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Abstract

While thread races have drawn huge attention from the

research community, little has been done for process

races, where multiple—possibly sequential—processes

access a shared resource, such as a file, without proper

synchronization. We present a preliminary study of real

process races and show that they are numerous, danger-

ous, and difficult to detect. To address this problem, we

present the design of RACEPRO, an in-vivomodel check-

ing system for automatically detecting process races in

deployed systems, along with preliminary results from a

RACEPRO prototype. To the best of our knowledge, we

are the first to study real process races, and RACEPRO is

the first system to detect them.

1 Introduction

The rise of multicore has created a huge buzz around

thread races in multithreaded programs.1 Thread races

are numerous, dangerous, and nondeterministic [10];

they are widely regarded as some of the worst possible

errors. Many have flocked to the area of reliable multi-

threaded software and proposed a plethora of approaches

to detect, diagnose, and avoid thread races.

Just like threads have races with load/store, processes

have races with read()/write(). However, the re-

search community has done little for such process races,

where multiple—possibly sequential—processes access

an OS resource (e.g., a file or device) without proper syn-

chronization. For instance, while over 30 papers in recent

premier systems/PL conferences (OSDI, SOSP, PLDI,

and ASPLOS) are on thread races and reliability of mul-

tithreaded software, only two deal with process races and

neither helps detecting them.

Process races are much broader than time-of-check-to-

time-of-use (TOCTOU) races. A typical TOCTOU race

is an atomicity violation where the permission check and

the use of a resource are not atomic, so that a malicious

process may slip in. In contrast, a process race may be

any form of race. Some real examples include a shut-

down script unmounting a file system before another pro-

cess writes its data, “ps | grep X” showsN orN+1

lines depending on the timing of the two commands, and

“make -j” failures.

1In this paper, we broadly define races to include read-write and

write-write races, atomicity violations, and order violations [10].

An important message of this paper is that process

races are bad and we urge the systems community to give

them their due share of attention. We have conducted

a preliminary study of real process races and show that

they are numerous, dangerous, and difficult to detect.

A simple search on Launchpad [3], Ubuntu’s software

management site, returns hundreds of potential process

races. This number has risen due to multicore, evident

by the many process races in Ubuntu’s parallel boot sup-

port [4]. Our study identifies many specific process races

and shows that they can cause program crashes, data loss,

and other failures. Our study also shows that process

races are difficult to detect and many occur only due to

rare runtime and deployment factors. The result is that

dangerous process races often sneak into deployed sys-

tems, causing “heisen” production failures.

Our goal is to build effective tools to automatically de-

tect, diagnose, and avoid process races. As a first step,

this paper outlines how we may detect process races.

Two challenges make detection difficult. The first is

scope: process races are extremely heterogeneous. They

may involve many different programs. These programs

may be written in different programming languages, run

within different processes, access diverse resources, and

use diverse synchronization operations (e.g., fork-wait,

pipe, and signal). Existing thread or TOCTOU race de-

tectors are unlikely to work well with this heterogeneity.

The second challenge is coverage: process races are

highly elusive. Like thread races, they are timing-

dependent, and tend to surface only in rare executions.

Worse than thread races, they may occur only under spe-

cific software, hardware, and user configurations at spe-

cific sites. It is hopeless to rely on a few software vendors

and beta testing sites to create all possible configurations

and executions for checking.

To address these challenges, we present the design

of RACEPRO, a system for automatically detecting pro-

cess races, without requiring source code or modifica-

tions to the checked systems. RACEPRO addresses the

scope challenge by transparently and pervasively track-

ing shared resource accesses (e.g., the file and byte range

accessed by write()) at the OS-level, for both user

processes and the kernel. It mitigates the coverage chal-

lenge by checking deployed systems. The insight is that

all user machines together can create a much larger and
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more diverse set of configurations and executions for

checking. Alternatively, if a configuration or execution

never occurs, it is probably not worth checking.

