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Abstract
Dynamic program analysis frameworks greatly improve
software quality as they enable a wide range of pow-
erful analysis tools (e.g., reliability, profiling, and log-
ging) at runtime. However, because existing frameworks
run only one actual execution for each software applica-
tion, the execution is fully or partially coupled with an
analysis tool in order to transfer execution states (e.g.,
accessed memory and thread interleavings) to the anal-
ysis tool, easily causing a prohibitive slowdown for the
execution. To reduce the portions of execution states that
require transfer, many frameworks require significantly
carving analysis tools as well as the frameworks them-
selves. Thus, these frameworks significantly trade off
transparency with analysis tools and allow only one type
of tools to run within one execution.

This paper presents REPFRAME, an efficient and
transparent framework that fully decouples execution
and analysis by constructing multiple equivalent execu-
tions. To do so, REPFRAME leverages a recent fault-
tolerant technique: transparent state machine replica-
tion, which runs the same software application on a set
of machines (or replicas), and ensures that all replicas
see the same sequence of inputs and process these inputs
with the same efficient thread interleavings automati-
cally. In addition, this paper discusses potential direc-
tions in which REPFRAME can further strengthen exist-
ing analyses. Evaluation shows that REPFRAME is easy
to run two asynchronous analysis tools together and has
reasonable overhead.

1 Introduction
Dynamic program analysis frameworks greatly improve
software quality as they enable a wide range of powerful
analysis tools (e.g., data race detectors [34, 41, 43] for
multithreaded applications) at runtime. Existing analy-
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sis frameworks can be classified into two approaches de-
pending on how a framework transfers an application’s
execution states to an analysis tool. Traditional analysis
frameworks [8, 31, 34, 38, 41] take a “fully-coupled” ap-
proach: a framework in-lines an analysis with the execu-
tion, then the analysis can inspect all or most execution
states. However, this approach can easily let the anal-
ysis slow down the actual execution. To improve per-
formance, leveraging a fact that many analyses can be
done asynchronously with the actual execution, some re-
cent frameworks [10, 20, 22, 35, 42, 43] take a second
“partially-decoupled” approach: only analysis-critical
execution states (e.g., effective memory addresses and
thread interleavings) are transferred to the analysis run-
ning on other CPU cores, then the actual execution can
be less perturbed by the analysis.

Unfortunately, despite these great effort, most exist-
ing analysis frameworks are still hard to deploy in pro-
duction runs, mainly due to three problems. The first
problem is still performance. Traditional frameworks
fully couple the analysis with the actual execution us-
ing the shadow memory approach, so whenever an anal-
ysis does some heavyweight work, the execution is
slowed down (e.g., a popular race detection tool Thread-
Sanitizer [41], which uses a traditional framework, in-
curs 20X∼100X slowdown for many programs). Recent
frameworks that take the “partially-decoupled” approach
have shown to run 4X∼8X times faster [22, 43] than
traditional frameworks because they transfer fewer ex-
ecution states. However, the overall slowdown of these
recent frameworks are still prohibitive in their own eval-
uation because the amount of execution states (e.g.,
effective memory addresses [22] and thread interleav-
ings [43]) transferred to analysis tools are still enormous.

The second problem is that recent frameworks with
the “partially-decoupled” approach heavily trade off
transparency with analysis tools. To be able to transfer
fewer execution states to an analysis tool, these frame-
works require heavily carving the analysis tool as well
as the transferred execution states. For example, a re-
cent framework [43] for race detection tools leverages
the record-replay technique [24, 25, 29] to reduce anal-
ysis work in the actual execution, but this framework re-
quires significantly carving race detection tools into sev-
eral phases to adapt to record-replay, which makes the
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tools largely different from typical ones (Note that an
analysis tool itself is already quite difficult to implement
and maintain.)

The third problem is that existing frameworks, includ-
ing both traditional ones and recent ones, have not shown
to run multiple types of analysis tools together. Multiple
analysis tools bring multiple powerful guarantees, which
is attractive to today’s applications. However, the tra-
ditional “fully-coupled” frameworks typically take the
shadow memory approach to hold analysis results for
each memory byte in the actual execution, then different
analyses may require different copies of shadow mem-
ory per byte. It is not trivial to extend these frameworks
to support multiple copies of shadow memory. Consider-
ing “partially-decoupled” frameworks, it is not trivial to
extend them to support multiple types of analysis tools
within one execution either, because these frameworks
heavily carve the transferred execution states, which are
hard to reuse for different types of analysis tools.

