
Correlation Exploitation in Error Ranking

Ted Kremenek, Ken Ashcraft, Junfeng Yang and Dawson Engler
Computer Systems Laboratory

Stanford University
Stanford, CA 94305, U.S.A.

ABSTRACT
Static program checking tools can find many serious bugs in
software, but due to analysis limitations they also frequently
emit false error reports. Such false positives can easily ren-
der the error checker useless by hiding real errors amidst
the false. Effective error report ranking schemes mitigate
the problem of false positives by suppressing them during
the report inspection process [17,19,20]. In this way, rank-
ing techniques provide a complementary method to increas-
ing the precision of the analysis results of a checking tool.
A weakness of previous ranking schemes, however, is that
they produce static rankings that do not adapt as reports
are inspected, ignoring useful correlations amongst reports.
This paper addresses this weakness with two main contribu-
tions. First, we observe that both bugs and false positives
frequently cluster by code locality. We analyze clustering
behavior in historical bug data from two large systems and
show how clustering can be exploited to greatly improve er-
ror report ranking. Second, we present a general probabilis-
tic technique for error ranking that (1) exploits correlation
behavior amongst reports and (2) incorporates user feedback
into the ranking process. In our results we observe a factor
of 2-8 improvement over randomized ranking for error re-
ports emitted by both intra-procedural and inter-procedural
analysis tools.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Statistical meth-
ods—error ranking ; G.3 [Probability and Statistics]: Cor-
relation and regression analysis

General Terms
Verification, Measurement
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program checking, static analysis, error ranking
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1. INTRODUCTION
Recently there has been a surge of interest in using static

checking to find program errors [1, 3, 5, 9, 11–15, 23, 24]. A
practical problem with these tools is that in flagging true
errors they also flag false ones. These false reports (“false
positives”) can quickly render tools useless by hiding real
errors amidst the false, potentially causing the tool to be
discarded as irrelevant. Empirically, tools that effectively
find errors have false positive rates that can exceed 30% [10,
13,15,24].

Typically, such tools are used as follows: (1) the tool is run
and emits error reports, (2) these reports are ordered using
some sort of ranking scheme [17, 19, 20] and (3) the pro-
grammer inspects the error reports, eliminating false ones.
Ideally, all the reports the user inspects are true errors. In
practice, industrial-strength tools aim to minimize the im-
pact of false positives by sorting reports so that the end-user
inspects as many bugs (and as few false positives) as possi-
ble. In this way the initial inspections have a high number
of bugs; users can inspect errors until the false positive rate
becomes “too high” and then stop.

A major weakness of all current ranking schemes is that
they are “static” in that they do a one-time sorting of er-
ror reports that are then presented for user consumption.
Unfortunately, they squander the useful feedback given by
the user during inspection when they manually classify re-
ports as false or valid. By exploiting strong correlations
among reports, feedback allows reports to be dynamically
reordered after each inspection, potentially dramatically im-
proving ranking quality.

Moreover, as a codebase evolves and a checking tool is
continually applied, the tool will emit new reports, many of
which will correlate with reports inspected during a previous
application of the tool. If previously inspected reports cor-
relate strongly with newly emitted ones, the feedback from
prior inspections can also improve the initial sorting of the
newly emitted reports.

Our main source of leverage is that error reports are
highly correlated by code locality, and they can be logically
grouped into sets of (possibly overlapping) highly correlated
populations. Populations are groups of related reports, and
together they serve to partition the set of all reports emit-
ted by a tool. An example of a population is the set of error
reports that indicate the occurrence of bugs in a specific
function, while another population may be all of the error
reports for code that had a high degree of recent developer
activity. Because reports are correlated within a popula-
tion, inspecting one message from a given population yields



information about the others. For example, if the messages
in a population are perfectly correlated, then classifying one
effectively classifies them all. If the message was a false pos-
itive, so are the others and they should be skipped. If it it
was a true error, so are the others and the user should fix
them. Properly exploited, even less perfect correlations can
dramatically amplify the information gained from a single
inspection. In practice, messages cluster at a variety of lev-
els. For example, we expect both messages within the same
file and within the same function to be correlated. Program-
mers that make a mistake once may well do so repeatedly
either because they are poor programmers or simply un-
aware of a checked rule. Similarly, a static analysis mistake
may repeat because surrounding code will contain the same
construct that caused the problem.

This paper makes two contributions. First, it experi-
mentally demonstrates that true and false error reports are
highly correlated by code locality. We gather correlation
data using a variety of program checkers on two large sys-
tems: Linux, an open-source operating system, and “System
X,” a commercial, closed-source system. The checkers differ
both in the class of properties they check and in the de-
gree of analysis sophistication they use, ranging from intra-
procedural flow-sensitive checkers to inter-procedural path
sensitive ones. The high correlation of messages holds across
all these views.

Its second contribution is that we present a probabilistic
ranking technique called Feedback-Rank that effectively
exploits the correlation among reports and reduces the num-
ber of false positives a user encounters during inspection (on
average by a factor of 2-8 over randomized ranking, with
close to optimal ranking in some cases). The technique is
probabilistic because correlations are frequently noisy; re-
ports are often highly—but not perfectly—correlated, and
we require a technique that allows us to soundly reason
about multiple sources of uncertainty. It employs a flexi-
ble probabilistic model called a Bayesian Network [8]. We
use it to model correlation among reports based on popula-
tion groupings, but it can easily be expanded to model other
sources of correlation as well.

As presented in this paper, ranking expands to three
stages: (1) grouping error reports into sets of correlated pop-
ulations, (2) choosing an initial order for reports (similar to
current ranking schemes), and (3) selecting which report to
inspect next given the information gained from the previ-
ous inspections. This inspection strategy has several nice
features. First, it does not depend on the internals of the
checking system but can simply work with the tool’s output.
Thus, it is immediately portable to other program checkers
where the same correlation assumptions hold (as we expect
them to from ample anecdotal evidence).