To detect process races, RACEPRO employs an ap-

proach we call in-vivo model checking. While a de-

ployed system is running, RACEPRO records the execu-

tion without doing any checking. RACEPRO then sys-

tematically checks this recorded execution for errors of-

fline, e.g., when the deployed system is idle or by repli-

cating it to a dedicated checking machine. To check a

recorded execution, RACEPRO first analyzes this execu-

tion to identify a set of execution branches that may lead

to process races. It then checks each potentially buggy

branch by replaying the recorded execution, making it

go live—i.e., resume live execution—down this branch,

and testing whether any process race occurs.

Our approach has three key benefits. First, it decou-

ples execution recording from checking, thus incurring

little overhead on the deployed systems it checks.2 Sec-

ond, it increases coverage by checking many execution

branches. Third, by creating a live execution and veri-

fying that a race does occur and lead to harm, it reduces

false positives.

We have implemented a preliminary RACEPRO proto-

type in Linux, which consists of a record-replay kernel

module and a user-space exploration engine for system-

atically checking execution branches. Our preliminary

results show that RACEPRO incurs little overhead (under

2.5% for server and 15% for desktop applications) and

detects two known process races.

This paper makes two main contributions. First,

through an initial study (§2) of process races in real soft-

ware, we show that they are a real threat. Second, we

have designed (§3) and implemented (§4) a preliminary

prototype of RACEPRO. To the best of our knowledge,

we are the first to study process races, and RACEPRO is

the first system to detect them.

2 Process Race Study and Examples

To better understand process races, we have conducted a

preliminary study with two key questions in mind:

• How serious is the problem of process races?

• What are their characteristics that hint towards poten-

tial methods to detect them?

We collected the races by searching for the term “race”

on Launchpad, Ubuntu’s software management site. Our

search query returned 3,330 pages. We then sampled 300

pages, which yielded 69 unique bugs. We then manually

examined these bugs and classified them. Raw data for

all bugs studied is available [1]. §2.1 describes general

findings and §2.2 presents four example process races,

from the most to the least serious.

2Previous work [6] also decouples recording and checking, but it

checks the exact execution recorded and does not detect process races.
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Figure 1: Sampled thread and process races over time.

2.1 Findings

Process races are numerous. Of the 69 sampled bugs,

42 are process races, a dominant majority; 24 are poten-

tial process races but the page did not contain enough

information for us to understand the cause, so we did

not count them when computing the statistics below; the

other 3 bugs are thread races.3 Of the 42 process races,

only 1 is a TOCTOU race; the other 41 races are not

TOCTOU races, which existing TOCTOU detectors can-

not catch. Based on this sample, the 3,330 pages that our

simple search returned may extrapolate to about seven

hundred process races. Figure 1 shows that the number

of process races has also risen in recent years.

Process races are dangerous. Compared to thread races

that corrupt volatile application memory, process races

corrupt persistent/system resources, making them poten-

tially more dangerous than thread races. As described

in §2.2, the process races can cause programs to read

garbage, processes to get stuck in infinite loops, and files

and databases to become corrupted. These races are just

the tip of the iceberg; please refer to [1] for the effects of

all studied races.

Process races are heterogeneous. The sampled races

spread across 74 programs, ranging from server appli-

cations such as MySQL, to desktop application such as

OpenOffice, to shell scripts in Upstart [4], an event-

driven replacement of System V initialization scripts. 35

of the 42 races, including all races described in A§2.2,

require interactions of at least two programs. These pro-

grams are written in different programming languages

such as C, Java, and PHP, run in different processes, syn-

chronize via fork() and wait(), pipes, sockets, and

signals, and access resources such as files and devices.

This heterogeneity makes it difficult to apply exist-

ing detection methods for thread or TOCTOU races to

process races. For instance, static thread race detectors

(e.g., [8]) work only with one program written in one

language, and dynamic thread race detectors (e.g., [13])

work only with one process.