In sum, a fundamental reason for the three problems
in existing analysis frameworks is that they run only one
actual execution, so an analysis tool has to be fully or
partially coupled with the execution in order to inspect
execution states. Well, what if one can construct multiple
equivalent executions efficiently and transparently?

To address this question, this paper presents
REPFRAME, an efficient, transparent dynamic pro-
gram analysis framework by leveraging a technique
called transparent state machine replication, presented
in CRANE [16]. This technique runs the same multi-
threaded application on a set of machines (or replicas)
transparently without modifying these applications, and
enforces that all replicas perform the same execution
state transitions. To do so, CRANE combines two
techniques, state machine replication (or SMR) and
deterministic multithreading (or DMT). SMR ensures
that all replicas always see the same sequence of inputs
as long as majority of replicas agree on these inputs.
DMT efficiently enforces the same thread interleavings
across replicas on each input.

Leveraging CRANE, REPFRAME can just run anal-
ysis tools on some replicas while the other replicas
still run actual executions and process client requests
fast. However, to achieve this goal, REPFRAME must
address three practical challenges. First, even asyn-
chronous analysis tools (e.g., race detectors) sometimes
may decide to roll back to previous execution states and
discard malicious inputs that triggered harmful events.
To address this challenge, REPFRAME provides a trans-
parent application-level checkpoint mechanism with ex-
pressive API for replicas to roll back consistently.

Second, it is unknown whether REPFRAME’s repli-
cation techniques and existing analysis tools can bene-
fit each other. To address this challenge, this paper dis-

cusses several types of analyses in which REPFRAME
has the potential to strengthen and speedup existing tools
themselves via REPFRAME’s replication architecture. In
addition, this paper points out that existing race detec-
tion tools can actually speedup REPFRAME. In a word,
REPFRAME and existing analysis tools form a mutually
beneficial eco-system.

Third, despite much effort, state-of-the-art still lacks
evaluation to show that different types of analysis
tools can actually run together. To address this chal-
lenge, we evaluated REPFRAME on a popular paral-
lel anti-virus scanning server ClamAV [11] with three
replicas (each has 24 cores) in Linux. Our evaluation
shows that REPFRAME is able to transparently run two
analysis tools together: one is a heavyweight analy-
sis tool, the Helgrind race detector [34]; the other is a
lightweight analysis tool, DynamoRio’s code coverage
tool drcov [8]. Moreover, REPFRAME incurred merely
2.1% overhead over the actual execution.

The main contribution of REPFRAME is the idea of
applying transparent state machine replication to fully
decouple an application’s actual execution and analy-
sis tools, which benefits applications, analysis tools, and
frameworks. Note that: (1) unlike CRANE, REPFRAME
does not aim to provide fault-tolerance, but aims to con-
struct multiple equivalent executions so that applications
can enjoy efficient and transparent analyses; and (2)
REPFRAME does not aim to replace traditional “fully-
coupled” frameworks, but aims to compensate them be-
cause REPFRAME can easily run them on replicas.

In the remaining of this paper, §2 introduces the back-
ground of the CRANE system. §3 gives an overview of
REPFRAME, including its deployment model, its check-
point design for analysis tools, and its potential bene-
fits. §4 presents evaluation results, §5 introduces related
work, and §6 concludes.

2 CRANE Background
CRANE’s deployment model is similar to a typical
SMR’s. In a CRANE-replicated system, a set of 2f+1
machines (nodes) are set up within a LAN, and each
node runs an instance of CRANE containing the same
server program. Once the CRANE system starts, one
node becomes the primary node which proposes the or-
der of requests to execute, and the others become backup
nodes which follow the primary’s proposals. An arbi-
trary number of clients in LAN or WAN send network
requests to the primary and get responses. If failures oc-
cur, the nodes run a leader election to elect a new leader
and continue. Despite f nodes fail, CRANE still guara-
tees availability of the replicated application.

This section presents the background of SMR (§2.1)
and DMT (§2.2), the two techniques that CRANE com-
bines.
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Figure 1: The CRANE Architecture. Key components are
shaded (and in green).

