence c, per-instruction
positional embeddings, and node centrality, denoted as xc,
xpos, xind, and xoutd, respectively. For example, given
the instruction sequence a=a+1;b=a, xc represents the
tokenized sequence as (a,=,a,+,1,b,=,a). xpos assigns
positions such that each new instruction/statement begins
with position 1 of its first token and increases by 1 for each
subsequent token within the instruction.

The centrality of each instruction is encoded by the in-degree
and out-degree of the corresponding node in PDG. For each
token in ci, we annotate it with its in-degree (number of
incoming edges) and out-degree (number of outgoing edges).
For instance, in the case of a=a+1;b=a, the in-degree
sequence xind is (0, 0, 0, 0, 0, 1, 1, 1), and the out-degree
sequence xoutd is (1,1,1,1,1,0,0,0).

We embed the four sequences independently using the
embedding layers Embc, Embpos, Embind, and Emboutd.
The final input embedding sequences Emb(x) are obtained
by summing the embedded sequences for each token:
Emb(x) = Embc(xc) + Embpos(xpos) + Embind(xind) +
Emboutd(xoutd). We have the following lemma:
Lemma 7. The sum of the input embedding tokens sequences
is Aut(PDG)-equivariant: Emb(σ◦x)=σ◦Emb(x).

Group axiom of inclusion specifies that composing the
Aut(PDG)-equivariant embedding layers with Aut(PDG)-
equivariant MHA layers results in an Aut(PDG)-equivariant
representation learning component r in our implementation.

D. Detailed Experiment Setup
D.1. Implementation Details

We implement SYMC using Fairseq (Ott et al., 2019)
PyTorch (Paszke et al., 2019). We conduct all the experiments
on three Linux servers with Ubuntu 20.04 LTS, each featuring

16

Exploiting Code Symmetries for Learning Program Semantics

an AMD EPYC 7502 processor, 128 virtual cores, and 256GB
RAM, with 12 Nvidia RTX 3090 GPUs in total.

PDG construction. To compute PDG for x86 assembly code,
we utilize Ghidra to lift the assembly code into P-Code, an in-
termediate representation used by Ghidra, to track implicit data
and control flow via the FLAGS register. The key advantage
of using Ghidra P-Code is that it keeps the side effects of the
instructions, e.g., manipulating flag registers, explicit. For ex-
ample, cmp instruction will set the zero flag implicitly at the
assembly level, but Ghidra P-Code will translate it into a series
of IR instructions with one of them operating on the ZF explic-
itly. We then analyze the data and control dependencies between
each pair of P-Code instructions and flag the corresponding as-
sembly code pair as dependent if at least one dependent P-Code
instruction pair exists between those of the assembly code pair.

To compute PDG for Java functions, we employ JavaParser
on Java ASTs for each statement to analyze control and
data dependencies. We iterate through every pair of the
statements and connect the dependent statement pairs with the
directed edge. We extract control-flow dependencies between
statements by connecting edges between different basic blocks
to prevent permutations among basic blocks.

Datasets. We use the Java dataset collected by Allamanis et al.
(2016) to evaluate the function name prediction. The dataset
includes 11 Java projects, such as Hadoop, Gradle, etc., totaling
707K methods and 5.6M statements. We fix Hadoop as our
test set and use the other projects for training, to ensure the two
sets do not overlap.

For binary analysis, we collect and compile 27 open-source
projects, such as OpenSSL, ImageMagic, CoreUtils, SQLite,
etc., which contain approximately 1.13M functions and
137.6M instructions. We categorize the binaries based on the
compilers (GCC or Clang), optimizations (O0-O3), and
obfuscations (using a LLVM-based obfuscation passes based
on Hikari (Zhang, 2017)) and show their statistics in Table 4.

D.2. Experiment Configurations

Program analysis tasks for evaluation. For source code anal-
ysis tasks, we focus on the method name prediction and defect
prediction. Method name prediction aims to predict the func-
tion name (in natural language) given the body of the method.
This task has been extensively evaluated by prior works to
test the generalizability of code models (Rabin et al., 2021).
Following the strategies adopted in SymLM (Jin et al., 2022),
we tokenize the function names and formulate the function
name prediction as a multi-label classification problem, i.e.,
multiple binary classifications that predict the presence of a
specific token in the vocabulary. We then match the predicted
tokens with the tokenized ground truth tokens to compute the
F1 score. We thus employ a 2-layer fully-connected network
F :Rd→{0,1}L on top of a mean-pooled embedding from self-

Table 4: The statistics of our binary dataset, categorized by
compilers, optimizations, obfuscations, and lengths.