Second, it makes even tools that generate an exceptional
number of false reports usable as long as these reports are
correlated in some way. For example, an infinite population
of perfectly correlated false reports is inconsequential since
you can suppress all of them after the first inspection. Cur-
rently, tools must generate a low number of false positives
to be useful, which is a much stronger requirement. Thus,
the strategy makes it so that the number of false error re-
ports does not necessarily matter, the important features
are (1) the number of different populations (since each must
be observed at least once) and (2) the strength of the corre-
lation between messages in these populations. In practice,

the correlation tends to be high enough that the main thing
that matters is the number of populations rather than the
number of false positives.

Third, the strategy works well initially, yet improves with
use. As users spend more time inspecting more errors, it
is able to customize itself post facto to the observed data,
thereby improving its ability to classify future data from the
same system.

This paper is organized as follows. In Section 2 we present
a statistical analysis of correlations among error reports
based on code locality. In Section 3 we discuss our rank-
ing strategy Feedback-Rank and in Section 4 we describe
the probabilistic model in detail that is used for the ranking
process. Section 5 provides our experimental results. We
discuss related work in Section 6 and conclude in Section 7.

2. DATA ANALYSIS
This section analyzes two large databases of error reports

to demonstrate that true errors and false positives frequently
cluster by code locality. Along with an intuition as to why
clustering would happen, we provide a graphical representa-
tion and a statistical analysis of the clustering in these error
reports.

2.1 Correlation Intuition
Intuitively, we expect bugs to cluster because program-

mers that make one mistake are relatively likely to make
more. In addition, if programmers do not know a rule, they
will repeatedly violate it given the chance. The most egre-
gious example we have encountered is in the Linux kernel,
which has the rule “do not call a blocking function with
interrupts disabled.” Programmers unaware of the rule, or
that a given function blocks, violate it enthusiastically —
we have observed routines that have 17, 23, and 28 errors of
this type. These types of clustering are also common with
security rules, of which programmers are often unaware.

Like bugs, false positives also cluster, though here the
culprit is the analysis rather than the programmer. False
positive correlation comes from three sources. First, analy-
sis mistakes often generate a cascade of false reports rather
than just one. In an extreme case in Linux 2.4.1, our lock
checker analysis that checks if a lock can be double acquired
could not handle a recursive lock in drivers/usb/uhci.c,
resulting in 14 false positives in that file. In related work,
z-ranking, a static error report ranking scheme, uses statis-
tical heuristics to identify such “explosions” of false posi-
tives [20]. More commonly, however, analysis mistakes lead
to two or three false positives. Thus, knowing that one error
report is false allows the user to ignore the others. The sec-
ond source is that analysis mistakes often happen because
of unanticipated or “rare” coding idioms (anticipated, com-
mon ones can be tuned for) — in this case, if a programmer
uses a problematic idiom once, it is likely that they will do
so again, causing more problems. The third source is that
checked rules may not always be 100% correct; certain spe-
cial contexts may violate them safely, but will be flagged
repeatedly by the checker. For example, memory allocators
may not need to be checked for failure in boot-up initial-
ization code. More generally, the false positives stem from
either an incomplete specification (where the rule is only ap-
proximate) or the tool is not precise enough to capture all
the reasoning to correctly verify the specification. The for-
mer often occurs in practice as the many “edge-cases” and



Class Check System Bugs FPs Rule Checked

Function Lock L 16 50 Release acquired locks; do not double-acquire locks.
Pairs X 3 34

Alock L 11 37 Same as Lock, but checks an analytically inferred set of locking functions.
A-B X 2 11 Pair function A with a call to B.

Memory Free L 14 6 Do not use freed memory.
X 17 27

Inverse X 14 3 Roll back changes on error paths.

Interrupts Block L 161 20 To avoid deadlock, do not call blocking functions with interrupts disabled or
a spinlock held.

Intr L 27 49 Restore disabled interrupts.

Null Null L 122 48 Check potentially NULL pointers returned from routines.
Pointers X 210 15

Internal-null X 31 25 Do not dereference null pointers.
Rev-inull X 25 23 Do not dereference a pointer and then check it for NULL.

User Param L 7 14 Do not dereference user pointers.
Values Range L 54 4 Always check bounds of array indices and loop bounds derived from user data.

System Exc-none X 2 72 Proprietary
Specific Format X 28 98 Use constant format strings.

Table 1: Checkers used in our analysis organized by class of errors and system (“L” for Linux 2.4.1, “X” for
System X). The number of true bugs and false positives (FPs) are listed for each checker.

exceptions to a rule in a system are often not fully docu-
mented or understood by the writer of the checking tool.

2.2 The Data
We use the error reports from two systems, Linux 2.4.1

and a large anonymous commercial system, System X. Sys-
tem X is a large (≈ 800K lines of code), complex system that
contains elaborate locking patterns, strict memory manage-
ment, and validation of all input from untrusted sources.

The data is the manually classified error reports from the
checkers in Table 1. The data comes from previous work on
the xgcc compiler [10]. We gathered the reports over many
months of continuous checking of these systems. Each report
includes the file, function name and line number. We use
this information to measure clustering and to group reports.

2.3 The Checkers
This section characterizes some of the checkers from Ta-

ble 1 to show how their bugs and false positives cluster.
The “Function Pairs” class of checkers enforced rules like

“calls to locking functions must be followed by calls to un-
locking functions.” While these checkers were able to find
over 30 bugs total, they were often confused by false paths
in the code. For example, the following data-dependency
idiom is common and causes the immature versions of these
checkers used for this study to believe that there are actually
four paths through the function instead of just two:

if (do lock) lock();
// Do some work
if (do lock) unlock();

Mature, more path-sensitive versions of these checkers can
now handle this case. Because this troublesome idiom was
so common, these analysis mistakes were highly correlated.

The checkers in the Memory class, on the other hand, were
much more likely to find clusters of bugs than false positives.
For example, the Inverse checker looks for places where the
developer makes one or more resource allocations and then
forgets to free those resources along an error path. If the
developer forgets to free along one error path, he commonly
will forget it along the other error paths in the function.