Process races are highly elusive. Many of the sam-

pled process races (e.g., Race 1 and Race 3 described

in §2.2) occur only for specific combined software, hard-

3The number of thread races is likely underrepresented because

Launchpad is heavily used by Ubuntu distribution maintainers, not de-

velopers of individual applications.
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fork child

setjmp(loc)

wait(. . .) blocks

<−− child exits

wait(. . .) returns

<−− signal

longjmp(loc)

wait(. . .) error! no child

Figure 2: dash-MySQL race.

fd = open(H, RDONLY);

read(fd, buf, . . .);

close(fd);

. . . // update buf

fd = open(H, WRONLY|TRUNC);

read(fd, buf, . . .);

close(fd);

Figure 3: bash race.

ware, and user configurations. Moreover, many of the

sampled races (e.g., all races described in §2.2) occur

only due to rare runtime factors, for example, when a sig-

nal is delivered right after a child process exited (Race 2

in §2.2) and when a database shutdown takes longer than

usual (Race 1 in §2.2). These races illustrate the advan-

tage of checking deployed systems: we can rely on real

users to create the diverse configurations and executions

for us to check.

Process race patterns. Classified based on the causes,

the sampled process races fall into two categories: atom-

icity violations or execution order violations.4 Of the 42

process races, 37 are execution order violations, and only

4 are atomicity violations. These patterns suggest how

we may detect process races.

2.2 Examples

Race 1: Upstart-MySQL. The symptom is that

mysqld is forcibly killed during shutdown, resulting in

a corrupted file system. This race is an execution or-

der violation when S20sendsigs, the shutdown script

that terminates processes, does not wait for MySQL to

cleanly shutdown, before proceeding to file system un-

mount scripts. Its occurrence requires a combination

of many factors, including the mixed use of System

V initialization scripts and Upstart, a misconfiguration

so that S20sendsigs does not wait for any daemons

started by Upstart, insufficient dependencies specified in

MySQL’s Upstart configuration file, and a large MySQL

database that takes a long time to shut down.

Race 2: dash-MySQL. The symptom is that the shell

wrapper mysql safe of the MySQL server daemon

mysqld goes into an infinite loop with 100% CPU us-

age after a MySQL update. This race is an atomicity

violation in dash, a small shell Debian uses to run dae-

mons [2]. This race occurs when dash is interrupted by

a signal unexpectedly. Figure 2 shows the event sequence

surfacing this race. To run a background job, dash adds

the job to an internal job list and forks a child process to

carry out the job. It then calls setjmp() to save an ex-

ecution context and and wait() to wait for the child to

exit. After the child exits, wait() returns, and dash is

supposed to remove the child from its job list. However,

4An execution order violation [10] occurs when a set of events must

occur in a fixed order, but no synchronization operations enforce so.
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Figure 4: RACEPRO Architecture. Its components are shaded

(and in green).

if a signal is delivered at this time, dash’s signal han-

dler will call longjmp() to go back to the saved con-

text, and the subsequent wait() call will fail because

the child’s exit status has been collected by the previ-

ous wait() call. However, dash still has a nonempty

job list, thus it calls wait() repeatedly to wait for the

nonexistent child to exit. Although this race is in dash,

it is triggered in practice by a combination of dash, the

mysql safe shell wrapper, and mysqld.

Race 3: Mutt-OpenOffice. The symptom is that

OpenOffice displays garbage when a user tries to open

a MS Word attachment in the Mutt mail client (though

the attachment is not lost). This race is an execution or-

der violation when Mutt prematurely deletes a file be-

fore OpenOffice uses this file. Its occurrence requires

a combination of Mutt, OpenOffice, a user configura-

tion entry in Mutt, and the openoffice shell wrap-

per. Specifically, the user first configures Mutt to use the

openoffice wrapper to open MS word attachment.

Then, to show an MS Word attachment, Mutt saves the

attachment to a temporary file, spawns the configured

viewer in a process, and waits for the viewer process to

exit. The openoffice wrapper simply spawns the ac-

tual OpenOffice binary and exits at once; Mutt mistakes

this exit as the exit of the actual viewer, and deletes the

temporary file holding the attachment.