2.1 State Machine Replication (SMR)

State machine replication (SMR) is a powerful fault-
tolerance concept [33]. It models a program as a deter-
ministic state machine, where states are important pro-
gram data and the transitions are deterministic execu-
tions of program code under input requests. SMR runs
replicas of this state machine on multiple nodes, toler-
ating many possible node and network failures. To keep
the replicas consistent, it invokes a distributed consensus
protocol (typically PAXOS [26, 28, 33]) to ensure that a
quorum (typically majority) of the replicas agree on the
input request sequence; under the deterministic execu-
tion assumption, this quorum of replicas must reach the
same exact state. SMR is proven safe in theory, and pro-
vides high availability in practice.

To support general server programs transparently,
CRANE leverages CRANE’s PAXOS consensus protocol,
which takes the POSIX socket API as consensus inter-
face. This PAXOS protocol enforces two kinds of orders
for socket operations. First, for requests coming from the
clients, such as connect() and send() requests, this
protocol enforces that all nodes see the same totally or-
dered sequence of these requests using the PAXOS and
socket API interposition components. (this protocol does
not need to order the blocking socket operations in the
clients because we mainly focus on analyses for server
applications.) Second, for server applications’ blocking
operations, this PAXOS protocol schedules them accord-
ing to the matching operations from the clients (e.g., a
send() from a client matches a recv() from the server
within the same socket connection). This protocol does
not schedule non-blocking operations in servers (e.g.,
send() to clients) because it focuses on replicating the
server’s execution states.

Figure 1 shows an instance of CRANE running on each
node, and the PAXOS consensus component is the gate-
way of this instance. This component accepts socket re-
quests from the clients and invoke a PAXOS consensus
instance with the other replicas on this operation. Once
a consensus is reached, this component forwards the op-
eration to the DMT component. This component is also
the only CRANE component that communicates among
different CRANE instances.

In this paper, REPFRAME skips the fault-tolerance na-

ture of CRANE, but leverages it to construct multiple
equivalent executions for analysis tools.

2.2 Deterministic Multithreading (DMT)

DMT [3–6, 17, 21, 36] is an advanced threading tech-
nique that enforces the same schedule on the same in-
puts. This technique typically maintains a logical time1

that advances deterministically based on the code run. It
allows a thread to synchronize only at deterministic logi-
cal times. By induction, it makes an entire multithreaded
execution deterministic. The overhead of DMT is typi-
cally moderate: one recent DMT system, PARROT [15],
incurs an average of 12.7% overhead on a wide range
of 108 popular multithreaded programs on 24-core ma-
chines.

The DMT component in Figure 1 runs within the same
process as a server replica, and enforces the same log-
ical clocks for inter-thread communication operations.
CRANE leverages the PARROT [15] DMT runtime sys-
tem because it is fast (i.e., 12.7% overhead for a wide
range of 108 popular multithreaded programs) and trans-
parent to the application.

Specifically, PARROT uses a runtime technique called
LD PRELOAD to dynamically intercept Pthreads syn-
chronizations (e.g., pthread mutex lock()) issued
by an executable and enforces a well-define, round-
robin schedule on these synchronization operations for
all threads, practically eliminating nondeterminism in
thread synchronizations. Although PARROT is not de-
signed to resolve data races deterministically, deploying
a race detector in one replica can overcome this limita-
tion (§3.2). CRANE augments the DMT component to
schedule the return points of blocking socket operations
in server replicas, too, to ensure that requests are admit-
ted exactly at the same logical time across replicas.

3 REPFRAME Overview
REPFRAME’s deployment model is similar to CRANE’s
except two things: (1) at least f+1 nodes run an actual
execution or a lightweight analysis tool on each so that
they can reach consensus on inputs and process requests
fast, and (2) at most f nodes run an heavyweight anal-
ysis tool on each. Empirically (see §4), this paper con-
siders an analysis tool with no more than 30% overhead
as lightweight tools (e.g., DynamoRio’s drcov tool [8]),
while the other tools heavyweight tools (e.g., the Hel-
grind race detector [34]).

A REPFRAME instance running on each node is the
same as the one in Figure 1 except that a server pro-
gram runs transparently in a REPFRAME instance with
or without an analysis tool. Neither the server or the
analysis is aware of REPFRAME’s components. The re-

1Though related, the logical time in DMT is not to be confused
with the logical time in distributed systems [27].
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maing of this section first presents REPFRAME’s check-
point and rollback design for analysis tools (§3.1), and
discusses REPFRAME’s potential benefits (§3.2).

3.1 Checkpoint and Rollback Mechanism

To allow synchronous analysis tools (e.g., control flow
integrity and buffer overrun protection tools) to recover
from malicious events, we have designed a checkpoint
mechanism for REPFRAME. Each checkpoint is associ-
ated with the index of the last executed socket operation,
so that REPFRAME can consistently match up with the
execution states of native executions and various analy-
sis executions.

To perform checkpoints transparently without affect-
ing application’s executions and analyses, REPFRAME
leverages CRIU [12], a popular, open source process
checkpoint tool that supports CPU registers, memory,
etc. Each checkpoint operation is only performed on the
server program and the DMT scheduler; the PAXOS con-
sensus component does not require checkpoints because
we explicitly design it to be stateless (all socket opera-
tions have been persistently logged).

REPFRAME provides two functions, one for check-
point and the other for rollback. When an analysis tool
calls the checkpoint() function, REPFRAME uses its
PAXOS consensus component to invoke an operation:
“take a checkpoint associated with the global index
of the latest socket operation”. Once a consensus is
reached, all replicas (including primary) do a checkpoint
operation as the next consensus operation.

When the tool catches a malicious event and decides
to roll back to a previous checkpoint associated with a
socket operation index, the tool calls a rollback(int

index=-1, bool discard=true) function. Ignoring
the arguments in this function means rolling back to the
last checkpoint within all replicas and discard all inputs
since this checkpoint. This API works as three steps: (1)
current replica uses the PAXOS consensus component to
request an operation: “rollback to a previous checkpoint
according to index”; (2) once consensus is reached,
each replica invokes CRIU to do the actual rollback op-
eration; (3) if discard is on, each replica discards all fu-
ture inputs since the checkpoint. Overall, this API makes
all replicas rollback and discard malicious inputs consis-
tently.

REPFRAME’s checkpoint mechanism has a few lim-
itations: (1) although this mechanism’s API is expres-
sive, they moderately trade off transparency between
an analysis tool and REPFRAME’s framework; (2) it
may defer the processing of network requests; and (3)
it can not revoke information that have already leaked to
clients. However, considering the benefits (§3.2.2) that
REPFRAME may bring to tools, we argue that this check-
point mechanism is still worthwhile.

3.2 Discussion

3.2.1 What Types of Analyses are Suitable to Run
in REPFRAME?

We envision that an analysis can transparently run in
REPFRAME if: (1) it can run asynchronously with the
actual execution, and (2) it does not schedule conflicting
order of Pthreads synchronizations that REPFRAME’s
DMT runtime enforces. Many reliability analyses (e.g.,
data race detection), profiling, and logging tools meet
this requirement.

Some synchronous security analysis such as control
flow integrity can not transparently run in REPFRAME
because it monitors the execution synchronously for
each control flow transfer. In addition, some other secu-
rity analysis such as information leakage protection can
not transparently run in REPFRAME because the actual
execution may probably run faster than the analysis and
leak information to clients before the analysis detects the
leakage. Nevertheless, many security tools such as use-
after-free vulnerabilities can be transparently deployed
in REPFRAME. If a synchronous analysis tool would like
to run in REPFRAME, it should use REPFRAME’s check-
point and rollback APIs (§3.1).

3.2.2 Can REPFRAME Strengthen Existing Analy-
ses?

REPFRAME has the potential to strengthen existing anal-
yses via its performance benefit. Previously, to mitigate
the huge performance slowdown, some analysis tool de-
velopers sometimes have to weaken the guarantees of an
analysis. For instance, ThreadSanitizer[41], one of the
most practical race detectors, only logs the last four ac-
cesses for each memory byte instead of the complete ac-
cess history, because logging and analyzing the complete
history is quite heavyweight (e.g., 20X+ slowdown for
some testing programs the authors evaluated). However,
an incomplete access history may miss data races at run-
time. With REPFRAME, developers can now strengthen
the analysis by logging complete memory access history.