The types of rules checked in this study are very similar

to those checked by related work [1, 3, 5, 11–13, 15, 23, 24].
We expect that those analyses will find clusters of bugs be-
cause we have found clusters of the same types of bugs that
they find. We expect that those analyses will find clusters of
false positives because those analyses do make mistakes, and
some of them [11,12,15,23,24] went so far as to classify the
false positives into several groups. Therefore, those analy-
ses could leverage clustering in the error report inspection
process.

2.4 Observed Clustering
With an intuition as to why clustering would occur, we

can now examine how to actually cluster reports. There are
many ways we can cluster reports together. This includes
version control data, code churn, and other sources. In this
paper, we have chosen to focus on clustering by code locality.
We felt the data we possessed was accurate enough to study
such clustering, and such clustering is easily exploitable for
ranking on any codebase. This subsection graphically rep-
resents the clustering by code locality present in the two
datasets.

We split the data into populations based on code local-
ity using three (arguably coarse) partitions: (1) function,
(2) file, and (3) leaf-directory. The “function” partition
groups all reports together that indicate there is an error
in a specific function. The definition is analogous for the
other two groupings, where a “leaf-directory” is the direc-
tory that contains a file and function where a flagged error
occurred. Each report is therefore part of three populations,
one of each type.

Figures 1 and 2 show the number of populations across all
checkers with a given number of bugs and false positives for
Linux and System X respectively. Each subgraph represents
the different types of populations (function, file, leaf direc-
tory), while each circle represents the number of populations
that contained a given number of bugs and false positives.
For example, Figure 1(a) shows that there were 42 functions
in Linux that contained 2 bugs and 0 false positives.

It is important to note the “L” shape formed by the data
in Figures 1(a) and 2(a). The “L” means that there are very
few populations that contain a mix of bugs and false posi-
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(a) Linux - Grouped by Function

(b) Linux - Grouped by File

(c) Linux - Grouped by Leaf Directory

Figure 1: Linux 2.4.1 population counts

tives. Most function populations contain few total reports,
but usually they are either all bugs or all false positives.
We expect that error reports in the same function are likely
caused by similar reasons and therefore are either all bugs
or all false positives. Note also that the “L” is less visible in
the file and directory graphs because our population group-
ing is more coarse, decreasing the correlations amongst error
reports.

As our population grouping becomes more coarse, how-
ever, we see fewer singleton populations (one error report).
Singletons are bad for online ranking because inspecting the
lone report tells us nothing about other reports.

We now quantify our observations.

2.4.1 Applicability
Applicability is defined as the percentage of error reports

that are not singletons. To define applicability, there are
four key regions we identify in the plots in Figures 1-2:

• Region I: Singleton populations (populations consisting
of only one error report)

(a) System X - Grouped by Function

(b) System X - Grouped by File

(c) System X - Grouped by Leaf Directory

Figure 2: System X population counts

• Region II: Non-singleton populations with only false
positives

• Region III: Non-singleton populations with only bugs

• Region IV: Non-singleton populations with both bugs
and false positives

The set of non-singletons are represented by regions II,
III, and IV (keep in mind that the circle size in the plots
represent a count of populations and not a count of error
reports). Therefore, applicability is

Applicability =
II + III + IV

I + II + III + IV
(1)

While the plots in Figures 1-2 aggregate the data for the
checkers, the corresponding graphs for the individual check-
ers follow the same trend: moderate applicability at the
function level, more applicability at the file level, and even
more at the directory level. Table 2(a) gives the exact appli-
cabilities for the two systems and shows this trend. Notice
that when grouping error reports in System X by leaf direc-
tory, only 2% are singletons whereas 65% of the reports are



Code Locality / Grouping

System Function File Directory

Linux 0.35 0.70 0.97
System X 0.35 0.82 0.98

(a) Applicability - The percentage of error reports that are
not singletons.

Code Locality / Grouping

System Function File Directory

Linux (Observed) 0.85 0.62 0.15
Linux (Random) 0.41 0.27 0.04
System X (Observed) 0.91 0.42 0.11
System X (Random) 0.32 0.13 0.02

(b) Skew - The percentage of error reports that appear in
homogeneous populations. There is significantly more
skew in the real datasets than in their random permu-
tations.

Table 2: Applicability and Skew for the different
population groupings. Applicability increases as the
grouping criteria coarsens, while skew decreases as
the grouping criteria coarsens.

singletons when grouped by function. Section 2.4.2 shows
that there is a tradeoff between applicability and the corre-
lation among the error reports. If we simply group the error
reports by directory, it is less likely that they are related.

2.4.2 Skew
While applicability is necessary for online ranking, the dis-

tinct “L” in Figures 1(a) and 2(a) is also essential. Without
the “L”, the populations are heterogeneous, and inspecting
one member of a population tells us little about the other
members. We define skew as the percentage of reports (in
non-singleton populations) that appear in completely homo-
geneous populations:

Skew =
II + III

II + III + IV
(2)

Like applicability, the trend found in the aggregated
graphs was also present in the graphs for the individual
checkers: functions have the most skew and directories have
the least. Table 2(b) shows that 85% of Linux error reports,
when grouped by function, are in completely homogeneous
populations. This means that inspecting one error report
will likely tell us the validity of the other error reports in
that function. Unfortunately, there is low applicability when
grouping by function, meaning that we will be able to take
advantage of this skew for only a small subset of the reports.
Therefore, our online ranking system must account for this
tradeoff between applicability and skew.

To show that the skew present in our data is not just
a “chance” occurrence, we compared it with a randomized
distribution of the reports by taking the set of error reports
and shuffling them among the populations. This affected
the homo-/heterogeneity of the function, file, and leaf di-
rectory populations, but it preserved the populations’ sizes.
We performed this experiment 1000 times and calculated
the average skew for a randomized distribution of reports.
Table 2(b) shows the skew we observe for the real distribu-
tion of reports is much higher than the random shuffling,
indicating that clustering is present.