Race 4: bash. This race is an atomicity violation: bash

writes to .bash historywithout synchronization, al-

lowing this file to be corrupted when multiple shells write

concurrently. When bash appends to the history file,

it correctly uses O APPEND. However, when it exits, it

reads back the history file and overwrites it to keep the

history file under user-specified size. This problematic

sequence of system calls is shown in Figure 3. When

multiple bash processes exit at the same time, for in-

stance, when a user exits emacs with multiple bash

processes, the history file may become corrupted.

3 RACEPRO Design

Figure 4 shows the architecture and Figure 5 the work

flow of RACEPRO. It has two main components: a ker-

nel module for recording and replaying executions and a

user-space exploration engine for systematically check-

ing recorded executions.
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Figure 5: RACEPRO Work Flow. Thin solid lines represent

recorded executions; thick solid lines represent replayed ex-

ecutions. Dotted arrows represent potentially buggy execution

branches. The solid arrow (in red) represents the branch RACE-

PRO selects to explore.

The record-replay module implements four low-level

mechanisms used by the exploration engine: (1) record-

ing all interactions, such as system calls and signal de-

livery, between a group of processes and the kernel; (2)

tracking what operations access what shared resources;

(3) deterministically replaying a recorded execution; and

(4) making a replayed execution go-live by resuming live

execution.

The exploration engine implements three algorithms:

(1) detecting when a machine becomes idle, so that it

can switch RACEPRO from recording mode to checking

mode; (2) computing the set of execution branches that

may lead to process races using the accesses tracked by

the record-reply module; and (3) checking whether these

execution branches do lead to process races using the re-

play and go-live mechanisms.

RACEPRO provides a generic algorithm for detecting

potential process races, which can be extended by refin-

ing what system calls may conflict. This algorithm need

not give accurate results, because for each potential pro-

cess race, RACEPRO validates that it is a real race by

creating a real execution and verifying that the race does

occur and lead to a failure [11].

To identify failures, RACEPRO can use three strate-

gies. First, it can detect generic failures such as process

crashes and error messages in system logs. Second, it can

run user-written checks, for instance, a script that detects

a corrupted .bash history. Third, it can run existing

“reader” programs (e.g., fsck) on the result and detect if

the result is different from that of the recorded execution

or an execution in which all operations are serialized.

While our initial design of RACEPRO records and

checks executions on the same machine, we intend to

build a distributed checking infrastructure so that RACE-

PRO can migrate recorded executions to other machines

for checking. New challenges and tradeoffs naturally

arise in this distributed setting, which we will investigate.

4 Preliminary Implementation

We have implemented a preliminary RACEPRO proto-

type in Linux. Its record-replay module leverages our

previous work on lightweight OS-level deterministic re-

play on multiprocessors [9]. This module is application-

transparent, does not require changing, relinking, or re-

compiling applications, libraries, or the kernel, does not

require any specialized hardware support, and does not

require a VMM nor incur its associated costs. To record

the execution of a multiprocess and multithreaded ap-

plication, the module records all nondeterministic inter-

actions between the application and the OS. To be able

to go live at any point during replay needed for in-vivo

model checking, it faithfully replays the effects of the

system calls on the kernel, because replaying just the

user-space effects is not enough.

Our RACEPRO prototype detects potential process

races as follows. Given two events in a recorded exe-

cution, it first determines if they are concurrent. Intu-

itively, it checks that no prior dependencies make one

event always happen before the other. It considers two

concurrent events “racy” if (1) both operate on the same

file and at least one modifies the file or (2) for catching

signal races, one sends a signal and the other may be in-

terrupted by this signal.

If a pair of racy events runs in one order during record-

ing, RACEPRO considers the opposite order a possible

execution branch. To check this branch, it uses the replay

and go-live mechanisms to force the opposite order. Note

that this branch may not lead to any failure or this branch

may not even be feasible because RACEPRO’s race detec-

tion is imprecise. However, RACEPRO reports this race

only when it can create a real failure, thereby avoiding

false positives.

We are continuing the development RACEPRO. Cur-

rently it does not detect when the machine is idle, and

we currently switch from recording to checking manu-

ally. Its race detection algorithm can be made more pre-

cise and extended to other shared resources. It switches

to random exploration of execution branches when the

number of them goes beyond a threshold (1000 by de-

fault). We will address these issues in our future work.