Files # Functions # Instructions

Different Compilers
GCC 1,140 274,840 33,464,420
Clang 1,136 279,832 31,949,673

Different Optimization Levels
O0 285 98,451 10,202,328
O1 285 61,298 7,096,903
O2 285 61,298 7,096,903
O3 285 57,023 9,101,578

Different Compiler Obfuscations
bcf 158 61,701 9,173,168
cff 158 59,724 11,146,990
ind 158 56,291 2,501,422
spl 158 61,379 9,652,268
sub 158 59,694 6,198,900

attention layers to ensure Aut(PDG)-invariance (§3.5), where
L is the vocabulary of all function name tokens in our dataset.

The defect prediction task is much more simplified than
method name prediction. It is a binary classification task to
predict whether a given Java method is buggy or not. We
obtain the dataset from Defects4J (Just et al., 2014).

We consider three binary analysis tasks commonly used to
evaluate ML-based approaches to security applications (Li et al.,
2021). The first task is function similarity detection. It aims
to detect semantically similar functions, e.g., those compiled
by different compiler transformations (see below). This task
is often used to detect vulnerabilities, i.e., by searching similar
vulnerable functions in firmware, or malware analysis, i.e., by
searching similar malicious functions to identify the malware
family (Marcelli et al., 2022; Xu et al., 2017). We leverage
the pooling-based predictor (§3.5) by taking the mean of the
embeddings e produced by the last self-attention layer and feed
that to a 2-layer fully-connected neural network F :Rd→Rd.
We then leverage the cosine distance between the output of F
for a pair of function embeddings, i.e., e1,e2, to compute their
similarity: cos(F(µ(e1)),F(µ(e2))).

The second task is function signature prediction (Chua et al.,
2017). It aims to predict the number of arguments and their
source-level types given the function in stripped binaries.
Similar to function similarity detection, we stack a 2-layer
fully-connected network F :Rd →L on top of mean-pooled
embeddings from self-attention layers, which outputs the
function signature label, e.g., L={int,float,...}.

The third task is memory region prediction (Guo et al., 2019),
which aims to predict the type of memory region, i.e., stack,
heap, global, etc., that each memory-accessing instruction can

17

Exploiting Code Symmetries for Learning Program Semantics

access in a stripped binary. As the prediction happens for
each instruction, we employ the token-level predictor (§3.5) F :
Rd→L, where L={stack, heap, global, other}.

Baselines. We consider nine baselines for function name
prediction, including the dedicated models trained to predict
function names (Alon et al., 2019; 2018; Fernandes et al., 2018)
and code LLMs (Luo et al., 2023; Guo et al., 2020; Lachaux
et al., 2021; Wang et al., 2021; Roziere et al., 2023). For defect
prediction, we excluded the models specialized for function
name prediction, while including two additional code models
that have been evaluated in the defect prediction task (Guo
et al., 2022; Feng et al., 2020). Note that the dataset used to
train the baseline LLMs might overlap with our test set. For
example, Hadoop (our test set for function name prediction,
see Appendix D) is included in BigCode (HuggingFace & Ser-
viceNow, 2022), one of the widely used datasets to train code
LLMs. Our goal is to demonstrate SYMC still generalizes better
than existing code LLMs under such a disadvantaged setting.

For tasks (3)-(5), we compare to PalmTree (Li et al., 2021), the
only binary code model that has evaluated on all our considered
tasks. To ensure a fair comparison, we include three PalmTree
versions: PalmTree, PalmTree-O, and PalmTree-N. PalmTree
is pre-trained on 2.25 billion instructions. PalmTree-O is
pre-trained on 137.6 million instructions using our own dataset
(Appendix D), with full access to fine-tuning and evaluation
data (excluding labels), while not accessible by SYMC as it
is not pre-trained. We aim to show SYMC’s strong general-
izability even in this disadvantaged setting. PalmTree-N serves
as the baseline Transformer encoder without being pre-trained.

