2024 IEEE Symposium on Security and Privacy (SP) | 979-8-3503-3130-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/SP54263.2024.00126

2024 IEEE Symposium on Security and Privacy (SP)

SMARTINV: Multimodal Learning for Smart Contract Invariant Inference

Sally Junsong Wang*, Kexin Pei*f, Junfeng Yang*
*Columbia University, NY The University of Chicago, IL
jw4074 @columbia.edu, kpei@cs.uchicago.edu, junfeng@cs.columbia.edu

Abstract—Smart contracts are software programs that enable
diverse business activities on the blockchain. Recent research has
identified new classes of “machine un-auditable” bugs that arise
from source code not meeting underlying transaction contexts.
Existing detection methods require human understanding of
underlying transaction logic and manual reasoning across
different sources of context (i.e., modalities), such as code and
natural language specifying the expected transaction behavior.

To automate the detection of “machine un-auditable” bugs,
we present SMARTINV, an accurate and fast smart contract
invariant inference framework. Our key insight is that the
expected behavior of smart contracts, as specified by invariants,
relies on understanding and reasoning across multimodal infor-
mation, such as source code and natural language. We propose
a new finetuning and prompting strategy to foundation models,
Tier of Thought (ToT), to reason across multiple modalities of
smart contracts and to generate invariants. SMARTINV then
localizes potential vulnerabilities by checking the violation of
those generated invariants.

We evaluate SMARTINV on real-world smart contract bugs
that resulted in financial losses over the past 2.5 years (from
January 1, 2021 to May 31, 2023). Extensive evaluation shows
that SMARTINV can generate useful invariants to effectively
localize “machine un-auditable” bugs, from which SMARTINV
uncovers 119 zero-day bugs. We sampled eight bugs and
reported them to the respective developers. Six vulnerabilities
were quickly fixed by the developers, five of which are confirmed
as “high severity.”

1. Introduction

Bugs in smart contracts are often serious vulnerabilities
that lead to significant loss of funds. In 2022 alone, $2 billion
was lost due to smart contract bugs [62], [92]. What makes
smart contract bugs particularly damaging is the fact that
once a smart contract is deployed, it becomes immutable,
making it difficult to fix any vulnerabilities in the code.

Recent research has identified a new category of bugs
known as “machine un-auditable” functional bugs, which are
prevalent in smart contracts (Table 1). These bugs, as their
name suggests, cannot be reliably detected using existing
automated tools that rely on pre-defined bug patterns [92].
Unlike implementation bugs (e.g., integer overflows), which
often exhibit universal patterns that can be easily checked,
functional bugs arise from a failure to reason about extensive

© 2024, Sally Junsong Wang. Under license to IEEE.
DOI 10.1109/SP54263.2024.00126

2217

TABLE 1: Statistics on bountied vulnerabilities of Solidity-
based smart contracts (from September, 2021 to May, 2023)

Total
5,302

Others
68 (1.28%)

Functional

4,305 (81.20%)

Implementation

929 (17.52%)

domain-specific properties, €.g., a specific transaction context.
Detecting functional bugs requires nontrivial reasoning across
multiple sources of information or modalities, such as source
code and transaction logic additionally implied in natural
language documentation.

Existing smart contract bug detection tools rely heavily
on human experts to express their knowledge of transaction
context into bug specifications [7], [32], [70], [87], and are
thus often tailored for specific bug types and do not scale
to a large number of programs. While some approaches
automate the construction of bug specifications [88], they
are limited to those leaving explicit patterns in the transaction
history and do not generalize to most functional bugs that
would otherwise require a deep understanding of the expected
transaction context.

Listing 1 shows an example of a functional bug. The
getPrice () function computes price by the ratio of
tokenO and tokenl balances in address (this). Ide-
ally, price is expected to remain stable within a range.
However, as token0 and tokenl are state variables, i.e.,
static variables, they can be easily manipulated by external
parties. Therefore, when getPrice () is invoked to return
price, its return value can fluctuate significantly, leading
to the potential exploit of unexpected arbitrage on top
of the newly manipulated price difference. The functional
bug of getPrice () stems from not effectively meeting
transaction requirements on the intended range of price. For
example, inflating tokenl’s balance via another malicious
contract can throw price off its intended range (see §2.2
for details). Such a functional bug cannot be detected without
first understanding how getPrice () would participate in
the transactions.

We present SMARTINV, an automated framework based
on foundation models to infer smart contract invariants and
to detect bugs at scale. While there are machine learning
approaches for generating invariants [31], [46], [64], [86],
[89], they predate foundation models, and thus follow the
typical paradigm in hand-engineering limited features that
can be helpful for contract invariant inference. The unique

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

uint price;
IERC20 tokenO, tokenl;

// functional bug: price manipulation
price = tokenl.balanceOf(address(this))/
tokenO . balanceOf(address(this));

1
2
3
4+ function getPrice () {
5
6

7}
Listing 1: Functional bug example. An attacker can pump
up price by inflating token1’s balance.

feature of SMARTINV, which differentiates from existing
analyzers, is that SMARTINV leverages foundation models
to reason about multimodal inputs, such as source code and
natural language (comments, meaningful function signatures,
and documentation describing transaction scenarios). Founda-
tion models are particularly suited for analyzing multimodal
information and domain-specific bug detection, because they
are pretrained on both natural language texts and code, and
can be further finetuned for domain-specific knowledge.

To reason across multiple modalities, we develop Tier of
Thought (ToT), a new prompting strategy, that can be used to
finetune and elicit explicit reasoning of foundation models
on the program structure of smart contracts. In contrast to
other foundation-model-based approaches [13], [16], [72],
ToT applies universally across contract types, eliminating
the need for bug-specific reasoning heuristics. ToT breaks
down the process of invariant generation into intermediate
abstract tiers based on the typical reasoning steps that human
analyzers would take, such as predicting critical program
points to check invariants, generating invariants associated
with the predicted program points, and ranking the invariants
by predicting their likelihood of preventing bugs. Based
on the ranked invariants, SMARTINV can efficiently verify
the invariants by prioritizing the invariants that are more
likely bug-preventive using a bounded model checker without
exhaustively enumerating all of them.

Contributions. We make the following contributions:

o To the best of our knowledge, SMARTINV proposes the
first finetuning approach that can both infer invariants
and detect bugs by reasoning across multiple smart con-
tract modalities, critical to detecting functional bugs pre-
deployment.

o« We design a new prompting approach to foundation
models, Tier of Thought (ToT), to finetune and elicit their
reasoning by following the thought process of human
analyzers, significantly improving the accuracy of the
generated invariants and detected bugs while reducing
runtime overhead.

o We unite the potential of finetuning foundation models
with the soundness of formal verification to mitigate
hallucination. One key benefit of inferring invariants using
foundation models is that the inferred invariants can be
validated by verification tools.

o Our extensive evaluation demonstrates that SMARTINV
is effective in invariant generation and functional bug
localization. Notably, SMARTINV has found 119 zero-day

2218

TABLE 2: SMARTINV detected bug classification. Modalities:
the minimum modalities required to detect a given bug class.
SC: source code. NL: natural language. Pattern Detectable:
a bug class can be detected by identifying low-level coding
patterns. ToT Detectable: a bug class can be detected by Tier
of Thought. O: a modality is sometimes required.

Modalities Pattern ToT
SC NL Detectable Detectable

Implementation Bugs

Reentrancy (RE) [44]

Integer overflow/underflow (IF) [12]
Arithmetic flaw (AF) [67]

Suicidal contract (SC) [54]

Ether leakage (EL) [54]

Insufficient gas (IG) [51]

Incorrect visibility/owner (IVO) [28]

X X X X X X X

Functional Bugs

Price manipulation (PM) [84]

Privilege escalation (PE) [11]

Atomicity violation (AV) [66]

Business logic flaw (BLF) [27])
Inconsistent state update (IS) [92]

Cross bridge (CB) [88] ©
ID uniqueness violation (IDV) [92]

X X X X X X X

bugs in the wild. We sampled eight bugs and reported
them to the respective developers. Six vulnerabilities
were quickly fixed by the developers, five of which are
confirmed as “high severity.”

o We collect a large (2,173 samples) annotated smart contract
invariant dataset for training and 89,621 real-world con-
tracts for bug detection. We release the datasets and the tool
for public use at https://github.com/columbia/SmartInv.

2. Overview

This section introduces the necessary background (§2.1),
two motivating examples (§2.2), followed by an overview
of SMARTINV’s workflow (§2.3).

2.1. Background

Smart Contract Modalities. Smart contract modalities can
be broadly understood as sources of information under
which bug-preventive invariants are generated. Accordingly,
smart contracts contain two main modalities: i) contract
source code; ii) natural language, usually in the form of
implementation-related comments and domain-specific text
description, e.g., documentation. From the contracts we
studied in Table 1, 5,265 contracts (99.31%) contain natural
language related to code logic and expected transaction
behavior. Existing invariants generators [9] and bug detectors
[10], [69], [70] focus only on a single modality, namely
contract source code. To our knowledge, SMARTINV is the

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

first smart contract analysis tool that can reason across both
modalities.

Bug Taxonomy. As Table 2 demonstrates, SMARTINV-
detected bugs can be categorized into two types:

Implementation bugs: these bugs are characterized by
certain patterns in source code, such as reentrancy (RE),
which has a representative pattern of cyclic transactions.
Reasoning about implementation bugs does not require
domain-specific properties or multimodal information.
Functional bugs: these bugs are tied to highly specialized
transaction contexts and domain-specific properties. De-
tecting these bugs requires understanding and reasoning
across multimodal contract information. Functional bugs
are usually not pattern detectable from source code.

Implementation bugs usually do not require domain-
specific information, so they can be detected based on general
patterns [15], [18], [22], [26], [52], [53], [69], [70], [75],
[76], [79], [85] without relying on any multimodal hints.
For example, integer over/underflows (IF) can be detected
by general test suites similar to buffer overflow [41] used
in traditional software. Reentrancy (RE) can be detected by
testing general cyclic transaction patterns.

Functional bugs arise from highly domain-specific trans-
action contexts and exhibit unintended behavior under dy-
namic transaction executions, i.e., incorrect stateful transi-
tions and/or inter-contract communications given specific
domains. Detecting functional bugs requires an expert un-
derstanding of domain-specific properties and transaction
contexts. For example, a smart contract may contain some
formula to calculate price, and a comment describing the
transaction context is that “price should stay within a certain
range based on market trends from day 1 to day 30.” These
transaction contexts cannot be easily captured by code and
are often overlooked by developers.

Smart Contract Invariants. Invariants specify smart con-
tract properties as logic predicates that should hold true
at specified program points. For example, the invariants
that check for implementation bugs, e.g., integer overflow,
can be simply written as assert (x<uint256(-1)).
The invariants that check for functional bugs by en-
forcing a specific balance constraint can be written as
assert (1<balance<1321). We have built a range of
invariant types into SMARTINV (see §3.2 for details).

Prompting Foundation Models. Foundation models (or
Large Language Models) are pre-trained on texts and code
with a large number of parameters [37]. They are known for
their “pre-training, finetuning, and prompting” paradigm for
training and inference [47]. In pre-training and finetuning,
the model is trained to estimate probabilistic distribution
over a sequence of tokens and generate new tokens based
on prior tokens in the input token sequence. In prompting,
the trained model takes as input a sequence of tokens,
and outputs the next tokens iteratively until reaching the
maximum token length or end of the sequence, i.e., a
period. For example, given an invariant generation task, a
prompt can be a question, such as “[smart contract code
snippet], what are the invariants at line 1?” Recent research

2219

[82], [83] has constructed prompts in different formats such
that these prompts elicit intermediate reasoning steps of
foundation models. Our prompts (described in §3.2) elicit
such intermediate reasoning steps.

2.2. Motivating Examples

We provide two real-world hacks (simplified for read-
ability) as motivating examples in this section. We refer to
the line number of a code statement as a program point and
the line number where invariants should be inserted as a
critical program point.