REPFRAME also has the potential to speedup exist-
ing analysis tools themselves via its replication architec-
ture. For instance, the high logging overhead for fail-
ure reproductions on multi-processors is an open re-
search problem [44]. Fortunately, with REPFRAME’s ar-
chitecture, these logging tools now can separate dif-
ferent logging aspects such as functions, libraries, and
threads into different replicas (e.g., each replica logs for
only one thread), greatly reducing the logging overhead.
Sampling-based race detection tools (e.g., [18]) can also
greatly reduce sampling overhead by dividing sampling
work into replicas, or can significantly multiply sam-
pling rates by running the same tool among replicas.

Moreover, REPFRAME provides an extra fault-
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tolerance benefit for analysis tools. Existing reliability
and security analyses tend to expose or detect harmful
defeats in an application, which may crash the applica-
tion. In addition, the actual executions across different
nodes may fail as well due to hardware or OS failures.
With REPFRAME’s SMR architecture, the sequence of
inputs are persistently and consistently enforced across
replicas, and failing minor nodes (either an analysis or
an actual execution node) do not affect the other nodes’
executions and analyses.

3.2.3 Can Existing Analyses Benefit REPFRAME?

Interestingly, analyses running in REPFRAME can
benefit REPFRAME’s DMT runtime and improve
REPFRAME’s performance. Existing typical DMT sys-
tems use two approaches to enforce schedules. First, a
DMT approach enforcing a total order order for shared
memory accesses (for short, mem-schedules) is fully de-
terministic even with data races, but this approach incurs
prohibitive slowdown. For instance, DTHREADS [30]
incurs several times slowdown for many programs be-
cause typical applications have intensive amounts of
shared memory accesses.

The other DMT approach is enforcing a total order
for synchronizations only (for short, sync-schedules).
This approach can be efficient because most code is
not synchronization and can still run in parallel. For in-
stance, Kendo, TERN, and PEREGRINE [13, 15, 36] in-
curred less than 16% overhead on most programs they
evaluated. However, this approach is only determin-
istic when no races occur. Overall, despite much ef-
fort [2, 14, 15, 30], an open problem still exists: people
lack a simple and deployable approach to enforce fully
deterministic and efficient DMT schedules.

Fortunately, REPFRAME’s replication architecture can
address this problem by simply running a race detector
in one replica, then REPFRAME can choose the faster
DMT approach that enforces sync-schedules. If the race
detector reports a race, application developers can eas-
ily diagnose and fix it because synchronization sched-
ules enforced by DMT already make races easily re-
producible [37]. By enforcing the same synchronization
schedules across replicas, race detection results consis-
tently hold for all replicas. In sum, REPFRAME and race
detection tools form a mutually beneficial eco-system.

4 Evaluation
We evaluated REPFRAME on ClamAV [11], a popu-
lar anti-virus scanning server that scans files in par-
allel and deletes malicious ones. Our evaluation was
done on a set of three Linux 3.2.14 machines within a
1Gbps bandwidth LAN, and each machine has 2.80 GHz
dual-socket hex-core Intel Xeon with 24 hyper-threading
cores and 64GB memory. To evaluate performance, we

used ClamAV’s own client utility clamdscan to ask the
ClamAV server to scan its own source code and instal-
lation directories, and we measured clamdscan’s exe-
cution time as the server’s response time. The ClamAV

server spawned eight threads to scan these directories in
parallel. To avoid network latency, clamdscan was ran
within the primary node. Adding network latency will
mask REPFRAME’s overhead. Each data point was ran
for five times and we picked the median value.

To evaluate whether REPFRAME can transparently
run analysis tools, we selected two popular tools: one
heavyweight tool, the Helgrind race detector [34]; and
one lightweight tool, DynamoRio’s code coverage tool
drcov [8].

Table 1 shows the performance results running
ClamAV in REPFRAME. REPFRAME’s bare replication
framework incurred negligible overhead over the native
execution. When running Helgrind only in one replica,
REPFRAME incurred 5.8% overhead over the native ex-
ecution, because both the other replica node and the pri-
mary ran the native executions and they reached con-
sensus fast. When running the drcov tool only or run-
ning both tools, REPFRAME incurred only 2.1% to
3.6% overhead. This overhead is low because once the
drcov tool reached consensus with the primary on the
clamdscan utility’s request, the primary just processed
the request and responsed to clamdscan regardless of
drcov’s execution. Considering performance jitters, we
viewed REPFRAME’s results running with one or both
tools equal.

The drcov tool itself incurred a moderate 28.3% over-
head compared to native execution, while Helgrind itself
incurred a 40.4X slowdown. Table 1’s results show that
REPFRAME’s replication architecture masked the huge
performance slowdown of Helgrind, then clamdscan

felt that ClamAV ran efficiently even both the two tools
were turned on.

Note that Helgrind is carried in Valgrind, a tradi-
tional analysis framework that takes the “fully-coupled”
approach. So does drcov for the DynamoRio anal-
ysis framework. Overall, this evaluation shows that
REPFRAME is efficient, transparent to the Helgrind and
drcov tools, and complementary to traditional analy-
sis frameworks Valgrind and DynamoRio. In addition,
to the best of our knowledge, REPFRAME’s evaluation
is the first one that has shown to run different types of

Approach Response time (ms)
Native execution 991
REPFRAME bare framework only 992
REPFRAME with Helgrind 1,048
REPFRAME with drcov 1,036
REPFRAME with Helgrind and drcov 1,012
Helgrind only 41,018
drcov only 1,272

Table 1: ClamAV’s performance running in REPFRAME.
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analysis tools together.

5 Related Work
Existing analysis frameworks can be classified into two
approaches depending on how a framework exposes an
application’s actual execution states to an analysis tool.
The first approach in-lines an analysis within an actual
execution [8, 31, 34, 38, 41], which may cause pro-
hibitive slowdown in the executions when an analysis
does heavyweight work. Recently, researchers have pro-
posed to decouple analysis from execution [10, 20, 22,
35, 42, 43] via executing analyses in parallel, record-
replay, and so on. We classify these frameworks into
“partially-decoupled” approach because they still need
to frequently transfer execution states from the execution
(e.g., effective memory addresses and thread interleav-
ings) to analysis. These “partially-decoupled” frame-
works have shown 4X∼8X speedup over the traditional
frameworks on the same analysis, which shows that de-
coupling analysis from execution is a promising direc-
tion. REPFRAME fully decouples analysis from execu-
tion via replicating equivalent executions.

SMR has been studied by the literature for decades,
and it is recognized by both industry and academia as
a powerful fault-tolerance technique in clouds and dis-
tributed systems [27, 40]. As a common standard, SMR
uses PAXOS [28] as the consensus protocol to ensure
that all nodes see the same input request sequence. In
this standard, nodes first “agree” on a total order of in-
put request as a input sequence, and then “execute” the
requests that have reached this consensus. This typical
SMR approach is called “agree-execute”. SMR systems,
including Chubby [9], ZooKeeper [1], and the Microsoft
PAXOS [28] implementation, have been widely used
to maintain critical distributed systems configurations
(e.g., group leaders, distributed locks, and storage meta
data). SMR has also been applied broadly to build vari-
ous highly available services, including storage [39] and
wide-area network [32]. Hypervisor-based Fault Toler-
ance [7] leverages a hypervisor to build a primary-back
system for single-core machines. These systems focus
on specific types of applications (e.g., distributed lock
service [9], file system [1]) and thus they are not de-
signed to be transparent to general multithreaded appli-
cations.

In order to support multithreading in SMR, Eve [23]
introduces a new “execute-verify” approach: it first ex-
ecutes a batch of requests speculatively, and then ver-
ifies whether these requests have conflicts (e.g., differ-
ent thread interleavings) that cause execution state diver-
gence. If conflicts occur, Eve rolls back. Eve’s execution
divergence verification requires developers to manually
annotate all shared states in application code, thus it is
not transparent to applications.

Rex [19] addresses the thread interleaving divergence
problem with a “execute-agree-follow” approach: it first
records thread interleavings on the primary node by ex-
ecuting requests, and then replays these interleavings
on the other backups. Rex requires frequently ship-
ping thread interleavings across nodes, which may be
slow. Furthermore, Rex requires application developers
to build their own checkpoint-restore mechanism, thus
this mechanism is not transparent to applications.

6 Conclusion
We have presented REPFRAME, an efficient, transparent
dynamic program analysis framework. It leverages the
transparent state machine replication technique to con-
struct multiple equivalent executions in replicas, so that
actual executions and analyses can be fully decoupled.
Evaluation shows that REPFRAME can transparently run
analyses on replicas with reasonable overhead. Further-
more, analyses and REPFRAME can be mutually bene-
ficial. REPFRAME has the potential to promote the de-
ployments of powerful analyses in applications’ produc-
tion runs.
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