Transformations. We consider a set of semantics-preserving
transformations beyond PDG automorphisms to evaluate how
preserving Aut(PDG)-equivariant improves SYMC’s gener-
alizability. Notably, some of these program transformations
(described below) have enabled instruction reordering, which
inherently performs instruction permutations.

We consider two categories of binary code transformations:
(1) compiler optimizations, where we examine 4 optimization
levels (O0-O3) from GCC-7.5 and Clang-8, some of which
involve instruction permutations, like reordering for scheduling
purposes (-fdelayed-branch, -fschedule-insns);
and (2) compiler-based obfuscations, where we follow
SymLM (Jin et al., 2022) by using 5 obfuscations written
in LLVM, i.e., control flow flattening (cff), instruction
substitution (sub), indirect branching (ind), basic block split
(spl), and bogus control flow (bcf), which inherently include
reordering instructions, e.g., adding a trampoline.

Hyperparameters. We use SYMC with 8 attention layers,
12 attention heads, and a maximum input length of 512. For
training, we use 10 epochs, a batch size of 64, and 14K/6K
training/testing samples (strictly non-overlapping) unless stated
otherwise. We employ 16-bit weight parameters for SYMC

to optimize for memory efficiency.

Evaluation metrics. For most analysis tasks (§5), we use F1
score, the harmonic mean of precision and recall. We follow
the existing works (Jin et al., 2022) and adopt their definition of
F1 beyond the binary classifier. Take function name prediction
as an example, we first tokenize both the ground truth and the
predicted function names into a set of tokens, i.e., W and W ′,
respectively. In this case, precision measures out of W ′, how
many tokens in W ′ appear in W : precision= W∩W ′

|W ′| , and
recall measures out of all the tokens in W , how many of them
are correctly predicted in W ′: recall= W∩W ′

|W | . We measure
the precision and recall and compute the F1 score for each
sample accordingly. We then average them across all samples.

For function similarity detection, as the cosine distance between
two function embeddings can be an arbitrary real value between
-1 and 1, a threshold is needed to determine whether pairs
are similar or not. Therefore, we employ the ROC curve
by varying the thresholds and measuring the corresponding
True Positive Rate (TPR): TPR= True Positives

True Positives+False Negatives and
False Positive Rate (FPR): FPR= False Positives

False Positives+True Negatives . The
ROC curve is then plotted with FPR at the x-axis and TPR at
the y-axis. Following Li et al. (2021), we leverage the Area
Under Curve (AUC) score of the ROC curve to quantify the
performance for ease of comparison.

We note that AUC-ROC might not be the most reliable
metric (Arp et al., 2022), but we choose it primarily for
comparing to the baselines whose results are measured in
AUC-ROC (Li et al., 2021).

E. Additional Experiments
E.1. Generalization and Robustness

Table 5 shows the complete results of SYMC and baselines
against semantics-preserving code transformations across differ-
ent analysis tasks. w measures the number of steps of applying
(non-repeated) 2-statement permutations by permuting different
statements. The larger thew, the more permutations are applied.
While we do not observe a clear trend that a higher violation
rate or decreased performance correlates with the number
of times applying permutation, SYMC consistently shows
consistent performance and 0 violation rate. On the contrary,
all the baselines are not robust against the permutations and
have their labels changed, i.e., by up to 86% violation rate.

Table 6 shows the complete results when evaluating SYMC and
other baselines on new samples transformed by the semantics-
preserving transformations that have never been presented in the
training. We integrate CodeWordNet (Jin et al., 2022) to relax
predicted names to a cluster of synonyms, addressing the issue
of ambiguity of function names. However, the performance
of SYMC decreases to 0.309 (was 0.374) when we measure
the exact match. As discussed in §6.1, we observe that SYMC

18

Exploiting Code Symmetries for Learning Program Semantics

Table 5: Complete evaluation statistics on samples under different percentages of semantics-preserving permutations. F1 measures
the prediction performance of function name, function signature, and memory region. AUC (area under the ROC curve) measures the
function similarity detection performance. The violation rate is highlighted in red . The larger the violation rate, the darker the color.