Example 1: Flashloan Primer. Flashloans in smart contracts
are uncollateralized and allow users to borrow assets without
any cost as long as users pay back within a single transaction.
Tokens declared with external libraries and asset-swapping
contracts that support external calls are thus at risk to
flashloans. Listing 2 shows a real-world example simplified
to demonstrate how malicious users take flashloans to exploit
Visor [19], [21], [29], a money market contract providing
liquidity services. Users can deposit tokens by calling the
deposit function at line 15 to mint shares of poolToken
in return. A malicious user, however, can borrow flashloans to
inflate price and to mint an outsized share of poolToken.

Specifically, an attacker can take a flashloan of tokenl
and swap tokenl for token0. Given the automated market
maker nature of the contract, the swap will spike up the
real-time or spot price of tokenO in tokenl. The attacker
invokes the deposit function to deposit token0O into
the contract. The contract then calculates an outsized share
of poolToken to transfer to the attacker based on the
manipulated price. Afterwards, the attacker can sell the
poolToken in another market to repay the flashloaned
tokenl. For interested readers, full mathematical details
and developer’s solution to the bug can be found at [3], [4].

Existing prompting frameworks [13], [16], [72] specify
no invariants and identify incorrect bugs such as reentrancy.
Existing bug analyzers based on formal verification, symbolic
execution, and other dynamic analysis [48], [69], [69], [70]
report Listing 2 as a healthy contract, because they analyze
only source code without considering the domain-specific
price oracle context implied by the blue comments .

However, analyzing the Listing 2 bug requires under-
standing the natural language hints indicating that the price
oracle is vulnerable to real-time price volatility. Table 3
highlights SMARTINV’s solution using invariants (discussion
in §3) by reasoning across source code and natural language
hints. SMARTINV infers the lines immediately after lines
17 as a critical program point, and infers an invariant
assert (price <= 0Old(price) xk). Similar to the
use of Orig () in Daikon [17] and 01d () ESCIML [56],
Old (price) returns the previous price point the last
time the deposit () function is invoked. £ has a default
value of 2 in SMARTINV and can be updated based on
developers’ desired volatility ratio. Any violation of the
assertion invariant would signal price volatility exceeding
user’s desired k and thus would signal price manipulation.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

i contract simplifiedVisor{
2 /+pool token issued by this contracts:/
3 IERC20 poolToken;

4 /«two types of token reserves %/

5 IERC20 tokenO, tokenl;

6 /+reporting price at real times:/

7 uint price;

8

9 /+ real-time price updates by the ratio of token
reserves s/
10 function getRealPrice () internal {
11 // Smartlnv: possible flashloan
injection
12 price = tokenl .balanceOf(address(this))
/tokenO .balanceOf (address(this));
13 }
14 // SmartInv: minting shares by deposits
15 function deposit(uint deposit0, address to)
public {
16 /+ price may change =/
17 getRealPrice () ;
18 uint adjust = pricexdeposit0;
19 unit shares = adjust = ... // calculate
the shares of pool tokens to mint
20 _mint(to, shares);
21 }
2 }

Listing 2: Functional buggy snippet from the spot price
manipulation of Visor [5], [21] (simplified for readability).

Note that even without violating the invariant, an attacker may
still be able to launch a flashloan attack, and the developer’s
fix for this issue is to use the time-weighted average price
instead of the spot price. The key benefit of SMARTINV-
inferred invariant in this example is that it pinpoints the
potential price manipulation vulnerability for developer fix.

Example 2: Voting Fraud. The voting fraud bug [24], [92]
in Listing 3 is officially recognized by the National Common
Vulnerabilities and Exposures (CVE) with an assigned ID
[58]. This hack was made possible by flashloans and classi-
fied as privilege escalation under functional bug types. The
contract developers were aware of the potential for flashloan
attacks, so they tried to mitigate the risk by restricting the
order in which the startExecute (), execute (), and
endExecute () functions could be invoked.

If a proposal is not ongoing and sTime = O, then
a message sender can invoke startExecute (). If a
proposal is ongoing (sTime != 0 and sTime + 24 hours
> block.timestamp), then a message sender can only invoke
execute (). Otherwise (after 24 hours has passed), the
proposal round can be ended by invoking endExecute ().
As the contract developer(s) intended, startExecute ()
must be invoked before execute () within a proposal.
execute () and endExecute () cannot be invoked
within a single transaction (or within a 24-hour proposal
round) to prevent flashloan attacks. However, the key
vulnerability lies in the developers’ assumption that the
three functions, startExecute (), execute (), and
endExecute (), would be invoked sequentially in a pro-
posal round. Unfortunately, that assumption does not hold. An

TABLE 3: SMARTINV inferred invariants in Listing 2. 17+
refers to the line-numbered location where the invariant
should be inserted, e.g., 17+ means immediately after line
17.01d (price) evaluates a variable’s pre-state and returns
the price point before 1iquidate function is called. k is
an adjustable ratio, where SMARTINV sets default as k=2.

Critical Program Points Inferred Invariants

17+ assert (price <= Old(price) xk);

attacker can bypass the execute () function by invoking
the endExecute () directly after taking a flashloan to
become the highest proposer.

The attack above is possible because the vot ingToken
variable is declared with the IERC20 wraparound library
contract, which tracks how many tokens a user would
like to vote when calling the execute () function. The
IERC20 wraparound library contract also has its own
transferForm () function. As a result, any variable de-
clared with IERC20 can invoke t ransferForm () directly.

Suppose a hacker borrows a large flashloan and injects it
into votingToken via the transferForm () function
to make the highest bid right after the 24-hour voting window
expires (so the flashloan can be paid back within a single
transaction). This bypasses the execute () function and
allows the hacker to invoke transferForm () directly in
the IERC20 library contract. Immediately after the voting
window expires, the hacker ends the proposal round by
invoking the endExecute () function. This exploit allows
the hacker to become the new contract owner at line 27 and
thus to invoke the highly privileged getFunds () function
at line 32. The attacker can then obtain all locked tokens
and pay back the flashloan with a profit within the same
transaction.

Existing analyzers [52], [69], [70] mistakenly report that
Listing 3 contract contains an integer overflow/underflow bug
related to sT%me at lines 23 and 24 (false positives because
Solididy version > 0.8 automatically preempts operations
causing integer overflow/underflow) while omitting the more
damaging privilege escalation bug. Their mistaken reporting
stems from relying on pattern-matching arithmetic operations
without considering the underlying transaction logic.

SMARTINV’s solution is to reason across source
code and natural language hints in blue (comments and
variable names related to the transaction context). First,
from the source code and comments, SMARTINV infers
that the transaction context is “bidding.” After predicting
”bidding” transaction context, SMARTINV infers critical
program points and invariants as highlighted in Table 4.
If a malicious actor bypasses the execute () function
and injects a large flashloan in endExecute () function
directly, then votingToken variable would transition
to a wrong state that violates the assertion invariant
(0ld (votingToken.balanceOf (address (this))
==votingToken.balanceOf (address (this))
after line 25.

2220

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

contract TimelockController {

1
2 /+this is a bidding contract:
3 watch out for flashloan #/
4 struct Proposal {
5 uint sTime; address newOwner;
s}
7 IERC20 votingToken; /#important variable =/
8 address owner;
9 Proposal proposal;
10
11 /+the following three functions should be
executed atomically =/
12 function startExecute () external {
13 require (proposal.sTime == 0, "on-going proposal”);
14 proposal = Proposal(block.timestamp, msg.sender);
15
16
17 function execute(uint amount) external {
18 require (proposal.sTime + 24 hours > block.
timestamp , “execution has ended”);
19 votingToken . transferFrom (msg. sender, address(this)
, amount) ;
20 }
21
22 function endExecute () external {
23 require (proposal.sTime != 0, "no proposal”);
24 require (proposal.sTime + 24 hours < block.
timestamp , “execution has not ended”);
25 require (votingToken . balanceOf(address (this)) = 2 >
votingToken . totalSupply () ,”execution failed”
):
26 /+we’re about to changethe owner of the contract =/
27 owner = findHighest(_allProposals);
28 delete proposal;
9}
30
31 /+highest proposer becomes the new owner of the
contract and gets all locked fundss/
32 function getFunds () external onlyOwner {
33
34 return allLockedTokens;
35
36 }

Listing 3: Openzepplin vulnerability (reported in CVE-2021-
39168 and simplified for readability).

2.3. SMARTINV Workflow

Figure 1 shows SMARTINV’s workflow. SMARTINV first
finetunes the model on a dataset of labeled contracts with
Tier of Thought (ToT) prompts (D). SMARTINV learns
to minimize cross-entropy loss [91] between ground truth
and inferred answers ((2)). During inference, SMARTINV
takes a previously unseen new contract as input and prompts
the finetuned model using ToT (3)). We develop a new
iterative prompting process: SMARTINV uses the answers
from prior easier tiers to guide answer generation for
subsequent more challenging tiers. After the finetuned model
generates invariants (@), SMARTINV proceeds to verify
inferred invariants by proving program correctness at ((%)).
If no proof of program correctness is found after the initial
verification, SMARTINV uses a bounded model checker to
seek violations (counterexamples) of inferred invariants ((6)).
Finally, SMARTINV outputs a report on verified invariants and
detected bugs. Once finetuned, SMARTINV is fully automated
to infer invariants and detect bugs.

In building this workflow, there are two technical chal-

2221

4: SMARTINV inferred invariants in
Listing 3. 19+ and 25+ refer to the line-numbered
location where the invariant should be inserted,
e.g., 194 means immediately after line 19.
0Old (votingToken.balanceOf (address (this)))
returns the votingToken balance in address (this)
before the instrumented function is called. At 19+,
inferred invariant specifies that the current balance of
votingToken equals to the sum of transferred amount
and the prior balance before the transfer. At 25+, the inferred
invariant specifies that total balance of votingToken
stays the same after a proposal round has ended, i.e., no
flashloan transfers into vot ingToken.

TABLE

Critical Inferred Invariants

Program Points

19+ assert (votingToken.balanceOf (
address (this)))==
0ld(votingToken.balanceOf (
address (this))) +amount) ;

25+ assert (0ld (votingToken.balanceOf (
address (this)))==votingToken.balanceOf (
address (this)));

lenges. The first one is how to incorporate and represent
multimodal information that also respects smart contract
semantics during finetuning. Our evaluation shows that sim-
ple prompt engineering without customized training datasets
cannot identify correct invariants in real-world contracts.

To this end, we use tailored invariant types (§3.2) and
build a unique finetuning process (in §3.3) that incorporates
multimodal information. Our finetuning process tailors an-
swers to ToT prompts. Furthermore, foundation models are
known to have the hallucination problem [42]. Thus, a second
challenge is to determine which invariants are correct during
inference on previously unseen contracts without ground
truth. To overcome the second challenge, SMARTINV adopts
a new invariants ranking strategy for effective verification
(in §3.4).

Finetuning and Ground Truth. Finetuning foundation
models to both consistently reason about diverse sets of
invariants and detect a wide range of real-world bugs is non-
trivial. Given that no prior foundation-model-based work has
done both (to the best of our knowledge), Smartlnv presents
the first multimodal-reasoning-based finetuning approach for
invariant generation and bug detection.

SMARTINV employs step-by-step reasoning following
ToT with tailored ground truth to finetune the pre-trained
model. Each training sample consists of a smart contract
file collected from Etherscan [2] and annotated ground truth
of six attributes (details in Table 5). The input contract,
the ToT prompt, and the corresponding ground truth are
encoded as token sequences for finetuning, following the
next-token-prediction paradigm of the model. For example,
a ToT prompt with ground truth answers can be “What are
the critical program points in the contract? Critical program
points are [ground truth].”

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

Finetuning

Pre-trained Foundation Model

N

Labeled Contracts
%
A\
\7
Minimizing
Loss

ToT Prompts with

Ground Truth [

i Inference

New Contracts Finetuned Foundation Model

e

Verifying

;1 Invariants

ToT Prompts

Q

Answers

i Verification icting
; Invariants
i Bug Report
! Bounded Model Checking

«/ price<10

¢ supply=i

price<10
supply=i

Figure 1: SMARTINV’s Workflow

Inference. The finetuning design above facilitates SMART-
INV’s unique inference procedure — using iterative and
increasingly complex prompts that respect smart contracts’
domain-specific properties and semantics, e.g., transaction
context and critical program points. During inference, the
finetuned model is fed with a previously unseen contract and
a tiered prompt without any answers, such as “What are the
critical program points in the contract?” The finetuned model
can generate critical program points as an answer because
the model is finetuned for this specific downstream task.
SMARTINV then uses inferred answers from prior prompts
to elicit answers on more challenging prompts.

Verifying Predicted Invariants. After inference, SMARTINV
ranks critical invariants for verification: it prompts the
model to rank the inferred invariants from most likely to be
correct and bug preventive to the least likely. After ranking,
SMARTINV automatically switches to a verifier that tries to
prove program correctness based on ranked invariants. If such
proofs can be found on an inferred invariant, SMARTINV
marks that invariant as correct. Otherwise, SMARTINV uses
a bounded model checker to search for violations of inferred
invariants. When violations are found, such violations signify
two scenarios that warrant further review: i) a potential
bug; or ii) potentially incorrect invariants. Therefore, we
inspect the counterexamples to i) confirm the existence
of bugs and thereby correct invariants or ii) confirm the
incorrectness of inferred invariants. If no correctness proofs
or counterexamples are found, SMARTINV discards that
unproven invariant and moves on to the next invariant.

3. Methodology

In this section, we formally define the finetuning task for
invariant inference. We then describe the invariant types we

2222

developed to facilitate the Tier of Thought (ToT) finetuning.
Lastly, we describe how we verify the inferred invariants
based on the ranked invariants from ToT prompting.

3.1. Problem Formulation

Let My be the pre-trained foundation model parameter-
ized by 6 and let S be the tokenized input contract. Let C' be
tokenized program points (i.e., a line-numbered location of a
code statement) and V' be the space of invariants. we finetune
My to generate critical program points ¢; € C' and associated
invariants v; € V' as a tuple (¢;, v;). From the predicted (c;,
v;), we finetune My to predict the vulnerabilities.

The vulnerability prediction serves as an auxiliary task
when the invariant verifier fails to find any counter example
or correctness proof (§3.3).

3.2. Invariant Types

Broadly, SMARTINV infers three types of invariants to
capture functional bugs: assertions with special expressions,
modifiers, and global invariants. These invariants are highly
generalizable and can be integrated into state-of-the-art
verifiers [1], [61], [80]. Table 5 illustrates the use of a subset
of these invariant types on the simple smart contract shown
in Listing 4.

A common invariant type inferred by SMARTINV
is assert (exprl op expr2) at a critical program
point. exprl and expr2 are legal Solidity expres-
sions. op are binary comparison operators, such as ==,
>=, <=, |=. Assertions can also be replaced by Solid-
ity’s require (expr, error_msg), as well as pre-
condition check Assume (expr) and post-condition checks
Ensures (expr) because SMARTINV’s backend verifier
also supports these additional checks.

As part of assertions, SMARTINV also infers
special ~ expressions uniquely tailored to smart
contracts, such as 0ld (expr), kx0ld (expr), and
SumMapping (mappingVar). The use of 01d (expr)
is similar to Daikon’s Orig () [17]. It returns the value of
expr before a function is called. Ratio k allows users to
specify an accepted volatility ratio for a variable, usually a
price point. SMARTINV sets the default volatility ratio k to 2.
Finetuning SMARTINV to learn O1d (expr) and k enables
invariant inference related to inconsistent state updates and
price manipulation bugs. To check arithmetic operations
across mapping reference type (a multi-layered key value
storage) and integer/byte primitive types, SMARTINV sums
up the values stored in multi-layered maps using customized
SumMapping (mappingVar), where mappingVar
is a mapping type in Solidity that acts like a nested
key-value hash table. = Modifiers are invariant-like Solidity
functions that specify the behavior of other functions.
SMARTINV infers function modifiers, because they are
useful to express expected behavior of an entire function
beyond assertions. Take Table 5 as an example. SMARTINV
infers an onlyOwner modifier at critical program point
10+. When the tokenIncrease () function at line 12

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

1 contract trainingExample {
2 /= totalSupply and balances should be same before and after
transfer «/

3 uint totalSupply, tokens;
4 mapping(address = uint) balances;

6 function transfer(address to) external {

7 balances [to]= balances[to].add(tokens) ;
8 balances [msg. sender]= balances[msg.sender].sub(tokens) ;
o}

n /= should invoke tokenlncreasex/

12 function tokenIncrease() external {
13 if (tokens <=100) {

Only contract owner

14 tokens+=1.1=xtokens;
15

16 return tokens;

17}

18 ...

19 }

Listing 4: Training example contract

is instrumented with the modifier, only contract owner
whose address is tracked by the owner state variable can
invoke tokenIncrease () function. Intuitively, modifiers
specify function-level behavior.

To specify cross-function and cross-contract behavior,
SMARTINV also learn to infer Invariant (expr), a
function that specifies an invariant that will hold true for
some duration of the smart contract execution as opposed
to only at specific program points. It can be useful to
check expected return values of a function during cross-
contract calls. e.g., Invariant (func () ==a). Secondly,
Invariant (expr) can specify loop invariants when
placed at the beginning of loops. A third use case is to
check the value range of a state variable x for entire smart
contract execution by specifying e.g., Invariant (x >
10) outside functions in the contract.

3.3. Tier of Thought Finetuning and Inference

To guide a pre-trained foundation model towards gen-
erating bug-preventive invariants, the key innovation is to
introduce increasingly complex thoughts to reason from
contract source files to correct answers of each prompt.
Given input contract, each thought is a tokenized sequence,
such as “What is the transaction context in the contract? The
transactional contract is token transfer.”

Finetuning with ToT. We finetune the model to generate one
thought at a time, starting with the simplest and working our
way up to the most complex thoughts. Taking Listing 4 and
Table 5 as an illustrative training example for this section,
the model learns to reason about smart contracts’ source
code and natural language highlighted in blue (variable
names and comments useful for program understanding and
invariants generation). Using multimodal information, the
model is finetuned to generate tokenized answers to a prompt.
This design enables SMARTINV to predict domain-specific
information (i.e., the ground truth of labeled features) on new

TABLE 5: Labeled ground truth for the trainingExample
contract. Repeated code fragments are replaced by ... in
“Critical Invariants” and “Ranked Critical Invariants™ labels.
“Rank 17,“Rank 2”, and “Rank3” refer to a group of invariants
that can discover bugs in descending likelihood.

Attributes Example Ground Truth

transaction context token transfer

critical program points 7+, 8+, 10+, 12, 17+

Invariants 7+ assert (balances[msg.sender]>=tokens) ;
8+ assert (sumMapping (balances)==
totalSupply);
10+ modifier onlyOwner{
require (msg.sender==owner) ; };
12 function tokenIncrease ()
onlyOwner external {...};
17+ Invariant (tokenIncrease () >100);

Critical Invariants 7+ assert (...);

8+ assert (...);

10+ modifier onlyOwner{...};

12 function tokenIncrease (uint tokens)

onlyOwner external {...};

Ranked Rank 1: 10+ modifier onlyOwner{...};
Critical 12 function tokenIncrease ()
Invariants onlyOwner external {...};

Rank 1: 7+ assert (...);

Rank 2: 8+ assert (...);

Rank 3: 17+ Invariant (...);

Vulnerabilities incorrect visibility/ownership; arithmetic flaw;

contracts. SMARTINV adds “<end of text>" as a special
token to separate each training sample.

Tier 1 Finetuning (Critical Program Points). In this tier,
the model tokenizes contract source files, tier 1 prompts, and
answers from labeled ground truth as sequences. The tier 1
thoughts below seek to finetune SMARTINV’s understanding
of transaction contexts and critical program points from
multimodal sources in the contract. The example below
illustrates tier 1 training sample:

Contract trainingExample {...}

What’s the transaction context of the contract? The transac-
tion context is token transfer.

Given transaction context, what are the critical program
points? Critical program points are 7+, 8+, 10+, 12, 17+.

<End of Text>

Tier 2 Finetuning (Invariants). At tier 2, the model
tokenizes contract source files, tier 2 prompts, and the ground
truth of “Invariants” and “Critical Invariants” labels for
finetuning. Critical invariants refer to those that are likely to
prevent bugs. SMARTINV’s tier 2 finetuning design continues
the thoughts from tier 1 and facilitates invariants generation
at correct program points during inference. The example in
grey box illustrates the training sample design of tier 2:

2223

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

Contract trainingExample {...}

Given inferred critical program points, what are the invari-
ants? Invariants are [ground truth of “Invariants” label in
Table 5].

Given inferred invariants, what are the critical invariants?
Critical invariants are [ground truth of “Critical Invariants”
label in Table 5].

<End of Text>

assert (sumMapping (balances) ==

totalSupply) at critical program point 8+ in Table 5 is
derived from both natural language cues and source code.
This invariant checks that the condition specified in natural
language at line 2 holds true. SMARTINV uses a special
expression sumMapping () to sum up all balances
stored in the balances mapping. This way, SMARTINV
can directly compare balances of mapping type with
totalSupply of uint type. Another natural language
inspired invariant is modifier onlyOwner(...)
at critical program point 10+, with added onlyOwner
modifier instrumentation to the tokenIncrease function
at line 12. This pair checks that only the contract owner can
invoke tokenIncrease function as hinted by comments
at line 11. By the invariant pairs, SMARTINV learns natural
language hints and associated invariants during finetuning.

The remaining ground truth of the “Invariants”
label in Table 5 are based on source code. The
invariant assert (balances[msg.sender]) >=
tokens) at program point 7+ checks that a message
sender has enough balance to make the transfer.
Invariant (tokenIncrease()>100) at program
point 17+ checks that the return value of tokenIncrease
function is greater than 100 during cross-contract calls.

After being finetuned to generate invariants, SMART-
INV is also finetuned to generate critical invari-
ants that can potentially identify bugs. The invari-
ant assert (balances[msg.sender]) >= tokens)
checks against arithmetic flaws. The invariant modifier
onlyOnwer{...} with function signature instrumenta-
tion checks against incorrect access control under in-
correct visibility/ownership (IVO) bug category in Ta-
ble 2. Thus they are labeled as critical invariants for
Listing 4 training contract. By comparison, the invariant
at 17+ Invariant (tokenIncrease () >100) checks
function return value without likely bugs in this sample.
Therefore, 17+ Invariant (...) is not included in the
ground truth of “Critical Invariant” label. With critical
invariants, SMARTINV learns to reason about likely invariants
that can guard vulnerable code fragments effectively.

Tier 3 Finetuning (Ranked Invariants and Bugs). SMART-
INV is also finetuned to rank (prioritize) critical invariants
and predict vulnerabilities in the contract from previously
generated information. The example below illustrates the
construction of tier 3 training sample:

2224

Contract trainingExample {...}

What are the ranks of inferred critical invaraints? The ranks
of inferred critical invariants are [ground truth of “Ranked
Critical Invariants” label in Table 5].

What are the vulnerabilities in the contract? The vulnerabil-
ities are [ground truth of “vulnerabilities” label in Table 5].
<End of Text>

Specifically for Listing 4, the first rank 1 invariants at
critical program points 10+ and 12 identify an incorrect
visibility/ownership bug. The second rank 1 invariant at
critical program points 7+ identifies an arithmetic flaw bug:
the contract lacks proper guard to ensure that a message
sender has sufficient balances to make a token transfer.
Invariants of rank 2 and rank 3 are correct but trivial
invariants that are less likely to find bugs.

Inference with ToT. The unique aspect of SMARTINV’S
inference is to decompose the invariant inference problem
into three-tiered tasks, thereby making an iterative process.
SMARTINV uses inferred answers from the previous tier to
generate answers for more challenging prompts of later tiers.
At each tier, SMARTINV prompts the finetuned model on a
previously unseen contract with two tailored prompts.

At first, SMARTINV tackles the simple task by inferring
transaction contexts and critical program points. SMARTINV
uses the answer generated from prompt A to continue
generating critical program points asked by prompt B.

Tier 1 Prompts
Prompt A: What’s the transaction context of the contract?
Prompt B: Given transaction context, what are the critical
program points?

At tier 2, SMARTINV is given a slightly more complex
task of inferring invariants at predicted critical program
points and identifying critical invariants, i.e., bug-preventive
invariants from all inferred invariants.

Tier 2 Prompts

Prompt A: Given inferred critical program points, what are
the invariants?

Prompt B: Given inferred invariants, what are the critical
invariants?

At tier 3, SMARTINV is given the most challenging task:
ranking critical invariants for verification and predicting
vulnerabilities in a contract. SMARTINV reports verified
invariants with predicted vulnerabilities as a final report.
We highlight that buggy traces from a verifier are more
sound than model inferred bugs. However, because veri-
fiers frequently encounter incompatible Solidity compilers,
SMARTINV reports predicted vulnerabilities as a remedy.

Tier 3 Prompts
Prompt A: What are the ranks of inferred critical invaraints?
Prompt B: What are the vulnerabilities in the contract?

3.4. ToT Invariants Verification Algorithm

Algorithm 1 has three phases to verify inferred invariants
from ToT: candidate invariants ranking; proving program

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 ToT Invariants Verification

Input: an input smart contract S, Tier 3 invariants ranking model My,
and an initial set of assumed true positive candidate invariants
V' generated by M.

Output: verification report P, a set of verified correct invariants Icorrect,
and a set of possibly correct invariants that require further
inspection Ipossibie-

1: Syntaxz_Check(V);

2: while V # 0 do

3: v; < Tier3.rank(); > ranking critical invariants

4: V<V —u;

5 (o (vi), p) = Inductive_Check(S, v;);

6: if o(v;) == True then > proof of program correctness found

7 Icorrcct~append(vi);

8: P = P.append(II)

9: else > proof of program correctness not found

10: II(¢,) = BMC(S,vi,m); > entering BMC phase

11: P = P.append(II);

12: if 7z is a counter example then

13: Ipossible-append(vi);

14: break; > manual inspection requested for counterexamples

15: end if

16: discard v;; > no counterexamples or correctness proof found

17: end if

18: end while
19: return P, Icorrect, and Ipossible;

correctness by induction; bounded model checking. S denotes
an input contract; V' denotes a set of candidate invariants;
v; denotes a tier-3 ranked critical invariant selected from V;
Icorrect denotes verified correct invariants; Ipossipie denotes
possibly correct invariants that require human inspection.
From a set of candidate invariants V' and an input contract S,
the algorithm discards the invariants that cause compilation
errors at line 1 first. Then tier 3 ranks critical invariants from
candidate invariants at line 3. The novelty of Algorithm 1 is
using foundation model guidance (critical invariants ranking)
for verification, and as a result, increases verification effi-
ciency. When generating bug reports, SMARTINV prioritizes
buggy traces from the verifier. However, as this algorithm
is limited by compatitable Solidity compilers, SMARTINV
uses model inferred vulnerabilities as a last resort.

Induction Phase. After SMARTINV unrolls ranked invariants
at line 3 using tier 3’s prompt A, the Inductive_Check()
function at line 5 maps Solidity to Boogie and uses Boo-
gie’s monomial predicate abstraction [39], [43] to check
whether v; is inductively strong enough to prove program
correctness. SMARTINV selects Boogie for two specific
features: i) it has built-in map types, e.g., [int] bool. These
map types correspond well to Solidity’s mapping types,
e.g., mapping(int=>bool). Smart contracts use mappings
frequently. ii) Boogie produces failing traces for each buggy
procedure that can be fed into the next phase for precisely
tracking on what kind of input triggers invariant violations.

If an invariant is inductively strong enough, Boogie will
generate a proof of correctness p. In this case, SMARTINV
adds v; to I.orrect as verified correct invariants and the full
verification result II is added to the final report P. If an
invariant is not inductively strong enough, the bounded model

2225

checker will search for counterexamples.

Bounded Model Checking Phase. If invariant v; cannot
be proven inductive, i.e., o(v;) is false, our bounded model
checker BMC(...) leverages CORRAL [40] to search for
counterexamples . If counterexamples are found on v;,
there are two possible cases: i) v; is a correct (true positive)
invariant and a bug is found by the merit of counterexamples;
or ii) v; is an incorrect invariant. Therefore, we break the loop
for further inspection. This algorithm is applied iteratively
until all ranked critical invariants are evaluated.

4. Implementation

We implemented SMARTINV’s training and inference in
4,011 lines of Python and the invariant verification algorithm
in 1,322 lines on top of VERISOL [80].

Model Optimization and Hardware. We selected LLaMA-
7B [78] as the backbone of SMARTINV. To enable memory-
efficient training, we applied 8-bit quantization [23], Pa-
rameter Efficient Finetuning (PEFT) [45], and low-rank
adaptation (LoRA) [34] to LLaMA-7B during finetuning.
This optimization allowed our model to complete training
within a single Nvidia RTX 2080Ti GPU, as opposed to
usual requirements of 4 A6000 GPUs.

We ran all experiments and evaluations on a Linux Server
with Intel Xeon 4214 at 2.20GHz with 48 virtual cores,
188GB RAM, and 4 Nvidia RTX 2080Ti GPUs, a Google
coLab plus account with additional computation units, and
a commercial server with 4 A6000 GPUs.

Dataset. We collected source files of 179,319 contracts in
total, covering a period from January 1, 2016 to July 1, 2023.
Of those 179,319 contracts, 175,991 contracts were crawled
from Etherscan [2] via Google BigQuery and 3,328 con-
tracts were crawled from 78 live decentralized applications
(dApps)’ public Git repositories. We selected 572 contracts
(2,173 annotated samples post ToT data augmentation) that
represented each bug type in Table 2 for training.

For evaluation, we excluded 89,698 contracts that are: 1)
duplicates; ii) require old Solidity compilers (< 0.3.x); iii)
written in non-Solidity languages (Vyper and Go); iv) already
included in our training dataset. Thus, our evaluation dataset
consists of 89,621 Solidity contracts averaging 1,621 lines
of code per contract and they are different from our training
dataset. Following [10], we categorized our evaluation dataset
into three subsets based on lines of code: 1) small: [0, 500);
ii) medium: [500, 1000); iii) large: [1000, co), consisting of
65,739, 12,011, and 11,871 contracts respectively.
Labeled Attributes. To provide domain-specific insights,
we labeled the ground truths of each training contract with
six attributes: transaction contexts, critical program points;
all relevant invariants; critical invariants, ranked critical
invariants; vulnerabilities if the contract contains any. As
illustrated in §3, we embedded the ground truth via ToT
prompts during finetuing. Specifically, we have labeled
contracts with the following ten transaction contexts in our
training dataset: ERC libraries, token transfer, cross bridge,
bidding, voting, lottery, healthcare, investing, price oracle,

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

and others. These labels cover the top use cases identified by
Ethereum [30]. To ensure correct labeling of ground truths,
we ran the verification algorithm in §3.4 and cross-checked
with at least two researchers. To ensure correct vulnerability
labels, we reproduced 3,213 hacks in 4,033 lines of Solidity
on a forked Ethereum virtual machine (EVM) [73] to confirm
the existence of labeled vulnerabilities.

Hyperparameters. For model optimization, we set
LoRA_alpha 32, lora_dropout = 0.01, LoRA_R = 8§,
learning rate = 3e-4, micro_batch = 1. During inference,
we set temperature, top-k, top-p, and repeated penalty to
0. The hyperparameters of other three finetuned foundation
models are documented in SMARTINV’s Github README.
We also note that pre-trained LLaMA cannot process con-
tracts beyond 20 lines due to limited token length. Finetuning
breaks such limitation by adding additional token mappings
from the initial 512 to 4096. Therefore, our finetuned LLaMA
can reason about medium ([500, 1000) lines) contracts. On
large ([1000, co) lines) contracts, finetuned LLaMA are still
limited by available token length. In that case, we prompted
the model to summarize imported modules, i.e., imported
library and helper contracts, to fit in available tokens.

5. Evaluation

We evaluate SMARTINV to answer the following ques-
tions:
RQ1: How does SMARTINV compare to prior smart
contract bug analyzers?
RQ2: How does SMARTINV compare to prior invariant
inference tools?
RQ3: How much do our selected model LLaMA and
optimizing strategies improve the accuracy of bug detection
and invariants generation?
RQ4: How fast is SMARTINV compared to baseline tools?

Experiments Setup. To sufficiently represent available
tools, we selected bug analyzers covering a wide range
of techniques with minimal overlapping. We installed and
followed the instructions of the latest versions (as of July
28, 2023) of each bug analyzer from their Git repositories,
and reached out to the authors when we encountered errors.

Ground Truth Measurement. We define ground truths in
two relevant aspects: bugs and invariants. For bug detection,
we conducted both large-scale and refined experiments. The
large-scale experiment summarized each tools’ reported
alarms. We further validated the reported alarms by manually
reviewing a subset of projects in the refined experiment. For
invariants generation, we inspected the invariants generated
in the refined experiments to gain a granular understanding.
The scale of our analysis and ground truth measurement are
in line with previous work [10], [69], [70].

Each tool under evaluation scanned the 89,621 contracts
in our large-scale experiment, and we recorded their reported
bug alarms in Table 6. We acknowledge that results in
Table 6 summarize each tool’s reported alarms, which may
not necessarily be true positive or exploitable bugs. To gain
more insights into each tool’s false positives/negatives, we

2226

TABLE 6: Reported alarms breakdown by type from 89,621
contracts. The last seven rows report functional bugs. Alarms
are not necessarily true positive or exploitable bugs.

Bug Type SMARTINV | VERISOL SMARTEST‘VERISMART MYTHRIL | SLITHER | MANTICORE
RE 9,011 1,591 0 0 1,311 2,533 901
IF 13,531 2,031 31,655 29,015 602 952 421
AF 11,009 905 10,921 12,548 648 0 421
SC 908 0 452 366 99 972 122
EIL 611 0 0 0 82 1,200 34
1G 494 0 0 2 12 78 122
vo 1,022 4,899 3,091 3,001 23 79 90
PM 2,651 5 2 0 0 0 0
1215} 3,019 0 0 0 0 0 0
BLF 1,091 84 0 0 0 0 0

IN 977 33 5 5 107 0 0
AV 2,065 0 0 0 0 0 0
CB 3,192 0 0 0 0 0 0
DV 1,924 0 0 0 0 0 0
Total Alarms | 51,505 1,924 46,126 44,937 2,884 5814 2,111

TABLE 7: Report on total count of internal error and timeout
results from 89,621 contracts. SMARTINV reported model
inferred results when the verifier was incompatible.

SMARTINV|VERISOL|SMARTEST|VERISMART [MYTHRIL [SLITHER [MANTICORE
Error |0 18,769 |7,859 11,859 14,211 63,807 23,301
Timeout|0 0 31,636 32,825 72,526 |0 44,209

conducted a refined experiment on 60 well-known hacked
projects (1,241 buggy contracts) and used their audit reports
as ground truths to validate bug alarms. We recorded correct
(TP), incorrect (FP), and missed (FN) alarms on bugs in
the contract. To determine the ground truth of the detected
bugs by each model, we defined “Accuracy (Acc.)” on a
per-contract basis: we marked an output as accurate only
when a model generated bug-preventive invariants at correct
program points for an entire contract and inferred the correct
bugs.

We reported three outcomes on each contract and grouped
the results by bug type: i) alarms: the number of alarms of a
given bug type; ii) error: a tool aborted due implementation
issues; for example, VERISMART and SMARTEST require
annotated test oracles to reasons about contracts; VERISOL
and INVCON are not compatible with Solidity compilers >
0.7.x; iii) timeout: a tool failed to produce alarms within a
30-minute time budget.

We evaluated the invariant generation on a per-invariant
basis. That is, we manually inspected each generated invariant
and considered it as accurate if it captured the correct
properties without syntactical errors. We note that an accurate
invariant can be trivial, meaning that correct invariants do
not always prevent bugs.

5.1. RQ1: Bug Detection

We studied SMARTINV’s bug-detection scope in the
context of six similar prior tools: i) VERISOL(as is); ii)
VERISMART [70], a CEGIS-style verifier; iii) SMARTEST
[69], a language-model guided symbolic execution tool; iv)
MYTHRIL [15], a commercial symbolic execution tool; v)
MANTICORE [52], a commercial symbolic execution tool; vi)
SLITHER [18], a static analyzer. We also studied SMARTINV
and three other prompting-based approaches [13], [16], [72].

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

TABLE 8: Refined bug detection analysis on sampled 1,241 real-world functional buggy contracts with report on correct
(TP), incorrect (FP), and missed (FN) bug alarms. X: a tool did not produce any results. This table reported results pertaining

to functional bugs only. An alarm is correct if a tool generates

specifications and/or traces correctly pinpointing a bug.

Contracts SMARTINV VeriSol SmarTest VeriSmart Mythril Slither Manticore

TP FP FN |TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN
hundredFinance[45 3 0 X X X X 45 0 5 X
sherlockYields |31 5 0 1 1 3 X X 3 1 0 30 0 4 X
dfxFinance 72 6 0 1 0 1 X X X X X
Bacon 92 0 0 1 0 1 X X X X X
AnySwap 91 0 0 1 0 0 X X 2 1 5 9 1 6 X
Dodo 4 4 1 1 0 0 5 0 0 3 0 0 1 0 9 4 5 3 X
Dao 1 0 0 X X X 1 0 2 2 2 1 X
Bancor 24 1 0 X X X 1 0 9 X X
beanStalk 41 2 0 X X X 1 0 10 4 2 3 X
BeautyChain |1 0 0 X X X X 1 4 9 X
Melo 13 0 0 X X X X 1 1 10 4 1 0
NoodleFinance |2 0 0 1 0 1 0 1 1 0 1 1 3 1 11 1 4 8 9 0 0
BGLD 2 0 0 1 0 4 4 0 0 4 0 0 0 1 23 1 4 2 3 0 0
GYMNetwork |1 0 0 2 0 3 2 0 0 2 0 0 1 1 20 X 2 2 0
eslasticSwap |2 0 0 1 0 5 9 0 2 5 0 2 4 0 19 5 3 12 5 0 0
EulerFinance |14 13 0 5 0 13 1 0 5 1 0 5 5 0 41 7 2 1 6 1 0
Meter 15 0 0 3 0 4 9 0 9 9 0 9 X 1 5 1 X
NXUSD 23 4 0 1 0 4 5 0 1 5 0 1 X X X
monoSwap 19 1 0 8 0 1 6 0 4 6 0 4 X X X
LIFI 18 0 0 0 X 6 2 5 4 2 5 X X X
MuBank 14 0 0 9 0 0 0 1 0 0 1 0 X 9 5 5 X
OneRing 12 0 0 5 0 0 0 5 0 0 5 0 X 2 4 9 X
Paraluni 6 0 0 6 0 0 0 1 0 0 1 0 X 1 1 8 X
InverseFinance |9 1 0 4 0 2 0 1 0 0 1 0 X 1 2 4 X
nimBus 3 0 0 0 X 0 1 0 0 1 0 X 1 1 10 9 0 4
moneyReserve |4 2 0 3 1 2 0 1 0 0 1 0 X 1 0 12 1 0 0
pancakeswap |18 7 0 7 1 7 0 2 1 0 2 1 X X 3 1 1
uniswap 42 9 0 8 1 9 1 5 7 1 8 7 X 3 1 3 2 1 1
visor 31 12 0 7 0 9 9 6 8 6 6 7 X 2 8 15 X
DFX 2 9 0 X 7 4 4 0 4 4 5 2 22 X X
Harvest 9 5 0 4 0 8 0 10 3 0 0 3 1 0 4 0 3 1 X
moon 13 3 0 0 7 2 0 9 2 0 9 1 0 19 1 2 4 X
VFT 2 2 0 X 10 1 2 10 1 2 1 0 31 X X
proxyTransfer |4 1 0 0 1 1 1 0 8 1 0 8 1 0 6 1 0 13 X
Nomad 5 1 0 1 0 3 0 0 1 0 0 1 1 3 8 3 1 12 X
Fundstransfer |15 1 0 0 1 3 2 9) 3 2 9) 3 1 1 9 2 2 2 1 3 3
walnutFinance |23 1 1 0 1 3 3 0 1 3 0 1 0 0 1 5 2 5 1 2 5
Umbrella 19 1 0 1 0 3 5 0 0 5 0 0 1 1 5 9) 2 4 1 1 10
Fortress Loan |5 2 0 1 0 3 1 8 0 1 8 0 1 0 7 0 2 3 1 2 3
ShadowFinance [4 0 0 X 1 0 0 1 0 0 1 0 1 X 1 1 3
FeiProtocol 9 9 0 X 1 0 0 1 0 0 1 0 5 X 1 7 1
Revest 10 3 0 X 1 0 0 1 0 0 1 0 9 X 1 7 1
Cartel 3 0 0 X 1 0 0 1 0 0 1 0 13 2 7 3 1 8 3
Qubit 11 2 0 X 1 0 0 1 0 0 1 0 11 1 2 8 1 2 5
Value Vaults 2 1 0 X X X X 1 1 3 X
PancakeBunny |3 1 0 X X X 2 0 5 1 0 3 X
Nomad 13 2 0 X X X X 1 0 5 X
SandleFinance |25 1 0 0 1 5 5 6 2 5 6 2 0 4 9 1 0 1 X
bunnyswap 16 1 0 2 0 6 2 1 1 2 1 1 1 3 10 1 0 0 X
MonoX 13 1 0 3 0 3 10 2 0 10 2 0 6 2 19 X 5 X
CreamFinance |52 0 0 0 4 6 9 9 1 9 9 1 1 1 3 X 9 X
Jay 12 2 0 1 0 9 0 4 1 0 4 1 9 2 12 X 7 1 3 1
sushiSwap 32 1 0 X 0 5 3 0 5 3 1 1 4 3 4 2 0 5 3
polynetwork |40 2 0 X X X 5 5 5 2 5 0 0 2 4
ChainSwap 18 3 0 X 2 9 4 2 9 4 4 9 9 3 6 5 X
grimFinance |22 1 0 X 9 1 1 9 1 1 1 0 14 1 5 2 X
Ragnarok 15 3 0 0 1 3 4 0 2 4 0 2 1 1 4 1 0 13 X
XSurge 41 0 0 5 0 1 6 1 1 6 1 1 3 5 13 4 0 0 X
templeDao 14 0 0 6 0 0 X X 8 2 2 5 0 13 X
RariFinance |4 0 0 0 1 0 X X 7 2 3 X X
BabySwap 5 0 0 X X X 2 1 2 0 1 3 X
1241 contracts|[ITIT 129 2 100 14 133 140 100 90 122 89 89 91 50 414 179 101 257 [54 49 48
percentage 90.25% 10.39% 0.3%|8.12% 12.28% 20.59%|11.37% 41.67% 13.93%|9.91% 42.18% 13.78%|7.39% 35.46% 64.08%|14.54% 36.07% 39.78%|4.39% 41.57% 1.43%

Since [13], [16] do not have a named tool, we refer to [13]
by their model in use as CHATGPT and refer to [16] by
its abbreviated paper title as MANUAL_AUDIT. We refer to
[72] by its tool GPTSCAN.

In our large-scale experiment, we ran each tool on the
entire dataset of 89,621 contracts until a tool terminated or
timed out after 30 minutes. We reported alarms by each
bug type. In our refined experiment, we sampled 1,241
contracts from 60 hacked live projects in the last two years.
To provide refined false positive and false negative analysis,
we confirmed a total of 456 natural functional bugs from
audit reports and injected 775 functional bugs for precise bug
tracking, totaling 1,231 ground truth bugs in this experiment.

2227

Authorized licensed use limited to: Columbia University Libraries. Downloaded

Bug Alarms. Table 6 shows that SMARTINV, VERISOL(as
is), SMARTEST, VERISMART, MYTHRIL, SLITHER, MANTI-
CORE reported alarms on 57.47%, 10.65%, 51.47%, 50.14%,
3.22%, 6.49% of the evaluated contracts. Compared to
existing tools, SMARTINV generated more alarms on 5,397
contracts with major performance gains from functional bugs,
reporting 14,797 more functional bugs than existing tools.
We acknowledge that bug alarms are proxies for potential
bugs, which do not imply true positive or exploitable bugs.
We reported SMARTINV’s alarms based on the verifier’s
traces and model-inferred vulnerabilities.

Table 7 summarizes the number of errors and timeouts
of each tool. To optimize symbolic execution and model-

on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

1111

1000 o7 — 1—:
3
v 750 645 ogy W FN
1% 601
E 531
=] 500
8 332
250 129
0 L2 0 0 0
N S Q X
& R @ O
é\"’(& Q\é Q&(’ N1
2 (@ © &
&
Tools

Figure 2: Comparison of SMARTINV with three prompting-
based tools using the 1,241 contracts in the refined experi-
ments of Table 8.

checking tools’ performance, we increased their default
memory budget to 10GB and disabled bounding if the option
was available. The results of SMARTEST, VERISMART,
MYTHRIL, and MANTICORE demonstrate limited scalability
as a major drawback of symbolic execution tools, which had
timeouts on at least 35% of evaluation contracts given the
30-minutes time budget. Verifiers’ and static analyses’ [18],
[70], [80] errors were due to incompatible Solidity versions.
SMARTINV did not report internal errors or timeouts, because
the model could reason about contracts without requiring
compiled source code.

False Positive Analysis. Table 8§ summarizes refined bug de-
tection analysis. SMARTINV, VERISOL, SMARTEST, VERIS-
MART, MYTHRIL, SLITHER, MANTICORE had 10.39%,
12.28%, 41.67%, 42.18%, 35.46%, 36.07%, 47.57% false
positive rate on functional bugs. SMARTINV was able to
analyze 85% more contracts than prior tools (up to 1,057
more contracts), because the latter had timeouts and errors.
This result was from manual review on bug alarms related
to functional bugs only.

False positives of existing tools were largely due to
matching of spurious patterns. For example, some [15], [52],
[69], [70] mistook Listing 3 as an integer overflow (IF) bug.
Some of SMARTINV’s false positives resulted from bugs
outside SMARTINV’s detection scope. For example, on Fei
Protocol contracts, SMARTINV’s false positives were due to
not recognizing incorrect function selector hashing, which
SMARTINV mispredicted as arithmetic flaws (AF).

Listing 5 shows a common false positive result by
SMARTINV. The first two functions A (uint x) and A
(bytes32 x) have function selectors [71]: 0x2fbebd38
and 0xb42e8758, which should be the case for different
functions. The bug lies in the third function A (uint x,
uint vy), which shares the same selector as A (uint x).
When external accounts call them, clashing selectors can
cause either function to be called randomly. SMARTINV’s
false positives arose from not recognizing such clashing.

False Negative Analysis. SMARTINV missed only two bugs,
with a false negative rate of 0.3%. Although the rationale
behind foundation models’ reasoning remains blackbox, one
plausible explanation is that finetuning using the functional
bugs improved the model’s understanding of code semantics

2228

function A(uint x) public returns (uint) {
return x + 2;

1
2

3

4 function A(bytes32 x) public returns (bytes32) {
5 return keccak256 (abi.encodePacked(x));
6
7
8
9

function A(uint x, uint y) public returns (uint) {
return Xxxy;

}
Listing 5: SMARTINV’s false positive patterns

TABLE 9: Invariants inference analysis. LOC (Avg.): average
lines of code analyzed by a tool. #invariants/Contract: average
invariants generated per contract. #FP/Contract: incorrect
invariants generated per contract on average. An inferred
invariant is considered incorrect if it cannot be provably
verified or if it is inferred at wrong program points.