5 Preliminary Results

Record and Replay Overhead. Low recording over-

head is crucial because RACEPRO runs with deployed

systems. Low replay overhead is desirable because

RACEPRO can check more execution branches within

the same amount of time. To evaluate RACEPRO’s

record and replay overhead, we applied it to a wide

range of real applications on a 4-CPU multiprocessor.

These applications include (1) server applications such

as Apache in multi-process and multi-threaded config-

urations, MySQL, an OpenSSH server, (2) utility pro-

grams such as SSH clients, make, untar, compression

programs such as gzip and lzma, and a vi editor, and (3)

graphical desktop applications such as Firefox, Acrobat

Reader, and MPlayer. Our results show that RACEPRO’s
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recording overhead was under 2.5% for server and 15%

for desktop applications. Replay speed was in all cases

at least as fast as native execution and in some cases up

to two orders of magnitude faster. This speedup is par-

ticularly useful for enabling rapid model checking.

Error Detection. Our RACEPRO prototype has success-

fully detected the dash and the bash races described in

§2.2. Our methodology is as follows. To create an ini-

tial execution for RACEPRO to record, we downloaded

the shell script contained in a bug report. Then, to show

that RACEPRO can detect errors by exploring execution

branches despite the fact that the recorded execution suc-

ceeds, we modified this script so that it no longer trig-

gered the bug when we ran it manually.

For the dash race, our script forks two children;

one of them sends a signal to the parent and the other

simply exits. We recorded one execution of this script

with RACEPRO, which included 277 system calls and

6 processes (some processes are created by the shell to

run commands). However, RACEPRO computed only

2 branches because the signal had to be delivered after

the corresponding child was forked. By exploring these

branches, RACEPRO successfully created a real execu-

tion that looped infinitely. We detected this infinite loop

using a timeout of one second.

For the bash race, our script forks two bash shells

which run five commands and then exit at the same

time. This script triggered a total of 1588 system calls

and 13 processes. RACEPRO identified 132 potentially

buggy execution branches, among which 115 branches

corrupted the history file. We detected this corruption

by comparing the number of lines of the history file to a

history file where the two shells run sequentially.

6 Related Work
As discussed (§1), existing work on thread or TOCTOU

races (e.g., [8, 13]) may not be able to deal with the scope

and the coverage challenges of process races. In this sec-

tion, we discuss other closely related work.

Determinator [5] advocates a new, radical program-

ming model that converts all races, including thread races

and process races, into exceptions, to achieve pervasive

determinism. This programming model is not designed

to be backward-compatible; it deals only with low-level

read-write or write-write races, not high-level atomicity

and order violations. RACEPRO differs because it is de-

signed to automatically detect general process races in

legacy systems.

Several tools can also check deployed systems. Crys-

talBall [12] detects and avoids errors in a deployed dis-

tributed system using an efficient global state collection

and exploration technique. Porting CrystalBall to detect

process races is difficult because it works only with pro-

grams written in a special language, and it does checking

synchronously while the deployed system is running, re-

lying on network delay to hide the checking overhead.

In-vivo testing [7] uses live program states, but it focuses

on unit testing and lacks the systematic exploration and

multiprocess support of RACEPRO.

7 Discussion and Future Directions
We have described our initial study of process races and

our initial work towards effectively detecting them. Our

immediate future work is to strengthen our study by

studying more process races and studying them more

thoroughly, to complete our RACEPRO prototype, and to

detect numerous process races in real systems.

Detection of process races is only the first step. More

research questions arise. For instance, how do we help

developers diagnose process races RACEPRO detects?

Given an execution where a process race surfaces, devel-

opers still have to figure out the cause of the race. Fixing

it can take time, and before developers produce a fix, sys-

tems remain vulnerable. Thus, how can process races be

temporarily worked around before developers fix them?

Or, more aggressively, how can process races be fixed

automatically? We hope that our initial work will inspire

others to work on these research directions.
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