Model
Size

Train
Size

F1 & AUC Invariance Violation (%)
Before w=1 w=2 w=3 w=4 w=1 w=2 w=3 w=4

Function
Name

SYMC 68.4M 202M 0.363 0.364∗ 0.363 0.363 0.363 0 0.1∗ 0 0
code2seq 6.3M 5.1G 0.255 0.238 0.236 0.237 0.247 54 53 57 61
code2vec 348M 32G 0.177 0.199 0.195 0.197 0.196 53 53 52 52
CodeLlama 7B N/A 0.317 0.317 0.314 0.303 0.314 19 18 19 18
CodeT5 770M N/A 0.254 0.254 0.254 0.254 0.254 9 13 15 16
DOBF 428M N/A 0.163 0.182 0.182 0.175 0.201 22 28 36 41
GGNN 53M 2.4G 0.016 0.016 0.016 0.016 0.016 4 4 5 7
GPT-4 N/A N/A 0.303 0.313 0.317 0.329 0.307 42 43 45 43
GraphCodeBERT 481M N/A 0.208 0.205 0.212 0.202 0.206 13 22 28 31
WizardCoder 3B N/A 0.339 0.347 0.348 0.359 0.346 6 7 12 14

Defect
Prediction

SYMC 67.7M 720K 0.688 - - - 0.688 - - - 0
CodeBERT 476M N/A 0.622 - - - 0.617 - - - 4.1
CodeT5 770M N/A 0.633 - - - 0.6 - - - 6
DOBF 428M N/A 0.624 - - - 0.615 - - - 2.7
GraphCodeBERT 481M N/A 0.617 - - - 0.617 - - - 1.3
UnixCoder 504M N/A 0.671 - - - 0.671 - - - 2.9

Function
Signature

SYMC 58.3M 12M 0.88 0.88 0.88 0.88 0.88 0 0 0 0
PalmTree 3.2M 17.4G 0.59 0.55 0.49 0.42 0.41 12 23 18 24
PalmTree-O 3.2M 5.3G 0.49 0.48 0.45 0.41 0.41 19 6 12 6
PalmTree-N 3.2M 614M 0.19 0.41 0.41 0.41 0.41 83 82 83 86

Memory
Region

SYMC 58.9M 340M 0.86 0.86 0.86 0.86 0.86 0 0 0 0
PalmTree 3.07M 17.9G 0.57 0.45 0.45 0.48 0.43 17 17 28 18
PalmTree-O 3.07M 5.8G 0.57 0.42 0.45 0.47 0.44 10 13 14 11
PalmTree-N 3.07M 1.1G 0.32 0.22 0.29 0.17 0.2 30 36 31 32

Function
Similarity

SYMC 58.9M 133M 0.96 0.96 0.96 0.96 0.96 0 0 0 0
PalmTree 3.06M 17.4G 0.72 0.61 0.53 0.71 0.69 18 19 30 31
PalmTree-O 3.06M 5.3G 0.8 0.79 0.76 0.72 0.72 30 28 30 35
PalmTree-N 3.06M 614M 0.71 0.64 0.56 0.66 0.72 11 18 24 38

∗We observe a slight value change due to the floating point precision error by adopting memory-efficient 16-bit.

outperforms the strong baselines, e.g., code2seq, by 30.8%.

Unseen optimizations. We vary the compiler optimizations
in training and evaluation and include reference experiments
where the training and evaluation share the same optimization
options (marked in gray). For function similarity detection,
training on O0-O1 means the function pair has one function
compiled with O0 and the other with O1. In the case of
evaluating on unseen optimizations, the corresponding testing
set has to come from those compiled with O2-O3 to ensure
the optimizations are unseen.

Figure 8 shows that SYMC outperforms PalmTree by 31%
when evaluated on unseen optimizations. SYMC experiences
a performance drop (e.g., by 28.6%) when not trained on O0
but tested on those compiled with O0. We believe this drop
is caused by the extensive optimizations already enabled at
the O1 (e.g., GCC employs 47 optimizations to aggressively
reduce execution time and code size). The shift in distribution
between O1 and O0 is much more pronounced than
between O2 and O1, indicated by a KL divergence of 1.56
from O1 to O0 compared to 0.06 (96.2% lower) from O3
to O2. Nevertheless, when evaluated on seen optimizations,

19

Exploiting Code Symmetries for Learning Program Semantics

Table 6: The performance (F1) of SYMC and baselines against different unseen code transformations.

