
PickleBall: Secure Deserialization of Pickle-based Machine
Learning Models

Anonymous Submission – #122

Abstract

Machine learning model repositories such as the Hugging Face
Model Hub facilitate model exchanges. However, bad actors can de-
liver malware through compromised models. Existing defenses such
as safer model formats, restrictive (but inflexible) loading policies,
and model scanners have shortcomings: 44.9% of popular models
on Hugging Face still use the insecure pickle format, 15% of these
cannot be loaded by restrictive loading policies, and model scanners
have both false positives and false negatives. Pickle remains the de
facto standard for model exchange, and the ML community lacks a
tool that offers transparent safe loading.

We present PickleBall to help machine learning engineers
load pickle-based models safely. PickleBall statically analyzes the
source code of a given machine learning library and computes a cus-
tom policy that specifies a safe load-time behavior for benign mod-
els. PickleBall then dynamically enforces the policy during load
time as a drop-in replacement for the pickle module. PickleBall
generates policies that correctly load 79.8% of benign pickle-based
models in our dataset, while rejecting all (100%) malicious examples
in our dataset. In comparison, evaluated model scanners fail to
identify known malicious models, and the state-of-art loader loads
22% fewer benign models than PickleBall. PickleBall removes
the threat of arbitrary function invocation from malicious pickle-
based models, raising the bar for attackers to depend on code reuse
techniques.

CCS Concepts

• Security and privacy→ Software and application security.

Keywords

Secure Model Loading; Deserialization Attacks; Supply Chains

ACM Reference Format:

Anonymous Submission – #122. 2025. PickleBall: Secure Deserialization
of Pickle-based Machine Learning Models. In Proceedings of the 2025 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’25),
October 13–17, 2025, Taipei, Taiwan. ACM, New York, NY, USA, 23 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Open-source and open-weight models enable the AI ecosystem [27,
42, 55, 102]. They enable machine learning engineers to exchange

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

pre-trained models rather than training from scratch [31], facilitat-
ing direct use or further fine-tuning [16]. Open model repositories
like Hugging Face now host millions of pre-trained models for
many tasks [53, 55]. These model hubs are accessed directly as well
as through corporate mirrors [112], with billions of downloads per
month.

Unfortunately, as with traditional software supply-chain attacks,
bad actors can distribute malicious models. The most common strat-
egy for achieving remote code execution is by tampering with the
model deserialization process. Several model serialization formats,
such as TorchScript [81], H5/HDF5 [93], and the Python pickle
module [77], permit executable metadata or callbacks during model
deserialization. Attackers can craft malicious serialized models
to execute code, such as os.system(), on victim systems during
model loading [14, 18, 25, 104]. Researchers have found malicious
pickle models on Hugging Face whose payloads include system
fingerprinting, credential theft, and reverse shells [18, 104, 112],
with one study discovering a 5× increase in the rate of malicious
models uploaded to Hugging Face year-over-year [112]. This led to
alternative safe model formats like SafeTensors [45], and restricted
loading APIs like the PyTorchweights-only unpickler [82]; we study
their adoption in the Hugging Face ecosystem (§3) and find that
nevertheless, insecure formats are still prevalent.

In this work, we propose a novel approach to secure pickle model
deserialization, which we focus on for three reasons. First, pickle
is a popular exchange format for models: repositories with pickle
models are downloaded over 2.1 billion times per month from the
Hugging Face model hub (§3.1). Second, pickle is the most expres-
sive format and thus presents challenges to secure; it encodes mod-
els as opcodes executed by the pickle virtual machine (the Pickle
Machine) [43, 68] during deserialization, and permits invocations
of arbitrary Python classes and functions (callables). Finally, pickle
is a known security target for attackers, with almost all malicious
models discovered on Hugging Face using the pickle format.

Our evaluation shows that the two existing kinds of pickle dese-
rialization defenses are inadequate. Model scanners [8, 14, 44, 112]
maintain fixed denylists of disallowed callables to identify models
that invoke them. Safe model loaders [82] use fixed allowlists to
permit only the use of trusted callables. Our evaluation shows the
limits of these inflexible approaches for ML models. For instance,
the default safe deserialization loader in PyTorch [82] prevents 15%
of Hugging Face pickle repositories from loading (§3.1).

To address these limitations, we present PickleBall, a two-part
system for securing the exchange of pickle-based models. Our in-
sight is that we can analyze library code to determine the expected
behaviors of benign models produced by the library, and enforce
tailored model loading policies. PickleBall statically analyzes the
library code to learn (1) all classes used in the library’s models
and their transitive attributes, and (2) all functions for restoring

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS ’25, October 13–17, 2025, