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Abstract. Feature extraction with convolutional neural networks (CNNs)
is a popular method to represent images for machine learning tasks.
These representations seek to capture global image content, and ide-
ally should be independent of geometric transformations. We focus on
measuring and visualizing the shift invariance of extracted features from
popular off-the-shelf CNN models. We present the results of three experi-
ments comparing representations of millions of images with exhaustively
shifted objects, examining both local invariance (within a few pixels)
and global invariance (across the image frame). We conclude that fea-
tures extracted from popular networks are not globally invariant, and
that biases and artifacts exist within this variance. Additionally, we de-
termine that anti-aliased models significantly improve local invariance
but do not impact global invariance. Finally, we provide a code reposi-
tory for experiment reproduction, as well as a website to interact with
our results at https://jakehlee.github.io/visualize-invariance.
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1 Introduction

Convolutional neural networks (CNNs) are able to achieve state-of-the-art per-
formance on computer vision tasks such as object classification [I2J10] and image
segmentation [9]. Transfer learning methods [24] allow tasks to leverage mod-
els pre-trained on large, generic datasets such as ImageNet [5] and MIT Places
[26] instead of training a CNN from scratch, which can be costly. One popular
method is extracting neuron activations of a layer in the pre-trained CNN and
treating them as feature representations of the input image [22]. Using these fea-
ture vectors with machine learning methods result in competitive performance
for classification in different domains [2221], content based image retrieval [2],
and novel image detection [13].

However, it is known that CNNs, and therefore CNN features, lack geomet-
ric invariance. Simple, small transformations such as translations and rotations
can significantly impact classification accuracy [(JIJI7]. For feature extraction,
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(a) AlexNet fc8 (b) AlexNet fc8
off-the-shelf anti-aliased [25]

Fig. 1: An example heatmap of cosine similarities as an indicator for shift invari-
ance, using features extracted from the last fully-connected layer of AlexNet.
Features from each shift location are compared to the features of an image with
the object at the top left. Brighter colors at each shift location indicate more
similar features. Refer to Section for more results.

geometric invariance may be desired to retrieval a global descriptor of the im-
age robust to minor changes in image capture. This goal is especially relevant
for content based image retrieval tasks, as images only a small shift or rotation
apart should result in similar features [2]. However, any task that relies on CNN
feature extraction would benefit from models more robust to geometric trans-
formations, as the extracted features would better represent the content of the
images.

Several methods to improve geometric invariance have been proposed, in-
cluding geometric training dataset augmentation [23], spatial transformer net-
works [I1], and anti-aliasing [25]. For improving the invariance of extracted fea-
tures, methods have been proposed in the context of image retrieval [8] by post-
processing the extracted features instead of making the model itself more robust.
Despite these proposals, it remains questionable to what extent we can trust
state-of-the-art classifier networks as translation-invariant, even with those add-
ons, and there is a lack of principled study on examining that either qualitatively
or quantitatively.

In this work, we examine the shift invariance of features extracted from off-
the-shelf pre-trained CNNs with visualizations and quantitative experiments.
These experiments take advantage of exhaustive testing of the input space, ex-
tracting features from millions of images with objects at different locations in
the image frame. Such fine-grained experiments allow for observing invariance
from two different lenses: both global shift invariance, defined the the maxi-
mal coverage of object location translations that the feature can stay relatively
invariant to (based some feature similarity threshold); and local shift invari-
ance, defined as the relative invariance changes when perturbing the object
location for just a few pixels. Note that most literature discussed the translation
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Fig.2: “Feature arithmetic” performed with features extracted from AlexNet’s
fc7 layer. Features were extracted from operand images, added together, and
visualized with DeepSiM [6]. That provides empirical evidence that the extracted
fully-connected features still preserve almost complete spatial information, which
could be considered to “counterexamples” to the claimed shift invariance of
popular deep models. Refer to Section for complete results.

invariance through the latter lens [2325], while we advocate both together for
more holistic and fine-grained understanding.

We focus on features extracted from fully-connected layers of the models, as
they are often assumed to be more geometrically invariant [I4] than convolutional
feature maps. We also compare the robustness of standard pre-trained models [4],
and those models trained by a state-of-the-art anti-aliasing technique to boost
translation invariance [25]. We draw the following main observations:

— Visualizing cosine similarities of features from shifted images show that al-
most all existing pre-trained classifiers’ extracted features, even from high-
level fully-connected layers, are brittle to input translations. Those most ac-
curate models, such as ResNet-50, suffer even more from translation fragility
than simpler ones such as AlexNet.

— Interestingly, we observe an empirical bias towards greater similarity for
horizontally shifted images, compared to vertical translations. Also, a grid
pattern was universally observed in vanilla pre-trained models, showing sig-
nificant local invariance fluctuations and concurring the observation in [25].
An example is shown in Figure

— Antialiased models [25] are able to suppress such local fluctuations and im-
prove local invariance, but do not visibly improve the global invariance. An
example is shown in Figure

— A side product that we create is a “feature arithmetic” demonstration:
adding or subtracting features extracted from images with shifted object lo-
cations, then visualizing the result hidden feature to the pixel domain. That
results in images with objects added or removed spatially correctly, despite
the lack of any latent space optimization towards that goal. An example is
shown in [2, which we suggest may serve as another “counterexamples” to
the claimed shift invariance of popular deep models.
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2 Methods

We perform three sets of experiments to describe and quantify the robustness of
extracted features to object translation. First, we measure the sensitivity of ex-
tracted features to translation by calculating cosine similarities between features
of translated patches (Section [2.1)). Next, we train a linear SVM on extracted
features of translated patches to measure basic separability (Section . Fi-
nally, we demonstrate that extracted features can be added and subtracted, and
coherent spatial information can still be recovered (Section .

2.1 Feature Similarity

We adopt Zhang’s definition of shift invariance [25]: an extracted feature is shift
invariant if shifting the input image results in an identical extracted feature. To
quantify the invariance, we exhaustively test the input space. We define a seg-
mented object image patch and generate all translations of the patch across
a white background with a stride of one pixel. Compared to an alternative
method—exhaustively cropping a smaller image from a larger image (similarly
to data augmentation to prevent overfitting [12]), our method ensures that the
pixel content is exactly the same for every image and the only variation is the
geometric transformation.

After feature extraction, we calculate the cosine similarity between vectors.
Since similarity is comparative, we define five anchor patch locations to compare
vectors against: top left, top right, center, bottom left, and bottom right. By our
definition, a completely shift-invariant model would have identical extracted fea-
tures for every image, and a cosine similarity of 1 for every comparison. However,
a less shift-invariant model would have lower cosine similarities. By observing
the results for each anchor, we can determine if the features are more sensitive
to shifts in a certain axis, or if certain corners of the image are more sensitive
than others.

2.2 Feature Separability

To evaluate the shift invariance of features beyond consine similarity, we also
measure the separability of the extracted features. While the previous experi-
ments quantify feature similarity, it does not show whether spatial information
is well-encoded by the features. It is possible that the features are not shift in-
variant, but the differences due to shifting are random. It is also possible that
the changes are well-correlated with patch location, and therefore separable.

To measure this separability, we train a linear SVM classifier on the extracted
features to determine whether the patch is on the top or bottom half of the image,
and another to determine whether the patch is on the left or right half of the
image. We perform 5-fold stratified cross-validation for each patch object.

A completely shift invariant model would generate identical features for every
image, resulting in random classifier accuracy (50%). A less shift invariant model
may still generate features not correlated with the patch location. In this case,
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we can still expect near-random classifier accuracy. Finally, a less shift invariant
model may generate features well-correlated with the patch location, resulting
in higher classifier accuracy.

2.3 Feature Arithmetic

Finally, we consider a case in which extracted features have encoded shift in-
formation and spatial information very well. It may be possible to manipulate
extracted features and still recover information, similarly to latent space in-
terpolation or arithmetic in autoencoders and generative adversarial networks
(GANSs) [3II8]. Dosovitskiy and Brox have previously shown that images can be
recovered from features extracted from layers of AlexNet, as well as from inter-
polated features [6]. Performing feature arithmetic with these features may give
us further insight into the shift invariance of extracted features.

We perform feature arithmetic by extracting features of images with objects
in different locations. We then add or subtract the extracted features, hoping to
add or remove images of said objects in different locations. Finally, we visualize
these features with the GAN model proposed by Dosovitskiy and Brox (referred
to as DeePSiM) [6]. We only perform these experiments with features extracted
from the fc6, fc7, and fc8 layers of AlexNet [12], as DeePSiM architectures were
only provided for those layers. However, we make a slight adjustment and use
features extracted prior to ReLLU activation to take advantage of the additional
information. We used re-trained DeePSim model weights provided by Lee and
Wagstaff [I3] for this modification.

If the extracted features encode location information well, then the visual-
izations of the results of arithmetic should be similar to what we would have
expected had we performed the arithmetic in pixel space. It should be noted
that, in contrast to unsupervised GANs trained to learn an efficient latent space
that can be recovered [18], AlexNet had no motivation to learn such a latent
space when training for ImageNet object classification. Therefore, it is already
impressive that the input image can be successfully recovered from features ex-
tracted from the fully connected layers. If meaningful images can be recovered
from added or subtracted features, it would further show that the features encode
spatial information in addition to class and object information.

3 Results

3.1 Datasets

For our feature similarity and separability experiments, we use 20 segmented
objects each from 10 classes in the COCO 2017 training set as patches [15]: car,
airplane, boat, dog, bird, zebra, orange, banana, clock, and laptop.
These classes were selected because of their range of object types, and because
the same classes also exist in ImageNet [5], on which all of our models being
evaluated are trained. This does not mean that the results of the experiment
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are exclusive to ImageNet, however; feature extraction is known to be applicable
domains outside of the training set [22].

The white background images are 224x224 in size. We resize each segmented
and cropped object to 75x75 (small) and 125x125 (large) to explore translating
patches of different sizes. Each patch is then translated with stride 1 to every
possible location in the 224x224 frame. This results in 22.5k images for the
smaller patch and 10k images for the larger patch. In total, for 200 unique
patches, there are 4.5 million small-patch and 2 million large-patch images.

For our feature arithmetic experiments, we use a handcrafted dataset of ob-
ject image patches against a white background. We place some of the same image
patches at specific locations so that, when added or subtracted, multiple patches
can appear or patches can be removed. These images are described in further
detail in Section 3.8

3.2 Feature Extraction Models

For our feature similarity and separability experiments, we evaluate the following
popular pre-trained models provided by Pytorch [I6]: AlexNet [12], ResNet-50
[10], and MobileNetV2 [20].

We extract features from all three fully-connected layers of AlexNet to de-
termine if and how shift invariance changes deeper into the network. ResNet-50
has only one fully-connected layer (the final classification layer prior to softmax
activation), but is far deeper overall than AlexNet, enabled by its skip connec-
tions. It also has a global average pooling layer prior to the final fully connected
layer. Finally, MobileNetV2 also only has one fully-connected layer as the final
classification layer prior to softmax activation.

We also evaluate the anti-aliased versions of these models by Zhang [25], as
they claim to improve shift invariance and classification accuracy. We use the
Bin-5 filter, as they reported the best “consistency” compared to other filters.

All models were pre-trained on ILSVRC2012 [5] with data augmentationﬂ
First, a crop of random size (from 0.08 to 1.0 of the original size) and random
aspect ratio (3/4 to 4/3) is made, and is resized to 224x224. Second, the image
is flipped horizontally with 0.5 probability. For each model, we extract features
from fully connected layers prior to ReLLU or Softmax activation.

3.3 Feature Similarity

First, observe the similarities of features extracted from the large-patch dataset.
Figure [3]shows heatmaps visualizing the average cosine similarities of 200 object
patches at each shift location. Only comparisons with the center (C) and top-left
(TL) anchor points are shown. Heatmaps for all comparison anchor points can
be seen at https://jakehlee.github.io/visualize-invariancel

3 https://github.com/pytorch/vision/blob/master/references/
classification/train.py\#L96-L103
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Overall, features extracted from the fc7 layer of AlexNet seem to be the
most shift invariant, with the anti-aliased ResNet-50 close behind. This is also
supported by Table [1, which reports the mean and standard deviation of the
mean cosine similarity for each object patch.

Interestingly, while similarities with the center anchor remain fairly consistent
(with lower similarities at the corners), results for the top-left anchor show that
extracted features remain more similar when the patch is shifted horizontally
than vertically. This is most clearly seen in Figure [3]] Additionally, the heatmap
in Figure takes the form of an oval stretched horizontally, indicating the
same bias. We hypothesized that this may be due to random horizontal flipping
included in the training data augmentation. The model may have encountered
more objects varying horizontally than vertically during training, resulting in
greater invariance along that axis.

To test this hypothesis, we trained AlexNet models on the ILSVRC2012 Im-
ageNet training set [I9] with and without random horizontal flip augmentation
for 5 epochs using PyTorch-provided training hyperparametersﬁ While the orig-
inal models were trained for 90 epochs, we believe 5 epochs are sufficient for
comparison. Heatmaps generated with these two models are shown in Figure
The heatmaps reveal no significant differences between the two models, rejecting
our hypothesis. The bias must be a result of the dataset or architecture, not the
training set augmentation.

Additionally, we can observe the general improvement that anti-aliasing pro-
vides to shift invariance and overall consistency. In the heatmaps for all lay-
ers of off-the-shelf models, there is a clear grid pattern visible, most distinct
in AlexNet’s fc8, ResNet-50, and MobileNetV2. The anti-aliased models either
completely eliminate or significantly suppress this grid pattern, improving the
consistency and local invariance. Additionally, for some layers, the antialiased
model also slightly improves overall similarity and global invariance.

Similar patterns are visible in the heatmaps for the small-patch dataset in
Figure [ and the aggregate cosine similarities in Table [2] In fact, these phenom-
ena are even more pronounced, as smaller patches can be shifted further in the
image frame.

3.4 Feature Separability

Next, we investigate the separability of extracted features. After we perform 5-
fold cross validation for each classifier on each object patch, we report the mean
of the mean accuracies and the mean of the standard deviations for the cross
validations. These metrics are reported for both the left-right classifier and the
top-bottom classifier. Table [3| reports the metrics for the large-patch dataset
while Table [ reports the metrics for the small-patch dataset.

The results clearly show that extracted features are well-correlated with patch
location. AlexNet’s fc6 layer, for example, had a 99.9% accuracy for left-right

* https://github.com/pytorch/vision/tree/master /references/classification
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Fig.3: Cosine similarity heatmaps of the large-patch dataset. Each pixel rep-
resents the average cosine similarity of different object patches at that shift
location. C indicates the center anchor and TL indicates the top-left anchor.
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Fig.4: Cosine similarity heatmaps of the small-patch dataset. Each pixel rep-
resents the average cosine similarity of different object patches at that shift
location. C indicates the center anchor and TL indicates the top-left anchor.
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Table 1: Feature similarity experiment metrics for the large-patch dataset. T is
the mean of the mean accuracies and o is the standard deviation of the mean
accuracies.

top-left top-right center bottom-left bottom-right

model layer
T o x o T o z o x o
fc6  0.830 0.030 0.823 0.031 0.928 0.012 0.822 0.031 0.816 0.032
AlexNet fc7  0.949 0.016 0.946 0.018 0.977 0.007 0.945 0.015 0.944 0.017

fc8 0.918 0.032 0.908 0.043 0.955 0.016 0.912 0.032 0.908 0.035
ResNet-50 fc  0.945 0.022 0.935 0.044 0.961 0.015 0.942 0.025 0.930 0.042
MobileV2 fc  0.931 0.029 0.920 0.040 0.954 0.017 0.930 0.027 0.917 0.041

fc6 0.826 0.029 0.819 0.032 0.936 0.009 0.819 0.031 0.811 0.032
AlexNet-AA  fc7 0.947 0.016 0.945 0.020 0.981 0.006 0.944 0.016 0.941 0.019
fc8 0.930 0.028 0.916 0.051 0.970 0.010 0.925 0.029 0.911 0.045
ResNet-50-AA fc  0.948 0.023 0.943 0.031 0.975 0.011 0.948 0.028 0.938 0.035
MobileV2-AA fc  0.943 0.024 0.934 0.034 0.970 0.012 0.941 0.025 0.934 0.033

Table 2: Feature similarity experiment metrics for the small-patch dataset. T is
the mean of the mean accuracies and o is the standard deviation of the mean
accuracies.

top-left top-right center  bottom-left bottom-right

model layer
T o z o T o T o T o
fc6  0.754 0.046 0.744 0.046 0.874 0.021 0.737 0.048 0.731 0.049
AlexNet fc7 0.931 0.015 0.928 0.018 0.967 0.007 0.923 0.017 0.923 0.019

fc8 0.889 0.039 0.877 0.053 0.937 0.022 0.865 0.051 0.863 0.058
ResNet-50 fc  0.921 0.031 0.908 0.050 0.949 0.019 0.913 0.039 0.892 0.063
MobileV2 fc  0.897 0.043 0.883 0.058 0.935 0.026 0.882 0.047 0.868 0.066

fc6  0.740 0.043 0.733 0.042 0.882 0.017 0.724 0.046 0.720 0.044
AlexNet-AA  fc7 0.927 0.017 0.926 0.019 0.971 0.006 0.921 0.018 0.920 0.019
fc8 0.898 0.039 0.885 0.067 0.956 0.013 0.879 0.051 0.877 0.058
ResNet-50-AA fc 0.909 0.040 0.906 0.052 0.962 0.015 0.906 0.046 0.900 0.052
MobileV2-AA fc  0.908 0.033 0.900 0.044 0.956 0.016 0.904 0.039 0.898 0.042
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Fig.5: Cosine similarity heatmaps of AlexNet fc8 features on the large-patch
dataset. Models were trained with and without random horizontal flip augmen-
tation for 5 epochs.

Table 3: Feature separability experiment metrics for the large-patch dataset. Acc
is the mean of the mean accuracies and & is the mean of the standard deviations
of cross validations.

left-right top-bottom

model layer —
Acc @ Acc T
fc6  0.999 0.002 0.898 0.126
AlexNet fc7 0.995 0.009 0.896 0.128

fc8 0.984 0.023 0.896 0.129
ResNet-50 fc  0.992 0.012 0.889 0.118
MobileV2 fc  0.989 0.015 0.884 0.119

fc6  0.998 0.004 0.898 0.125
AlexNet-AA  fc7 0.988 0.020 0.899 0.124
fc8 0.976 0.036 0.899 0.124
ResNet-50-AA fc 0.990 0.016 0.893 0.124
MobileV2-AA fc  0.989 0.017 0.891 0.119

classification. However, the top-bottom classifiers show a significantly lower ac-
curacy by about 10%, as well as a larger standard deviation in cross valida-
tion. This seems to conflict with our observations in feature similarity, in which
horizontally shifted images had more similar features. Intuitively, more similar
features should be less separable.

‘We propose that features extracted from horizontally shifted patches are more
similar and more correlated. While less values differ between horizontally shifted
patches, the values that do differ are more meaningful. In contrast, features
extracted from vertically shifted patches are less similar and less correlated.
This explains the results of both feature similarity and separability experiments.
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Table 4: Feature separability experiment metrics for the small-patch dataset. Acc
is the mean of the mean accuracies and & is the mean of the standard deviations
of cross validations.

left-right top-bottom

model layer ——— —
Ace o Ace T
fc6  0.997 0.004 0.897 0.127
AlexNet fc7 0.985 0.022 0.896 0.129

fc8 0.966 0.043 0.895 0.130
ResNet-50 fc  0.980 0.029 0.893 0.124
MobileV2 fc  0.984 0.022 0.899 0.121

fc6  0.995 0.008 0.900 0.123
AlexNet-AA  fc7 0.977 0.034 0.899 0.124
fc8 0.959 0.056 0.898 0.127
ResNet-50-AA fc 0.980 0.029 0.897 0.128
MobileV2-AA fc  0.986 0.021 0.899 0.123

3.5 Feature Arithmetic

Finally, we report the results of the feature arithmetic experiments. We per-
formed feature arithmetic with several different image patches and operands,
but we have chosen the examples in Figure [6] for discussion. Figure [6a] shows an
example of a pixel-space subtraction, where we expect some strawberries in an
image to be removed via the subtraction. To perform this extraction in feature
space, we extract the features of the two operand images from AlexNet’s fc6,
fc7, and fc8 layers. Then, for each layer, we calculate a result vector by sub-
tracting the operands’ feature vectors. Finally, using DeePSiM [6], we visualize
the operand feature vectors and the result vector for each layer. The results are
shown in Figures [6d, [6€] and [6g}

Since DeePSiM was trained to reconstruct and visualize extracted feature
vectors, the visualizations of the operand feature vectors were expected to be
close to the original image. However, DeePSiM was not trained to visualize
modified feature vectors, so the visualizations of the result vectors are of interest.
For the fc6 layer, despite the noisy background, the visualization of the result
vector is similar to the expected image: the top two strawberries have been
removed, and only a single strawberry remains in the lower left corner.

For the fc7 and fc8 layers, however, the results are less clear. The visualiza-
tions for both result vectors contain an extra strawberry in the bottom right
corner, which did not exist in any of the original images. In fact, for fc8, the
visualization of the extracted operand features is not accurate, displaying four
(or more) strawberries when there were only three originally. Features at these
deeper layers seem to encode less spatial information, which is consistent with
the results of previous experiments.

Figure[6b]shows an intuitive pixel-space addition. Similarly to the subtraction
example, Figures [6d] [61, and [6] show results from visualizing arithmetic with
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Fig. 6: Feature arithmetic visualizations

features from fc6, fc7, and fc8, respectively. In this example, the visualizations
of the result vectors from layers fc6 and fc7 closely match the expected image.
There are clearly three strawberries in the result, two on the top and one on the
bottom right. However, in the visualization of the result vector from layer fc8,
the top left strawberry completely disappears, despite the correct visualization of
the first operand. As observed in the subtraction experiment, this also suggests
that deeper layers encode less spatial information.

In several more experiments with various objects and operand combinations,
the above observations remained consistent. Visualizations of the result vector
for layer fc6 consistently matched the expected pixel-space results, whereas such
visualizations for layers fc7 and fc8 were less consistent or completely inaccurate.
This supports that deeper layers encode less spatial information, although some
amount can still be recovered due to global invariance.

4 Conclusion

Feature extraction with pre-trained convolutional neural networks is a power-
ful computer vision tool. However, some tasks may require that these extracted
features be shift invariant, to be more robust to camera movement or other geo-
metric perturbations. In this work, we measure the shift invariance of extracted
features from popular CNNs with three simple experiments and visualizations.

Heatmaps of cosine similarities between extracted features of shifted images
reveal that, while various models and layers have different degrees of invariance,
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none are globally shift invariant. Patterns in the heatmaps show a bias of ex-
tracted features towards horizontally shifted images, which remain more similar
than vertically shifted images. A grid pattern of local fluctuations is visible in all
off-the-shelf models, but anti-aliasing is able to significantly suppress this effect
and improve local shift invariance. However, anti-aliasing does not significantly
improve global shift invariance.

Results of the features separability experiments suggest that, while features of
horizontally shifted images are more similar, they are also more correlated with
the geometric transformation. Linear SVM classifiers were significantly better
at classifying shifts between left and right than top and bottom. Features of
vertically shifted images are more different, but the differences are less correlated
and less separable.

Finally, features extracted from some layers of AlexNet can be added and
subtracted, and spatial information can still be visualized and recovered. Visu-
alizations of added and subtracted extracted features match the expected pixel-
space result for earlier fully connected layers of AlexNet, such as fc6 and fc7.
Features extracted from the deepest layer, fc8, are not added and subtracted as
easily, as visualizations often do not match the expected pixel-space result.

Further work would be even more valuable to examine the robustness and
sensitivity of extracted features. Larger scale experiments with more patch sizes
and different background colors and textures may provide better understanding.
A more thorough investigation of the separability of extracted features is needed,
perhaps from a metric learning approach. Finally, applying the lessons learned to
improve the training or architecture of the models is crucial for improving shift
invariance, robustness to geometric perturbations, and transferability of models
to other tasks.
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