Transform Applied SYMC code2seq code2vec CodeLlama GGNN GPT-4 WizardCoder

Variable
Rename

Before 0.389 0.334 0.264 0.461 0.029 0.356 0.362
After 0.375 0.335 0.247 0.426 0.026 0.351 0.361

Statement
Permute

Before 0.363 0.241 0.177 0.317 0.019 0.303 0.339
After 0.363 0.234 0.196 0.314 0.019 0.307 0.346

Loop
Exchange

Before 0.373 0.283 0.243 0.414 0.007 0.310 0.379
After 0.357 0.299 0.241 0.399 0.007 0.308 0.366

Boolean
Exchange

Before 0.421 0.332 0.268 0.360 0.031 0.329 0.414
After 0.412 0.272 0.242 0.447 0.026 0.323 0.406

Unused
Statement

Before 0.347 0.296 0.267 0.429 0.016 0.316 0.358
After 0.342 0.285 0.26 0.428 0.012 0.309 0.350

Switch
to If

Before 0.372 0.31 0.376 0.430 0.027 0.326 0.385
After 0.372 0.293 0.33 0.429 0.009 0.332 0.379

SymC Palmtree PalmTree-O PalmTree-N

O2-O3 Seen opts
0.2

0.4

0.6

0.8

1.0

AU
C

(a) Train O0-O1
O1-O3 Seen opts

(b) Train O0-O2
O1-O2 Seen opts

(c) Train O0-O3
O0-O3 Seen opts

(d) Train O1-O2
O0-O2 Seen opts

(e) Train O1-O3
O1-O0 Seen opts

(f) Train O2-O3

O0 O1 O2 O3
0.00

0.25

0.50

0.75

F1

(g) Train O0

O0 O1 O2 O3
0.00

0.25

0.50

0.75

F1

(h) Train O1

O0 O1 O2 O3
0.00

0.25

0.50

0.75

F1

(i) Train O2

O0 O1 O2 O3
0.00

0.25

0.50

0.75

F1

(j) Train O3

Figure 8: Unseen optimization evaluation. The upper row, i.e., (a)-(f), shows the results on function similarity detection. The lower
row, i.e., (g)-(j), are results on function signature prediction. We also include the evaluation on seen optimizations (marked in gray).

SYMC outperforms PalmTree by 28.1% on average.

Unseen obfuscations. We compare SYMC to baselines on
generalization to unseen obfuscations. Figure 9 shows that
SYMC outperforms PalmTree (on average) on unseen and seen
obfuscations by 33.3% and 36.6%, respectively. Similar to
the observations in evaluating unseen optimizations, while the
obfuscations are not directly related to instruction permutations
(i.e., automorphisms in Aut(PDG)), SYMC maintains its
superior performance.

Unseen lengths. Besides the code transformations, we
look into SYMC’s generalization to longer sequences than
those seen in training, a popular task for evaluating model
generalizability (Gordon et al., 2019). We divide samples into
four length bins (bin1 to bin4) based on their distribution
in the dataset (§5). The bins are non-overlapping and increase
in length. For example, we used bins [0-10], [1-20], [21-50],

Table 7: The performance (F1) of SYMC and baselines against
the adversarial transformations transformations.

Orig. Adv. Invariance
Violation (%)

SYMC 52.9 47.5 26
GraphCodeBERT 52.56 42.89 51
DOBF 51.59 39.68 51
CodeT5 44.21 36.66 47

and [51-500] for function similarity detection. Figure 10
demonstrates that SYMC maintains strong generalization to
longer sequences, outperforming PalmTree by 41.8%.

Adversarial robustness. In addition to randomly transforming
samples, we consider adversarial attacks where the generation

20

Exploiting Code Symmetries for Learning Program Semantics

SymC Palmtree PalmTree-O PalmTree-N

sub cff bcf ind spl
0.4

0.6

0.8

1.0

AU
C

(a) Train sub

sub cff bcf ind spl

(b) Train cff

sub cff bcf ind spl

(c) Train bcf

sub cff bcf ind spl

(d) Train ind

sub cff bcf ind spl

(e) Train spl

sub cff bcf ind spl

0.5

1.0

F1

(f) Train sub

sub cff bcf ind spl

(g) Train cff

sub cff bcf ind spl

(h) Train bcf

sub cff bcf ind spl

(i) Train ind

sub cff bcf ind spl

(j) Train spl

Figure 9: Unseen obfuscations evaluation. Similar to Figure 8, the upper row, i.e., (a)-(e), shows the results on function similarity
detection. The lower row, i.e., (f)-(j), are results on function signature prediction. We also include the evaluation on seen
optimizations (marked in gray).