SMARTINV INVCON VERISMART
LOC (Avg.) 1,621 862 354
Invariants / Contract 6.00 11.70 3.00
#FP / Contract 0.32 241 0.92

under various contexts. Prior tools missed a large portion of
functional bugs, because their heuristics were not designed
for the purpose of functional bug detection.

Comparisons with Prompting Based Tools. We highlight
that existing prompting frameworks do not involve finetuning,
and that design choice accounts for major performance
differences. Since CHATGPT and MANUAL_AUDIT do not
offer open source implementation at the time of writing,
we prompted the model by strictly following the format
in the papers. As for GPTSCAN, we used the prompting
templates in its Git repositories. Figure 2 demonstrates
SMARTINV’ effectiveness in localizing true positive bugs
while minimizing false positives. CHATGPT, GPTSCAN,
and MANUAL_AUDIT assume contracts under test are always
buggy, thus no false negative results.

Overall, SMARTINV found 2x, 1.5%, and 1.5x more
bugs than CHATGPT, GPTSCAN, and MANUAL_AUDIT,
respectively. This gain was driven by SMARTINV’ ability to
detect functional bugs, as SMARTINV detected up to 216
more functional bugs than the others. SMARTINV reported
a low false positive rate of 10.39%, lower than similar
prompting frameworks. This result shows the drawbacks of
prompting alone: without targeted finetuning and verification,
model hallucination may lead to higher false results.

5.2. RQ2: Invariants Inference Accuracy

Invariants Inference Results. We studied SMARTINV’s
invariants generation in the context of INVCON, a Daikon-
adapted smart contract invariants detector, and VERISMART,
a CEGIS-style verifier. We obtained INVCON’s results from
its published webfront Ul, and the scope was thus limited be-
cause INVCON’s docker was no longer functioning. INVCON
did not generate invariants with associated program points,
so we manually reviewed and speculated the corresponding

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

TABLE 10: Finetuned candidate model evaluation (*GPT4
results were obtained from prompt engneering alone without
finetuning on curated training dataset due to close source).

Model Acc. Prec. Rec. F1

Alpaca [74] 0.72 0.72 0.58 0.65
T5-Small [63] 0.81 0.81 0.70 0.75
GPT2 [25] 0.57 0.57 0.20 0.30
GPT4* [57] 0.44 0.43 0.32 0.19

OPT-350M [90] 0.53 0.53 0.25 0.34
LLaMA-7B [78] 0.89 0.89 0.83 0.82

program points. Table 9 reports SMARTINV’s enhanced
output after the check (Algorithm 1) and shows that on
average, SMARTINV analyzed 88.05% and 357.90% more
lines of code than INVCON and VERISMART per contract,
because existing tools reported many internal errors.

False Positive Invariants Analysis. Each incorrectly inferred
invariant was counted as a false positive. SMARTINV’s overall
false positive pattern was inferring correct invariants with
respect to contracts at large, but at wrong program points.
INVvCON’s false positives were due to imprecise mappings
between Solidity and Java. VERISMART’s false positive
invariants came from incorrectly inferred transactional in-
variants. Although INVCON inherited Daikon’s soundness,
INVCON did not generate precise program points or reason
about loop invariants. VERISMART was highly effective in
generating invariants against integer overflow/underflow (IF)
bugs, but VERISMART could not reason about invariants
from multimodal information.

5.3. RQ3: Ablation Study

We considered six foundation models as our base-
lines: OPT-350M [90], Google’s T5-Small [63], OpenAI’s
GPT2 [25] and GPT4 [57], Stanford’s Alpaca [74], and
Meta’s LLaMA-7B [78]. Notably, GPT4 was not available
for finetuning on customized datasets (as of July 31, 2023),
so we supplied test contract source code and applied ToT
prompting to GPT4 without finetuning. We finetuned the
remaining five candidate models with multimodal information
(without architectural optimization).

We quantified the effect of our key optimization strategies
on end results. To evaluate each of SMARTINV’s strategies,
we removed natural language modality in the dataset by delet-
ing implementation-related comments and renaming function
and variable names without giving away domain-specific
information, e.g., we renamed “votingToken” variable to
“var.” We removed ToT and ToT-related finetuning by using a
one-shot general prompt as “What are the vulnerabilities and
invariants in the contract?” For optimization, we compared
SMARTINV’ performance on unmodified LLaMA-7B against
the architecturally optimized model.

Model Selection Results. Table 10 demonstrates that fine-
tuned LLaMA outperformed T5-Small by 8% in accuracy
and precision, 13% in recall, and 7% in F1. This observation

2229

TABLE 11: Ablation study. Natural Language: natural
language modality. ToT: tier of thought finetuning and
prompting. Optimization: model architectural optimization.
Full SMARTINV: no strategy removed and SMARTINV is
at the default setting of source code and natural language
modalities. Full SMARTINV with Tx. Hist.: “Tx. Hist.” refers
to deployed contracts’ transaction history. SMARTINV with
Tx. Hist. is finetuned on source code, natural language,
transaction history modalities.

Remove Acc. Prec. Rec. Fl

All 0.12 0.15 0.10 0.14
Natural Language 0.62 0.60 0.30 045
ToT 0.24 0.18 0.20 0.16
Optimization 0.89 0.88 0.85 0.82
Full SMARTINV 0.89 0.89 0.83 0.82

Full SMARTINV with Tx. Hist. 0.89 092 084 0.85

implies scaling law (bigger models usually work better) [81]
applies to smart contract invariant inference.

Effect of Natural Language Modality. Table 11 shows
that once we removed natural language modality, the ac-
curacy and F1 of SMARTINV dropped by 27% and 37%,
respectively. SMARTINV’s recall dropped from 83% to 30%
once we removed natural language. We also examined the
effect of natural language modality on a per-contract basis.
We observed that both SMARTINV with natural language
information and without it detected implementation bugs
equally well. However, SMARTINV with natural language
modality detected far (40x) more functional bugs than single-
modal SMARTINV, with major performance gain from natural
language modality.

Effect of ToT. Table 11 demonstrates that ToT had a
significant impact: SMARTINV’s accuracy, precision, recall,
and F1 dropped by 65%, 71%, 63%, and 66% respectively
when ToT was removed. Without ToT, SMARTINV repeated
the invariants in the test contracts without generating bug-
preventive invariants. This result shows that ToT was crucial
to SMARTINV’s bug detection performance.

Effect of Quantization and PEFT. Table 11 shows architec-
turally optimized SMARTINV achieved comparable results as
SMARTINV without architectural optimization. SMARTINV
with optimization and that without had the same accuracy
of 89%. While SMARTINV with optimization outperformed
that without by 1% in precision, the latter outperformed the
former by 2% in recall. Both had the same F1 score of 94%,
indicating that Quantization and PEFT did not drastically
increase false positives or false negatives in the case of
invariant inference. This result shows that architecturally
optimized SMARTINV decreased the cost of finetuning GPU
consumption by up to 75% without incurring significant
accuracy loss.

Transaction History as Additional Modality. We also
conducted additional experiments on using transaction his-
tory as an additional modality for deployed contracts. We
incorporated transaction history that covered a wide range of

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

TABLE 12: Mean runtime analysis (in seconds) of each tool
on evaluation dataset.

Small Medium Large Full
#Contracts 65,739 12,011 11,871 89,621
SMARTINV 15.02 32.98 37.77 28.59
VeriSol 232.51 1612.32 3933.21 2994.01
SmarTest 175.01 297.02 3908.32 2793.45
VeriSmart 27.21 33.76 414522 3105.40
Mythril 404.98 305.22 5031.33 3580.51
Slither 22.35 155.41 9080.62 3451.13
Manticore 301.33 562.21 7281.94 4715.16

bugs, as shown in Table 2 during finetuning and inference.

Specifically, for finetuning, we crawled the transaction history
of 329 deployed contracts from Etherscan and added them to
the corresponding contracts in our training data. The included
transaction history was users’ addresses, call functions,
and call data. For inference, we tested SMARTINV with
transaction history on previously unseen deployed contracts
in our evaluation dataset.

We modified prompt B in Tier 1 as “Given [transaction
history] and transaction context, what are the critical program
points?” With transaction history, SMARTINV’s precision and

F1 score in Table 11 improves by 2.9% and 3%, respectively.

This improvement applies universally to a broad range
of functional bugs. Transaction history can be helpful for

SMARTINV to focus on critical and bug-prone functions.

Given that SMARTINV’s key strength is to detect bugs in
smart contracts’ source code pre-deployment, SMARTINV
does not assume available transaction history modality by
default. However, we expect that reasoning about transaction
history can further improve SMARTINV’s bug detection
performance on deployed contracts.

5.4. RQ4: Runtime Performance

We ran each tool on the entire evaluation dataset and
recorded the runtime accordingly. Since VERISOL requires
manual specification, we thus approximated the manual effort
of VERISOL by interviewing three seasoned auditors at
two separate smart contract audit companies [33], [68]. We
learned that each real-world contract takes an experienced
auditor from 1 hour to 3 hours. This leads to an average of
90 minutes per contract to construct the manual specification
for VERISOL.

Table 12 shows the average runtime on a per-contract
basis. SMARTINV benefits from the use of GPUs and
can complete inference within about 30 seconds. Notably,
SMARTINV’s runtime overhead does not increase by more
than 17 seconds when the size of contracts increases by 500
lines of code. As an average speedup compared to manual
audits or human reviews, SMARTINV saves auditors by up
to 78 minutes on large contracts.

6. Discussion and Limitations

Token Length. Foundation models are known to have limited
input token length. For example, LLaMA is limited to

2230

4,096 tokens (approximately 3000 words after tokenization).
Therefore, large contracts with more than 2,000 lines are
often cut short in the reasoning process. We take initial
steps towards addressing this by prompting the model to
summarize imported modules in a contract under test. This
approach introduces unsound elements into SMARTINV’
invariant inference process. For future work, we plan to
incorporate other promising strategies such as retrieval
augmented prompting [14].

Verifier Compatibility with Solidity Compilers. We design
our verifier based on VERISOL’s mappings between Solidity
and Boogie. VERISOL is limited to Solidity compiler between
0.4.0 and 0.7.0. Our verifier also inherits the limitation
of VERISOL’s. A large number of contracts do not have
compatible compiler versions. In that case, we manually
reviewed SMARTINV inferred invariants and vulnerabilities.
We plan to expand our verifier across newer Solidity compiler
versions in future work.

Exploitabiltiy of Zero-Day Bugs. Not all detected zero-day
bugs are exploitable. For instance, integer overflow/underflow
(IF) bugs only exist in contracts built on older Solidity
compilers (< 0.6.0). New Solidity compilers automatically
check for over/underflow and thus preempt such exploitability.
Newly upgraded proxy contracts also prevent exploitable
zero-day bugs.

Threats to Validity. Our results were obtained on selected
evaluation dataset, which might not be representative of
newer contracts. Secondly, we did not report results based
on bugs’ exploitability and did not compare SMARTINV with
other tools in that regard. Evaluation based on exploitable
bugs may be different. Thirdly, SMARTINV does not discard
implied trivial invariants and this can be further optimized
in future work. Lastly, despite of our best effort to be
precise and accurate, manual inspection on SMARTINV’s
inferred vulnerabilities and manual classification of reported
specifications into true and false positives are inherently
challenging and can be subjective in some cases.

Ethical Vulnerability Disclosure. When we discovered bugs,
we never executed or attempted to test them on deployed
smart contracts. Instead, we tested them in a forked local
environment. When disclosing zero-day bugs, we ensured to
first consult relevant developers if possible and anonymized
contract code and addresses. Notably, entities and individuals
behind some deployed smart contracts are unknown. In that
case, we reported the bugs to Common Vulnerabilities and
Exposure (CVE) Database.

7. Case Study: Zero-Day Bugs

SMARTINV detected 119 zero-day bugs. We manually
confirmed each bug by launching a successful exploit in a
sandboxed clone of the real blockchain environment [6], [73].
Five of the bugs occur in smart contracts listed on Immunefi
[35], a bug bounty website, so we reported the bugs to this
website. All of them were confirmed as “high severity” and
fixed quickly, earning us a bounty of $17,600. Due to the
pseudonymity of the blockchain, only a small number of

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

1 contract Bridge {
function init(
uint32 _callSite ,
address _sender,
bytes32 _merkleRoot
) public {
base_initialize (_sender);
callSite _callSite;
committedRoot _merkleRoot;
//invariant #1: assert(_merkleRoot !=
confirmAt[_merkleRoot] 1;

2
3
4
5
6
7
8
9

10 0);
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

function process(bytes memory _message)
public returns (bool _success) {

// zero day vulnerability
//invariant #2: assert(_msgHash != 0);
assert (accept(messages|[_msgHash]));

}

function accept(bytes32 _root)
public view returns (bool) {
//invariant #3: assert(_root != 0);
uint256 _time confirmAt[_root];

Listing 6: Anonymized contract code snippet

these contracts have associated developer information, so we
sampled three more bugs and reported them. One of them
was quickly fixed. We received no replies from the other
two bugs’ developers, most likely because the projects were
no longer maintained. This section provides two example
bugs. We anonymized the contract in §7.1 at request.

7.1. Cross Bridge

Listing 6 provides a buggy code snippet of a cross bridge
contract. SMARTINV discovers the zero-day vulnerability
related to the assumed unique _msgHash at line 20. Since
the default value of unknown _msgHash is 0x00 in Solid-
ity, this bug can potentially greenlight a malicious actor’s
_msgHash value that defaults to 0x00 during cross-bridge
communication. As a result, the malicious actor can bypass
the assertion check at line 20, where messages [0x00] is
an acceptable root. SMARTINV detects this vulnerability with
invariant assert (_msgHash != 0) to prevent incorrect
default values.

7.2. Inefficient Gas

Listing 7 contains a gas inefficient remove () func-
tion that can lock users’ funds, leading to denial of ser-
vices to users. A user can join the vault by first joining
DepositQueue. While in the queue, users can choose
to refund their deposit or to process it at the end of a
transaction round. However, line 7 uses a gas-expensive for-
loop implementation to remove each deposit on the queue.
A long queue can easily exceed the 30 million per block gas
limit even with a single deposit operation [65]. An attacker
can send funds from different accounts to occupy the queue.
As a result, the contract will lose the ability to refund or

2231

1 abstract contract BaseVault {

2

3 DepositQueueLib DepositQueue;

4

5 function processQueuedDeposits(uint256 startlndex ,
uint256 endIndex) external {

6 uint256 _totalAssets = totalAssets ();
7 for (uint256 i = startIndex; i < endIndex; i
++){

uint256 currentAssets
processedDeposits;

depositEntry depositQueue . get(i);

processedDeposits += depositEntry.amount;

_totalAssets +

10
11
12

}
//invariant #1: require (depositQueue.size ()
==1, ”Cannot process multiple deposits”);

13 depositQueue .remove(startIndex , endIndex);

14

}
Listing 7: Code snippets of baseVault.sol

process users’ deposits because all deposits are locked in
DepositQueue due to insufficient gas.

SMARTINV discovers this bug by generating an invariant
after line 12 to check the size of DepositQueue. The in-
ferred invariant require (depositQueue.size ()
1, "Cannot process multiple deposits") en-
sures that there is only one deposit on the queue each time.
This specified property is important for safeguarding the
remove () function from running out of gas.

8. Related Work

Smart Contract Static and Dynamic Analysis. SMARTEST
[69], MYTHRIL [15], MANTICORE [52], MAIAN [55],
TEETHER [38], and ETHBMC [20] are symbolic execu-
tion tools that generate vulnerable transaction sequences.
SMARTEST utilizes language models to supplement sym-
bolic execution on smart contracts. MAIAN and TEETHER
focus on high-level bugs such as Ether-leaking and suicidal
vulnerabilities. ETHBMC focuses on memory modeling and
cryptographic hashing. They largely rely on pattern specific
heuristics to detect certain classes of implementation bugs.

SLITHER [18], OYENTE [50], OSIRIS [76], and HONEY-
BADGER [77] are static analysis tools that utilize data flow
analysis. They analyze the source code of a smart contract
to identify potential security vulnerabilities. Static analysis
cannot reason about mutlimodal input. As a result, they are
limited in their abilities to detect functional bugs.

Fuzzing is also common dynamic analysis used by smart
contract security researchers. CONFUzz1US [75], ECHIDNA
[26], FLUFFY [85] and sFuzz [53] are recently developed
smart contract fuzzers. They send random inputs to a smart
contract and try to trigger unexpected behavior and identify
potential security vulnerabilities. Fuzzing-based tools tend
to be slow, because they need to explore many possible
transactional states of a contract.

Invariants Detectors and Verifiers. One popular program
analysis approach is invariants detection. DAIKON [17] and
INVCON [48] are both invariants detection tools. Daikon
does not apply to Solidity and INVCON is a DAIKON-adapted

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

tool that maps Solidity to Java. SMTCHECKER [7], SOLC-
VERIFY [32], VERISOL [80], and ZEUS [36] are verification
frameworks that require manually specifying invariants first
and then automatically infer transaction invariants during
verification. Manual specification is often error-prone.

ML-Based Invariant Inference and Bug Detection. ML-
based tools include SVCHECKER [87] and NEURAL CON-
TRACT GRAPH [93]. They use deep neural networks to dis-
cover limited sets of implementation bugs such as reentrancy
based on general patterns. ESCORT [49] is based on byte-
code level transfer learning and ETH2VEC [8] uses language
models to detect code clones. Existing prompting-based tools
[13], [16], [59], [72] have achieved impressive results even
witthout finetuning. Prior ML-based tools mainly focus on
implementation bugs, because they often rely bug-specific
graph search heuristics. Recently, using foundation models
to generate invariants [60] has been proposed as a promising
direction in other programming languages such as Java. This
direction, along with SMARTINV, hopefully presents a new
way forward in the context of ML-based approaches.

9. Conclusion

This paper introduced SMARTINV, an automated frame-
work for detecting both implementation and functional bugs
in smart contracts. SMARTINV can reason across multiple
modalities of smart contracts, including source code and
natural language, and reason over them based on a new
prompting strategy called Tier of Thoughts (ToT) to generate
bug-preventive invariants. Evaluation of SMARTINV on real-
world contracts revealed SMARTINV performed well on both
invariants generation and bug detection tasks.

Acknowledgement

We would like to express our sincere appreciation to
Jianan Yao for his invaluable guidance and advice on this
project, as well as to Andreas Kellas, Chengzhi Mao, and
Zhuo Zhang for their extensive edits and feedback. We also
extend our gratitude to the anonymous reviewers and our
shepherd for their constructive comments, which significantly
improve this paper. This work was supported in part by

Columbia Center for Digital Finance and Technologies and

gifts from Google, Accenture, and DiDi.

References

[1] Crytic safety properties: https://github.com/crytic/properties.

[2] Etherscan: https://etherscan.io/.

[3] Gemma strategies: https://github.com/gammastrategies/uniswapv3-
risk-mitigation/blob/main/notes %200n%20uniswap%20v3
%?20risk%20mitigation.md.

[4] Smart contract security field guide: https://scsfg.io/hackers/oracle-
manipulation/.

[5] Visor attack address: 0x10c509aa9ab291c¢76¢45414e7cdbd375e1d5ace8.

[6] Foundry toolchain. 2023.

2232

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Leonardo Alt and Christian Reitwiessner. SMT-based verification
of solidity smart contracts. In Leveraging Applications of Formal
Methods, Verification and Validation. Industrial Practice, 2018.

Nami Ashizawa, Naoto Yanai, Jason Paul Cruz, and Shingo Okamura.
Eth2vec: learning contract-wide code representations for vulnerability
detection on ethereum smart contracts. In Proceedings of the 3rd
ACM International Symposium on Blockchain and Secure Critical
Infrastructure. BSCI’21, 2021.

Davide Balzarotti. The use of likely invariants as feedback for fuzzers.
In 30th USENIX Security Symposium. USENIX Security’21, 2021.

Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christopher
Kruegel, and Giovanni Vigna. Sailfish: Vetting smart contract state-
inconsistency bugs in seconds. In 2022 IEEE Symposium on Security
and Privacy. IEEE, 2022.

Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and
Yannis Smaragdakis. Ethainter: a smart contract security analyzer for
composite vulnerabilities. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2020.

David Brumley, Tzi-cker Chiueh, Robert Johnson, Huijia Lin, and
Dawn Song. Rich: Automatically protecting against integer-based
vulnerabilities. 2007.

Chong Chen, Jianzhong Su, Jiachi Chen, Yanlin Wang, Tingting Bi,
Yanli Wang, Xingwei Lin, Ting Chen, and Zibin Zheng. When chatgpt
meets smart contract vulnerability detection: How far are we? arXiv
preprint arXiv:2309.05520, 2023.

Xiang Chen, Lei Li, Ningyu Zhang, Xiaozhuan Liang, Shumin Deng,
Chuangi Tan, Fei Huang, Luo Si, and Huajun Chen. Decoupling
knowledge from memorization: Retrieval-augmented prompt learning.
Advances in Neural Information Processing Systems, 35, 2022.

Consensys/mythril, 2022. https://github.com/ConsenSys/mythril.

Isaac David, Liyi Zhou, Kaihua Qin, Dawn Song, Lorenzo Cavallaro,
and Arthur Gervais. Do you still need a manual smart contract audit?
arXiv preprint arXiv:2306.12338, 2023.

Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant,
Carlos Pacheco, Matthew S Tschantz, and Chen Xiao. The daikon
system for dynamic detection of likely invariants. Science of computer
programming, 69(1-3), 2007.

Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static
analysis framework for smart contracts. In 2019 IEEE/ACM 2nd
International Workshop on Emerging Trends in Software Engineering
for Blockchain. 1IEEE, 2019.

Visor Finance. Post-mortem for vvisr staking contract exploit and
upcoming migration. Medium:https://medium.com/visorfinance/post-
mortem-for-vvisr-staking-contract-exploit-and-upcoming-migration-
7920eldee55a, 2021.

Joel Frank, Cornelius Aschermann, and Thorsten Holz. Ethbmc: A
bounded model checker for smart contracts. In Srdjan Capkun and
Franziska Roesner. 29th USENIX Security Symposium, USENIX
Security, 2020.

Liam Frost. Defi token visr plunges by 95 Crypto Brief-
ing: https://cryptoslate.com/defi-token-visr-plunges-by-95-following-8-
million-hack/, 2021.

Asem Ghaleb and Karthik Pattabiraman. How effective are smart
contract analysis tools? evaluating smart contract static analysis tools
using bug injection. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2020.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W
Mahoney, and Kurt Keutzer. A survey of quantization methods for
efficient neural network inference. arXiv preprint arXiv:2103.13630,
2021.

Github. Timelockcontroller vulnerability in openzeppelin contracts.
March 2022.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

[25]

[26]

[27]

(28]

[29]

(30]
[31]

(32]

[33]
(34]

[35]
(36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

OpenAl GPT2. Better language models and their implications. March
2022.

Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex
Groce. Echidna: effective, usable, and fast fuzzing for smart contracts.
In Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis, 2020.

Alex Groce, Josselin Feist, Gustavo Grieco, and Michael Colburn.
What are the actual flaws in important smart contracts (and how
can we find them)? In Financial Cryptography and Data Security:
24th International Conference, FC 2020, Kota Kinabalu, Malaysia,
February 10-14, 2020 Revised Selected Papers 24. Springer, 2020.