Pr(report = bug) Pr(report = FP)

System Prior 1 bug 2 bugs 1 FP 2 FPs

Linux

Observed probability: 0.65 0.91 0.99 0.78 0.60

Statistical p-value: — < 10−6 < 10−6 < 10−6 0.0061

System X

Observed probability: 0.52 0.94 0.97 0.72 0.97

Statistical p-value: — < 10−6 < 10−6 < 10−6 < 10−6

Table 3: Prior and conditional probabilities (for
function populations) of a given error message being
a bug or false positive. The “prior” probability is
the (number of bugs) / (number of reports).

2.5 Statistical Quantification
To more formally quantify the measurements observed in

Section 2.4, we calculated the conditional probabilities of
an error report being a bug given that we know at least (1)
one other error report in the same function is a bug and (2)
at least two are bugs. We also computed the same analo-
gous probabilities for false positives. This represents what
would happen in an online ranking scheme; as reports are
inspected the probability of a report being a bug changes
as new information becomes known. In this case, the user
knows that there is already another bug or two in the func-
tion and now wants to know how likely it is that a report
in that function is valid. Probabilities are shown in Table 3.
Listed also is the prior probability for each dataset that a
randomly chosen report is a bug (i.e., #bugs/#reports).

We also employed a statistical test called a Permutation
test to measure the statistical significance of the conditional
probabilities compared to the prior probabilities [16]. For
the test we fixed the number of reports per function, and
randomized the distribution of error reports among the func-
tions. We performed this 10 million times, and computed
the number of randomized test cases that had the same or
greater conditional probabilities. This proportion is the sta-
tistical p-value, and the p-values for each conditional proba-
bility are listed in Table 3. The p-values are only estimated
to finite accuracy, but our estimates show that most of them
have p-values less than 10−6, very strongly supporting the
claim that the distribution of reports is not random and
that a high degree of clustering exists for both bugs and
false positives.1

3. PROBABILISTIC RANKING
In this section we present Feedback-Rank, an adaptive,

probabilistic ranking scheme that exploits correlation behav-
ior amongst reports. The algorithm is intended to be com-
plementary to static ranking techniques that can be used to
generate an initial good sorting of the reports. We now de-
scribe the ranking strategy here, and describe how to model
the correlations observed in Section 2 in the next section.

For each uninspected report we associate with it a prob-
ability that it is a bug. Ranking then reduces to sorting
reports by their probabilities. More generally, we are sort-
ing reports by a score value. In static rankings, the score
value is computed once and then used to do a once-and-

1Less formally: less than one in a million randomized distri-
butions of the reports had higher conditional probabilities
than observed in our empirical data.



for-all initial sorting before report inspection begins. In an
adaptive ranking scheme, the score for each remaining report
is recomputed after each inspection and the reports are re-
sorted. We use probabilities because we can represent the
correlations among reports in a probabilistic model. We em-
ploy the model to compute for each report the probability
it is a bug. As the validity of error reports become known
during inspection feedback, we compute updated probabil-
ities for the remaining uninspected reports, which we then
re-sort.

This scheme allows us to exploit correlation amongst re-
ports in two important ways. The first is exploiting feedback
to re-rank the remaining reports. The second is to use the
existing correlation behavior to also do a good initial sort
of the reports. As a tool is re-applied to an evolving code-
base, new reports will be emitted that should frequently
correlate with previously inspected reports. To exploit this
correlation, we place both the previously inspected reports
and the new ones in the same probabilistic model, treat the
old reports as being already inspected in the same run, and
compute the respective probabilities for the new reports.

Another interesting aspect of employing a probabilistic
scheme is that we can use concepts from Information The-
ory to precisely quantify how useful an inspection is in terms
of how much it tells us about the remaining uninspected re-
ports. We will refer to this value as “information gain,” and
we defer providing a formal definition until Section 4.4.1.
The main idea is that an inspection that significantly influ-
ences the probabilities of a large number of reports is often
more useful in the long run than inspecting a report that
influences few other reports (e.g. a singleton report). We
view this as the usual “explore-exploit” tradeoff between lo-
cal optimization (i.e., exploiting what you know by grabbing
the report most likely to be a bug) and global optimization
(i.e., exploring the set of reports to gain as much informa-
tion as possible to minimize the number of false positives
inspected in the long run).

In our ranking algorithm, we address this tradeoff by using
information gain to pick what report to inspect next when
the reports with the highest probabilities of being bugs are
equal within some ε. In practice, we choose ε = 0.01, mainly
to reflect inaccuracies in floating-point computations, al-
though other values may be chosen. This strategy is greedy.
In theory one could compute (after each inspection) the
set of inspections that finds the most expected number of
bugs after N inspections. As there are many reports to
choose from, this is computationally prohibitive for a real-
time ranking scheme, and our greedy strategy is an approx-
imation.

3.1 Feedback-Ranking
We now precisely define the Feedback-Rank algorithm,

which is depicted in Figure 3. The input to the algorithm
is (1) a set of uninspected error reports U , (2) a set of
previously inspected error reports H , (3) a model M that
computes probabilities, and (4) the ε value at which we con-
sider two probabilities equivalent (used to determine ties). If
there are no previously inspected reports, then H = ∅. The
only requirement of the model M is that it accurately mod-
els the correlations among reports. The model we describe
in the next section learns these correlations from previously
inspected error reports.

The algorithm consists of a small bit of initialization and

Feedback-Rank(U , H,M, ε)

1 I ← H

2 while U 6= ∅
do

3 for each r in U

do

4 r. prob ← UpdateProbability(r, I,M)
5 r. info ← InfoGain(r, U , I,M)
6 rbest ← Find-MAX-by-Prob-then-Info(U , ε)
7 rbest . value ← User-Inspect-Report(rbest)
8 I ← I ∪ {rbest}
9 U ← U − {rbest}

Figure 3: Feedback-Rank algorithm.

a simple loop. It begins by initializing the set of inspected
reports (denoted I) to any previous inspection data we have
(line 1). Afterwards, the iterative process of inspecting error
reports begins, continuing until their are no more reports to
inspect or the user decides to terminate the inspection pro-
cess (line 2). On each iteration, we use our model M to
update the probabilities for each uninspected report (line 4)
and compute its information gain if it were to be inspected
(line 5). We then present the error report most likely to be
a bug to the user (lines 6-7). When we encounter ties for
probabilities (within our ε), we prefer one error report over
another based on information gain. Any remaining ties are
broken randomly (the default behavior) or can be broken us-
ing any other heuristics. The newly inspected report is then
added to our set of inspected reports (line 8) and removed
from our set of uninspected reports (line 9). The algorithm
then proceeds on to the next iteration.

4. BAYESIAN NETWORK MODEL
The Feedback-Rank algorithm requires that for each

report we can compute the probability it is a bug and its
information gain value. We address this requirement by rep-
resenting the correlations among reports in a probabilistic
model called a Bayesian Network (BN) [8]. In this section
we describe how to build a BN for a set of reports and how
to train the BN to represent the correlations observed in real
error report data. Finally, we discuss how to compute prob-
abilities and information gain values needed for ranking.

4.1 Model Intuition: Regions
In Section 2, the observed “L” shape in Figures 1-2 de-

picted a strong skew towards homogeneity within popula-
tions. We exploit this skew by dividing populations from a
partitioning (e.g., all function populations) into two regions.
Figure 4 shows the function populations for Linux divided
into two regions: gB and gFP . These two regions (fitted by
a learning algorithm) have distinct characteristics. Region
gB consists of 62% of the populations and an average bug
rate in a population of 97%. gFP consists of the remaining
38% of the populations, with an average false positive rate
in a population of 74%. Conceptually, if we randomly draw
a population from region gB and the subsequently sample
a report from that population, we have a 97% chance of
sampling a bug.

We use this model to correlate reports for ranking. The is-
sue here is that when we look at a population, we initially do
not know what region it falls in. Instead, we have an initial
belief (or prior distribution) of which region it came from
(e.g., a 62% chance it was drawn from gB ). As we inspect



Figure 4: Linux “function” populations divided into
regions gFP and gB (each with different bug densi-
ties).

Figure 5: Error BN with three error reports.

reports in a population, we learn more about the bug rate of
the population and we update our belief of what region the
population was drawn. For example, if we encounter bug
after bug within a population, we are more inclined to be-
lieve the population is in region gB . Transitively, the more
we feel a population falls in region gB , the more we think
the remaining reports in the population are bugs.

To apply this model in practice, we need to pick the prior
distribution of what region a population falls into and the
conditional probabilities that a report is a bug once we know
what region its population was drawn from (e.g., a report is
97% likely to be a bug if its population falls in region gB ).
We can either come up with these numbers ourselves, our ap-
ply a statistical learning algorithm to derive them from pre-
viously inspected error reports. We take the second route,
and we describe the precise methodology in Section 4.3.

In general, reports belong to multiple populations, each
drawn from different sets of regions. The probability a re-
port is a bug depends on which set of regions its popula-
tions were drawn from. We now formalize this intuition in
a model.

4.2 Model Structure
In a probabilistic model we represent the facts we wish to

reason about using random variables. A random variable is
a variable that can take on some domain of values, and asso-
ciated with the random variable is a probability distribution
over the values it can take. For our problem, an error report
is represented by a random variable Rj . Rj has two possible
values, b and fp, representing whether the report was a real
bug or a false positive. Our model encodes a probability
distribution for Rj that represents our belief that a report
is a bug. We call Rj a report variable, and the set of all
report variables is denoted R.

Each report belongs to one or more populations. A pop-
ulation in turn falls into one of two regions: gB and gFP .
Each group of populations (e.g., file populations) has its
own regions. For example, function populations have differ-
ent regions than file populations. For a given population,

we represent which region it was drawn from with a ran-
dom variable. For example, for file foo.c we have a random
variable File〈foo〉. This random variable can take on the val-
ues gB and gFP . We call such random variables population
variables. Associated with each population variable is the
initial (or prior) probability it was drawn from region gB or
gF P . This distribution is represented by a table of 2 values:
Pr(File〈foo〉 = gB) and Pr(File〈foo〉 = gFP), which together
sum to 1.

For each population of which a report is a member, there
is an associated population variable. If Rj is the report vari-
able for a given report, its associated population variables
are PopRj

. In our model, the probability that Rj has value

b directly depends only on the values of PopRj
.

We elucidate with an example. Figure 5 depicts a graphi-
cal representation of three error reports, represented by the
report variables R1, R2, and R3 and their relationships to
five different populations. In this example, all the error re-
ports occur in the same common leaf directory, while two
(R2 and R3) occur in the same file and function. We have a
population variable Dir for the directory population, F l{1}
and F l{2,3} for the two file populations, and Fn{1} and
Fn{2,3} for the two function populations. Directed-edges
represent which random variables are directly correlated
with each other. Influence flows both across and against
an edge, where the former represents inductive reasoning
(i.e., “cause to effect”) while the latter represents deductive
reasoning (i.e., “effect to cause”). Note that each of the er-
ror reports influences the others. If we know the value of
R1, then that tells us more about Dir , which in turns tells
us more about R2 and R3.

Formally, this type of model, called a Bayesian Network,
is a graphical representation of a joint probability distribu-
tion over a set of random variables. Edges represent direct
correlations between random variables, and encode a set of
conditional independence relationships. In addition to the
edges, for each node (or random variable) we have associated
with it a conditional probability distribution (CPD) of the
value of the random variable given its parents. For example.
F l{1} has no parents, so its CPD is Pr(F l{1}). This CPD is
represented by a table of 2 values. R2, however, has three
parents, and its CPD is Pr(R2|Dir ,Fl{2,3},Fn{2,3}). This

CPD is represented by a table of 2× 23 = 16 values, one for
each value of R2 and combination of values of its parents.

We make the simplification that all report variables
share the same CPD. For example, in Figure 5 vari-
ables R1, R2, and R3 have the same CPDs (e.g.,
Pr(R2|Dir ,Fl{2,3},Fn{2,3}) = Pr(R1|Dir ,Fl{1}, Fn{1}))
that describe the correlation between themselves and their
parents. Moreover, all function population variables share
the same CPD (e.g., Pr(Fn{1}) = Pr(Fn{2,3})) and the same
goes for file and directory population variables. The CPDs
only encode, however, direct relationships between variables
and their parent variables. When a report is inspected, the
value of its corresponding report variable Rj is considered
observed. Once we observe the value of Rj , we can compute
updated (or posterior) probabilities for the other unobserved
report variables with which it is indirectly correlated.

4.3 Learning from Inspected Error Reports
To learn (or train) the values for our CPDs we con-

struct a BN for a set of already inspected error reports.
In this case all values for report variables are considered ob-



served, but the populations variables are left unobserved.
We apply a standard learning algorithm called Expectation-
Maximization (EM), an iterative algorithm that tries to
maximize the likelihood2 of the values of the report variables
by tuning the BN’s CPDs [8]. In the process of deriving the
CPD values, the regions gB and gFP for the different pop-
ulation classes are derived automatically. EM, which takes
as input an initial guess to the values of the CPDs, is only
guaranteed to converge to a local maximum of the likeli-
hood. We follow standard procedure and run EM multiple
times (≈ 30) with randomly generated initial CPD values
and pick the best model.

We select the best model by using each one to rank the
error reports it was trained on. If we let N be the total
number of bugs in a set of reports, and FP j is the cumulative
number of false positives to find the jth bug, our metric to
evaluate a ranking R is:

S(R) =
N

X

j=1

FP j (3)

Since in an optimal ranking all bugs are at the front, the
quantity FPj measures how much a bug was shifted in the
inspection from its position in an optimal ranking. Clearly
S(R) = 0 when R is optimal, and in general smaller scores
are better. Unfortunately, because Feedback-Rank breaks
some ties between error reports randomly, a given BN model
can produce several different rankings for the same set of
errors. In order to select the best model, for each model
we rank the reports a few times (≈ 15-20) to estimate the
model’s average ranking performance.

4.4 Inference: Computing Probabilities
If a BN was a database, an inference algorithm would

be its query engine. For our ranking and learning tasks
we need to compute several probability values, and to do
so we employ a standard inference algorithm called belief
propagation [25]. If I is the set of error reports we have
inspected (with inspected values i), then the inference al-
gorithm allows us to compute Pr(Rj = b|i), which is the
updated probability report Rj is a bug knowing the values
of our inspected reports I . These are the probability values
we use to re-rank reports after each inspection.

Belief propagation is an approximate inference method,
which means the probabilities it computes are not exact.
The choice for using belief propagation stems from its simple
algorithm, its propensity to yield fairly good estimates of
probabilities in practice, and its speedy computation. For
our datasets, computing the necessary probabilities to re-
rank reports takes at most a few seconds for a population of
several hundred reports on a 800 Mhz G4 Apple Powerbook.

4.4.1 Computing Information Gain
Once we can compute probabilities using the BN, we can

compute the information gain of inspecting a report Rj . In-
formation Theory defines the average number of bits to rep-
resent the probability distribution Pr(Rj) as its entropy [7].
The mutual information between two reports MI (Rj ; Rk)
is the amount of information one report tells us about an-
other. It measures the difference of entropy between the

2This is a standard scoring metric in statistical learning for
learning models. The likelihood is the probability the data
was generated by the given model.

joint distribution Pr(Rj , Rk) and the product distribution
Pr(Rj)Pr(Rk) (where Rj and Rk are treated as being inde-
pendent variables).

We can generalize by looking at the mutual information of
a report and all the other reports: MI (R; Rj). We omit the
details of the derivation (see Cover [7]), but if I is the set of
already inspected reports (with values i), then the mutual
information between Rj and R is:

MI (R; Rj) =
X

rj∈{b,fp}

Pr(rj |i)D(P
˛

˛

˛

˛Q) (4)

Here P = Pr(R|rj , i) and Q = Pr(R|i). D(P
˛

˛

˛

˛Q) is the
relative entropy between distributions P and Q:

D(P
˛

˛

˛

˛Q) =
X

Rk∈R

0

@

X

rk∈{b,fp}

Pr(rj |rk, i) log
Pr(rj |rk, i)

Pr(rj |i)

1

A

(5)
Equation 4 is the information gain metric we use in the
Feedback-Rank algorithm. When breaking ties, we choose
the report variable Rj with the largest MI (R, Rj) value.
Equations 4 and 5 are not specific to our BN model, although
they are straightforward to calculate with our BN model by
using belief propagation. The MI value is computationally
expensive to compute, although in practice this is not a
problem as we only need to compute it in the presence of
ranking ties.

5. EXPERIMENTAL VALIDATAION
We now evaluate the performance of Feedback-Rank on

real error report data. Our test bed consists of the error sets
from Linux and System X described in Table 1.

We compare Feedback-Rank against two other rank-
ing strategies. The first is Optimal, where all bugs ap-
pear in the ranking before the false positives. The second
is Random, where reports are ranked randomly. Random

is a useful baseline because it has a probabilistic bounded
time for an end-user to find a bug, and represents a reason-
able strategy in the absence of any information with which
to rank reports. Finally, because Feedback-Rank breaks
some ties between reports randomly, we rank an error set
100 times and look at the mean ranking behavior.

Feedback-Rank is intended to be a component of a
larger ranking scheme, and our goal here is to evaluate the
raw ranking improvement Feedback-Rank provides by ex-
ploiting error report correlations and inspection feedback.
We do this by performing two experiments:

1. Zero-Knowledge: In this experiment Feedback-Rank

is applied to a set of reports where none of the reports are
considered previously inspected. In this case, besides ex-
ploiting information gain, the initial sorting of the reports
is completely random. Any improvement over Random

is achieved solely by exploiting feedback from the user.

2. Partial-Knowledge: In this experiment a random sub-
set of the reports to be inspected are reserved and treated
as being previously inspected. This experiment simulates
either a gradual re-application of a checking tool to an
evolving codebase, or the application of Feedback-Rank

after a user has randomly inspected a subset of the reports
before inspecting the remainder.3

3From our own conversations with companies that use



(a) Ranking results for Linux (b) Ranking results for System X

Figure 6: The performance ratio of Feedback-Rank versus Random (e.g., a of “2” value indicates that on
average Feedback-Rank requires half of many false positives to be inspected to find the same number of
bugs as Random). Results are for experiments when Feedback-Rank has none (Zero-Knowledge) and 25%
(Partial-Knowledge) of the reports treated as being previously inspected.

5.1 Evaluating Ranking Performance
We compare the performance of Feedback-Rank against

Random by employing a scoring metric that summarizes
ranking prowess over the entire inspection process. Recall
that S(R) is the sum of the cumulative number of false
positives inspected before each bug (see Equation 3 in Sec-
tion 4.3). If we divide this quantity by N (the number of
bugs), we get the average cumulative number of false posi-
tives inspected before each bug:

Avg-FP = S(R)/N (6)

This quantity measures the average inspection “delay”
or “shift” per bug from Optimal. When we compare
Feedback-Rank against Random, we simply take the ratio
of Avg-FP for each ranking:

Performance Ratio =
Avg-FP(Random)

Avg-FP(Feedback-Rank)
(7)

This ratio is how many times more false positives on av-
erage we inspect before each bug using Random versus
Feedback-Rank. For example if the ratio is 3 we inspect
on average 3 times more false positives before each bug with
Random than we do with Feedback-Rank.

5.2 What BN CPDs to Use?
We require a BN model to apply Feedback-Rank to a

set of reports. Construction of the BN structure follows the
procedure outlined in Section 4.2, but to complete the model
we need to specify the CPD values. The CPDs are learned
from a set of inspected reports. For our experiments, we
employ the following sets of CPDs:

1. Entire Codebase: We use CPDs trained on all the re-
ports from a codebase.

2. Self-Trained: We use CPDs trained on the same set of
reports that are being ranked

3. Reserved 90%: We reserve 90% of the reports from an
error set, train the CPDs on that 90%, and rank the re-
maining reports using those CPDs.

checking tools, they are quite willing to inspect a small set
of the reports randomly if they can effectively use that la-
bor to suppress the majority of the “problem spots” when
inspecting the remaining reports.

We use the Entire Codebase CPDs when ranking reports
from a different codebase. For example, when ranking re-
ports from Linux we use the CPDs trained on System X. We
can use the CPDs trained on a different codebase because
we expect that the correlation trends based on code locality
will generally hold across different checkers and codebases.
For brevity, we will refer to this setup as Other Codebase.

The first and second cases represent two practical ex-
tremes. The first case represents where we have no previous
inspection data (or not enough) to tune the model to a spe-
cific checker/codebase. The second case represents what we
can do with a fully tuned model (i.e., an “upper bound” on
ranking performance). The third case is a realistic setup for
using a tuned model, and we reserve it for our last experi-
ment.

5.3 Results: Zero-Knowledge
For the Zero-Knowledge experiment, we ranked the error

sets in Table 1 using both Feedback-Rank and Random

and compared the ranking results using Equation 7. Because
the reports from a given checker are considered uninspected,
we use the Other Codebase CPDs for our BN.

In this experiment, we expected the largest improvement
of Feedback-Rank over Random to come when there are
(1) a fair number of reports and (2) strong clustering of
false positives. For checkers with low false positive densi-
ties the improvement over Random should be marginal as
both rankings are close to Optimal. The results, shown
in the white bars in Figure 6, agree with our predictions.
For most checkers we see at least a 50% improvement over
Random, with checkers like Alock on Linux and Format

on System X that have strong clustering of false positives
having and improvement of 4x and 2x (respectively) over
Random. The Free checker on Linux performs the same
as Random because there are very few reports in total and
little clustering, providing little correlation to exploit. On
System X we observe for Rev-inull that Feedback-Rank

performs marginally better than Random. This is because
there is little clustering at the file and function level, and
only occasional clustering at the directory level.

5.4 Results: Partial-Knowledge
For the Partial-Knowledge experiment, we again individ-

ually ranked the reports from the checkers in Table 1, but
this time randomly reserved 25% of the reports and treated
them as being previously inspected. We then ranked the
remaining reports using Feedback-Rank and Random.



Feedback-Rank vs. Random

(Average # bugs found in N inspections)

Check Bugs FPs N = 10 N = 25 N = 50

Alock 7 29 5.4 vs. 1.9 7 vs. 4.8
Block 122 13 10 vs. 8.9 25 vs. 23 48 vs. 45
Free 10 5 6.9 vs. 6.7
Intr 20 37 7 vs. 3.4 14 vs. 8.7 19 vs. 18
Lock 12 37 5.9 vs. 2.3 10 vs. 6
Null 92 35 8.2 vs. 7.2 20 vs. 18 43 vs. 36
Param 8 10 6.1 vs. 4.5
Range 53 2 10 vs. 9.6 25 vs. 24 48 vs. 48

Exc-none 2 53 0.64 vs. 0.44 2 vs. 1 2 vs. 1.9
Format 20 74 7.1 vs. 2.1 9.7 vs. 5.3 17 vs. 10
Free 11 22 6.8 vs. 3.4 10 vs. 8.7
Internal-null 24 18 6.6 vs. 5.7 17 vs. 14
Inverse 10 2 9.1 vs. 8.3
Lock 2 25 2 vs. 0.78 2 vs. 1.8
Null 158 10 10 vs. 9.5 24 vs. 24 49 vs. 47
Rev-inull 18 18 5.4 vs. 4.9 14 vs. 12

Table 4: Average cumulative number of bugs found
by Feedback-Rank and Random for the first 10, 25,
and 50 inspections. Datasets are for the Partial-

Knowledge experiment (with Other Codebase BN
model) with 25% of the reports previously inspected.
Checkers from Linux are listed first.

Figure 7: Ranking results for System X when re-
ports from all checkers are ranked together (90% of
reports reserved): 31 bugs, and 28 FPs

For Feedback-Rank we ranked the reports using both the
Other Codebase CPDs and the Self-Trained CPDs.

The performance ratios of Feedback-Rank versus
Random for both CPD sets are shown in Figure 6. Table 4
also depicts the cumulative number of bugs found by both
Feedback-Rank (using the Other Codebase CPDs) and
Random for the first 10, 25, and 50 inspections. In many
cases we see a dramatic improvement for Feedback-Rank

over the results in the Zero-Knowledge experiment. From
Figure 6 we see an average improvement of 2-3x over
Random for the Other Codebase CPDs and an average im-
provement of 3-4x over Random for the Self-Trained CPDs.
We see a factor of 6-8 improvement over Random for Alock
(which finds 2.8 times as many bugs as Random for the
first 10 inspections). Table 4 also shows that for Format

Feedback-Rank finds 7 bugs in the first 10 inspections
while Random finds only 2.

5.5 Results: Ranking Checkers Together
Our final experiment estimates how useful

Feedback-Rank would be as program checkers are con-
tinually applied to an evolving codebase. Because our error
reports are from codebase snapshots, this is only a crude
approximation.

We simulate an evolving codebase by reserving 90% of the

reports (selected at random) from each checker. These are
the reports generated by the checker tools on an “earlier”
version of the codebase, while the remaining 10% are the
“new” reports.

Although we know there is cross-checker correlation be-
tween many of the checkers, we are still investigating how to
best exploit it in our model. Instead of placing reports from
all checkers within one BN, we compute probabilities by
placing the reports from each checker in its own BN model,
effectively treating reports from different checkers as inde-
pendent. Reports from all checkers are then ranked together
by their probabilities. For this experiment, we used the Re-
served 90% CPDs for ranking.

Figure 7 show our ranking results for System X.
Depicted are the average cumulative number of bugs
found after a given number of inspections for Optimal,
Feedback-Rank, and Random. Both Feedback-Rank

and Random are run 100 times, and error bars represent
the region between the 5th and 95th percentile. For Sys-
tem X, Feedback-Rank is close to Optimal for the entire
ranking, finding all 31 bugs after inspecting 3 (out of 28)
false positives. For Linux (not shown), Feedback-Rank is
always optimal for the first 14 inspections, and all 42 bugs
are found after inspecting 9 (out of 21) false positives.

6. RELATED WORK
There is significant interest in the program checking com-

munity in reducing false positive counts of tools. Both
the PREfix and MC tools employ various rule-based rank-
ing heuristics to identify the most reliable reports [4, 17].
Kremenek and Engler proposed z-ranking, a statistical rank-
ing scheme that observes that error reports for code where
an invariant often held and the tool flagged few errors in
total are the most reliable [20]. Although these techniques
are effective at suppressing false positives, they are static
rankings that discard user feedback. Feedback-Rank is
intended to complement these static ranking techniques to
address this weakness.

There has also been substantial effort on both dynamic
and static techniques to better isolate defects. In the realm
of dynamic tools, the problem is not with suppressing false
positives, but identifying the source of a bug (which usually
manifests as a program crash). In their system DIDUCE,
Hangal and Lam track simple invariant properties and pro-
gram values over the lifetime of an instrumented Java pro-
gram [18]. They employ a ranking scheme to present to the
user a list of tracked property values that were mostly con-
sistent during the program’s execution but recently deviated
before the crash. Liblit et al also dynamically track program
state through statistical sampling to isolate crash causes. In
a manner similar to ranking, for “non-deterministic” bugs
where the exact cause cannot be easily isolated, they em-
ploy a logistic regression model to identify possible causes
of crashes [21]. The coefficients of the model are used to
identify the sampled program state values most correlated
with the observance of the crash. For static tools, Ball et al
looked at examining differences of paths traced by a model-
checker to isolate program points likely to be the root of a
statically detected defect [2]. They looked primarily at iso-
lating the cause of a bug, however, and are not addressing
the issue of suppressing false positives.

There has also been significant work at looking at empir-
ical bug densities in systems and how bugs cluster. Chou



et al studied the lifetimes and densities of bugs found in
open-source operating system code by the MC system, and
Ostrand et al studied the densities of faults discovered by
testing during the entire development lifetime of a large com-
mercial software project [6, 22]. Chou observed that bugs
frequently cluster by checked invariant and code locality; in
device driver code error rates were up to 7 times larger than
other sections of the code base. Ostrand observed a signifi-
cant positive correlation between code that was fault prone
in a previous release and the likelihood it was fault prone
in a subsequent release of the project. Although he employs
software testing data, we expect bugs found by static tools
to similarly correlate, as it is a characteristic property of the
code itself. Moreover, we expect false positives to correlate
over a project’s lifetime. Unless the checking tool is fixed,
“problem spots” that caused the tool to make analysis mis-
takes will remain in the code unless the code is significantly
rewritten or the tool fixed.

7. CONCLUSION
This paper presented Feedback-Rank, an on-line rank-

ing algorithm for inspecting error reports emitted by static
checking tools. It operates on the simple premise of associ-
ating with each report a probability that it is a true error
and then sorts reports by their probabilities. After each
inspection, the probabilities for the remaining reports are
updated by using a probabilistic model.

Our main source of leverage was that reports frequently
correlate by code locality, but there are many potential
sources of correlation to exploit. Another possible source
of correlation is for code that implements a common inter-
face (e.g., device drivers). If a checking tool reveals that a
particularly implementation is buggy, other flagged errors
for related implementations may also be real bugs because
of similar idiomatic problems. Code versioning information
may also be a potentially rich source of data for correlating
reports, as code written by the same developer may have
correlated bug densities and code written at the same time
may also be highly correlated in the same manner. There
are many other ways in which reports can be correlated, and
potentially exploited for ranking.

Feedback-Rank represents a complementary approach
to static ranking schemes. Static schemes can be used to
perform an initial sorting, while Feedback-Rank can be
used to adaptively alter the ranking as feedback is intro-
duced. In practice our ranking strategy works well, and
without having any knowledge of the internals of the code
checked or the analysis algorithms used. We observed a fac-
tor of 2-8 improvement over randomized ranking, and when
some previous error report data was available it frequently
performed close to optimal on the first several inspections.
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