SymC Palmtree PalmTree-O PalmTree-N

bin1-
bin2

bin1-
bin3

bin1-
bin4

bin2-
bin3

bin2-
bin4

bin3-
bin4

0.0

0.5

1.0

AU
C

(a) Function similarity

bin1-
bin2

bin1-
bin3

bin1-
bin4

bin2-
bin3

bin2-
bin4

bin3-
bin4

0.00

0.25

0.50

0.75

F1

(b) Function signature

bin1-
bin2

bin1-
bin3

bin1-
bin4

bin2-
bin3

bin2-
bin4

bin3-
bin4

0.00

0.25

0.50

0.75

F1

(c) Memory region

Figure 10: Evaluation on unseen samples with longer lengths. bin1-bin4 denotes training on samples with lengths in bin1
and testing on those in bin4.

of semantics-preserving transformations is further guided by an
objective that maximizes the changed predictions of the model.
In particular, we compare SYMC and the baselines against the
adversarial attack, i.e., Averloc (Ramakrishnan et al., 2020),
for function name prediction. The adversarial transformations
implemented in Averloc include a subset of the code transforma-
tions we considered, e.g., variable renaming, dead code inser-
tion, etc., with additional transformations such as loop unrolling.
We follow the setting in Averloc by computing the adversarial
attacks against a seq2seq model trained by the Averloc authors,
and evaluate SYMC and the baselines on the generated adver-
sarial examples. This ensures a fair comparison by evaluating
all the models on the same set of adversarial examples.

Table 7 shows that SYMC outperforms the second-best baseline,
GraphCodeBERT, by 10.7% and 49%, in F1 and violation rate
on the adversarial examples, respectively. This indicates the
strong robustness of SYMC against adversarial code transforma-
tions, even though the attacks are not statement permutations.

E.2. Efficiency

Overhead. To incorporate the inductive bias of code, many
code models involve extracting and encoding code structures, in-
cluding our baselines, e.g., GraphCodeBERT and GGNN. This
is because computing PDGs statically is not overly expensive.
Figure 11 shows the runtime performance (in milliseconds) per
code sample of SYMC and PalmTree on extracting code struc-
tures, training, and inference, using the same exact hardware.

SYMC’s cheap computation of PDG incurs 88.8× less runtime
overhead than PalmTree. However, our approach does incur
additional computational cost for graph construction. Therefore,
it remains an interesting research problem to incorporate
system optimization, e.g., caching, to improve the efficiency
of the PDG computation during inference.

Training efficiency. We study the training effort (including
both pre-training and fine-tuning) of SYMC and PalmTree.
Table 8 shows their GPU hours, power, and emitted carbon diox-
ide estimation when they reach 0.5 F1 score in memory region
prediction. We assume the GPU always reaches its power cap

21

Exploiting Code Symmetries for Learning Program Semantics

Graph Construction Training Inference

10
1

10
2

10
3

Ti
m

e
(m

s)
SymC PalmTree

Figure 11: Comparing SYMC to standard Transformer
encoder in terms of the additional overhead introduced by
constructing PDG, and training and inference with PDG-biased
self-attention layers.

Table 8: The resource consumed by training SYMC and other
baselines to reach 0.5 F1 score in memory region prediction.

Time
(Hours)

Power
(kWh)

Carbon
(CO2eq)

SYMC 0.07 0.025 0.009
PalmTree-O∗ 89.67 31.38 11.64
∗PalmTree did not disclose its hours for pre-training, so we include the

pre-training time (in 10 epochs) based on our own pre-trained PalmTree.

(350W) to estimate an upper bound of the power usage. CO2eq
stands for the carbon dioxide equivalent, a unit for measuring
carbon footprints. By being more training efficient, SYMC
incurs 1,281× less total GPU time, power, and emitted carbon
dioxide than PalmTree in obtaining the same performance.

22