Bishwas C Gupta, Nitesh Kumar, Anand Handa, and Sandeep K
Shukla. An insecurity study of ethereum smart contracts. In Security,
Privacy, and Applied Cryptography Engineering: 10th International
Conference, SPACE 2020, Kolkata, India, December 17-21, 2020,
Proceedings 10. Springer, 2020.

Mudit Gupta. Visor finance hack proof of concept. Github link:
https://gist.github.com/maxsam4/91704944a5d7b5923649ba7752f18f1a,
2021.

Srajan Gupta. 10 real world use cases for ethereum. 2021.

Seungwoong Ha and Hawoong Jeong. Discovering invariants via
machine learning. Physical Review Research, 3(4).

Akos Hajdu and Dejan Jovanovié. solc-verify: A modular verifier for
solidity smart contracts. In Verified Software. Theories, Tools, and
Experiments: 11th International Conference, VSTTE 2019, New York
City, NY, USA, July 13-14, 2019, Revised Selected Papers 11, page 1.
Springer, 2020.

Chainlink: https://blog.chain.link/how-to-audit smartcontract. March.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank
adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

Immunefi, 2022. https://immunefi.com/.

Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus:
analyzing safety of smart contracts. In Ndss, 2018.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo,
and Yusuke Iwasawa. Large language models are zero-shot reasoners.
arXiv preprint arXiv:2205.11916, 2022.

Johannes Krupp and Christian Rossow. Teether: Gnawing at ethereum
to automatically exploit smart contracts. In 27th USENIX Security
Symposium, 2018.

Shuvendu K. Lahiri and Shaz Qadeer. Complexity and algorithms for
monomial and clausal predicate abstraction. In Renate A. Schmidt,
editor, Automated Deduction — CADE-22, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

Akash Lal and Shaz Qadeer. Powering the static driver verifier using
corral. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, New
York, NY, USA, 2014. Association for Computing Machinery.

David Larochelle and David Evans. Statically detecting likely buffer
overflow vulnerabilities. In 2001 USENIX Security Symposium,
Washington, DC, 2001.

Minhyeok Lee. A mathematical investigation of hallucination and
creativity in gpt models. Mathematics, 11(10), 2023.

K Rustan M Leino. This is boogie 2. manuscript KRML, 178(131),
2008.

Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and
Bill Roscoe. Reguard: finding reentrancy bugs in smart contracts.
In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, 2018.

Haokun Liu, Derek Tam, Mohammed Mugqeeth, Jay Mohta, Tenghao
Huang, Mohit Bansal, and Colin A Raffel. Few-shot parameter-efficient
fine-tuning is better and cheaper than in-context learning. Advances
in Neural Information Processing Systems, 35, 2022.

2233

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

Junrui Liu, Yanju Chen, Bryan Tan, Isil Dillig, and Yu Feng. Learning
contract invariants using reinforcement learning. In Proceedings of
the 37th IEEE/ACM International Conference on Automated Software
Engineering, 2022.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi,
and Graham Neubig. Pre-train, prompt, and predict: A systematic
survey of prompting methods in natural language processing. ACM
Computing Surveys, 55(9), 2023.

Ye Liu and Yi Li. Invcon: A dynamic invariant detector for ethereum
smart contracts. In 37th IEEE/ACM International Conference on
Automated Software Engineering, 2022.

Ning Lu, Bin Wang, Yongxin Zhang, Wenbo Shi, and Christian Esposit.
Neucheck: A more practical ethereum smart contract security analysis
tool. In Software: Practice and Experience, vol. 51, no. 10, 2021.

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making smart contracts smarter. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
CCS 16, 2016.

Alexander Mense and Markus Flatscher. Security vulnerabilities in
ethereum smart contracts. In Proceedings of the 20th international
conference on information integration and web-based applications &
services, 2018.

Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce,
Gustavo Grieco, Josselin Feist, Trent Brunson, and Artem Dinaburg.
Manticore: A user-friendly symbolic execution framework for binaries
and smart contracts. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2019.

Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran
Minh. sfuzz: An efficient adaptive fuzzer for solidity smart contracts.
In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, 2020.

Ivica Nikoli¢, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and
Aquinas Hobor. Finding the greedy, prodigal, and suicidal contracts at
scale. In Proceedings of the 34th annual computer security applications
conference, 2018.

Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and
Aquinas Hobor. Finding the greedy, prodigal, and suicidal contracts
at scale. In Proceedings of the 34th Annual Computer Security
Applications Conference. ACSAC ’18, 2018.

Jeremy W Nimmer and Michael D Ernst. Static verification of
dynamically detected program invariants: Integrating daikon and
esc/java. Electronic Notes in Theoretical Computer Science, 55(2),
2001.

OpenAl. Gpt4: https://openai.com/gpt-4. 2023.

OpenZeppelin. Timelockcontroller. CVE-2021-39167, Common
Vulnerabilities and Exposures Database, 2021.

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng
Yin. Can large language models reason about program invariants? In
International Conference on Machine Learning, pages 27496-27520.
PMLR, 2023.

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng
Yin. Can large language models reason about program invariants? In
International Conference on Machine Learning. PMLR, 2023.

Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-
Cohen, and Martin Vechev. Verx: Safety verification of smart contracts.
In 2020 IEEE symposium on security and privacy (SP). IEEE, 2020.

Kudelski Security Research. The polynetwork hack explained. August
2022.

Adam Roberts and Colin Raffel. Exploring transfer learning with t5:
the text-to-text transfer transformer. March 2022.

Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu, and Suman
Jana. Cln2inv: learning loop invariants with continuous logic networks.
arXiv preprint arXiv:1909.11542, 2019.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

[65]

[66]

[67]

[68]

[69]

[70]

(711
[72]

(73]

[74]

(751

[76]

(771

(78]

(791

[80]

[81]

[82]

Openzeppelin Security. Pods finance ethereum volatility vault audit
#1. March 2022.

Ilya Sergey and Aquinas Hobor. A concurrent perspective on smart
contracts. In Financial Cryptography and Data Security: FC 2017
International Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA,
Sliema, Malta, April 7, 2017, Revised Selected Papers 21. Springer,
2017.

Maheswar Sharma, Keerthana Kasthuri, Parvinder Singh, and Nynisha
Akula. Smart contract vulnerabilities, attacks and auditing consid-
erations. In The Auditor’s Guide to Blockchain Technology. CRC
Press.

Cypher Shield. How long does smart contract audit takes. March
2023.

Sunbeom So, Seongjoon Hong, and Hakjoo Oh. Smartest: Effectively
hunting vulnerable transaction sequences in smart contracts through
language model-guided symbolic execution. In USENIX Security
Symposium, 2021.

Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh.
Verismart: A highly precise safety verifier for ethereum smart contracts.
In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020.

Solidity by example: Function selector.

Yugiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun Wang, Zhengzi
Xu, Xiaofei Xie, and Yang Liu. When gpt meets program analysis:
Towards intelligent detection of smart contract logic vulnerabilities in
gptscan. arXiv preprint arXiv:2308.03314, 2023.

SunWeb3Sec. Defihacklabs git repository:
https://github.com/sunweb3sec/defihacklabs/projects?query=is

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen
Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford
alpaca: An instruction-following llama model. March 2022.

Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and
Radu State. Confuzzius: A data dependency-aware hybrid fuzzer for
smart contracts. In 2021 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 2021.

Christof Ferreira Torres, Julian Schiitte, and Radu State. Osiris:
Hunting for integer bugs in ethereum smart contracts. In Proceedings
of the 34th Annual Computer Security Applications Conference, 2018.

Christof Ferreira Torres, Mathis Steichen, and Radu State. The art of
the scam: Demystifying honeypots in ethereum smart contracts. In
Proceedings of the 28th USENIX Conference on Security Symposium.
2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet,
Marie-Anne Lachaux, Timothée Lacroix, Baptiste Roziere, Naman
Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin,
Edouard Grave, and Guillaume Lample. Llama: Open and efficient
foundation language models. arxiv.org, 2023.

Shuai Wang, Chengyu Zhang, and Zhendong Su. Detecting nondeter-
ministic payment bugs in ethereum smart contracts. Proceedings of
the ACM on Programming Languages, 3(OOPSLA), 2019.

Yuepeng Wang, Shuvendu K Lahiri, Shuo Chen, Rong Pan, Isil Dillig,
Cody Born, Immad Naseer, and Kostas Ferles. Formal verification
of workflow policies for smart contracts in azure blockchain. In
Verified Software. Theories, Tools, and Experiments: 11th International
Conference, VSTTE 2019, New York City, NY, USA, July 13-14, 2019,
Revised Selected Papers 11. Springer, 2020.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph,
Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou,
Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi,
Quoc Le, and Denny Zhou. Chain of thought prompting elicits
reasoning in large language models. arXiv preprint arXiv:2201.11903,
2022.

2234

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea,
Henry Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C
Schmidt. A prompt pattern catalog to enhance prompt engineering
with chatgpt. arXiv preprint arXiv:2302.11382, 2023.

Siwei Wu, Dabao Wang, Jianting He, Yajin Zhou, Lei Wu, Xingliang
Yuan, Qinming He, and Kui Ren. Defiranger: Detecting price manip-
ulation attacks on defi applications. arXiv preprint arXiv:2104.15068,
2021.

Youngseok Yang, Taesoo Kim, and Byung-Gon Chun. Finding
consensus bugs in ethereum via multi-transaction differential fuzzing.
In OSDI, pages 349-365, 2021.

Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui
Gu. Learning nonlinear loop invariants with gated continuous logic
networks. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2020.

Ye Yuan and TongYi Xie. Svchecker: a deep learning-based system for
smart contract vulnerability detection. In Proceedings Volume 12260,
International Conference on Computer Application and Information
Security. ICCAIS, 2021.

Jiashuo Zhang, Jianbo Gao, Yue Li, Ziming Chen, Zhi Guan, and
Zhong Chen. Xscope: Hunting for cross-chain bridge attacks. In
37th IEEE/ACM International Conference on Automated Software
Engineering. ICSE’22, 2022.

Pengfei Zhang, Huitao Shen, and Hui Zhai. Machine learning
topological invariants with neural networks. Physical review letters,
120(6).

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya
Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li,
Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster,
Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and
Luke Zettlemoyer. Opt: Open pre-trained transformer language models.
arxiv.org, 2022.

Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for
training deep neural networks with noisy labels. Advances in neural
information processing systems, 31, 2018.

Zhuo Zhang, Brian Zhang, Wen Xu, and Zhigiang Li. Demystifying
exploitable bugs in smart contracts. In Proceedings of nternational
Conference on Software Engineering. ICSE’23, 2023.

Yuan Zhuang, Zhenguang Liu, Peng Qian, Qi Liu, Xiang Wang, and
Qinming He. Smart contract vulnerability detection using graph
neural networks. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence. IJCAI’20, 2020.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.l. Summary

The paper presents SMARTINYV, a smart contract invari-
ant inference framework to automate the detection. The key
insight of the paper is that the expected behavior of smart
contracts, as specified by invariants, relies on understanding
multimodal information, such as source code and natural
language. Thus, SMARTINYV combines the analysis of source
code and natural language document to detect bugs in smart
contracts. It uses a tiered prompting strategy to identify
invariants by applying machine learning on source code and
relevant comments and documents. These invariants are then
used to detect bugs, particularly functional bugs. SMARTINV
is evaluated relatively thoroughly on bug detection, invariants
generation, and performance.

A.2. Scientific Contributions

o Provides a Valuable Step Forward in an Established
Field.

A.3. Reasons for Acceptance

o The paper develops Tier of Thought (ToT), a general
prompting strategy, that can be used to fine tune and
elicit explicit reasoning of foundation models on the
program structures of smart contracts.

o« SMARTINYV extracts invariants for expected behaviors
of smart contracts by leveraging foundation models to
reason about multimodal information including source
code and natural language documents.

o The comprehensive experiments demonstrate SMART-
INV’s superiority over the state-of-the-art approaches
in invariance inference.

2235

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 22,2025 at 21:14:03 UTC from IEEE Xplore. Restrictions apply.

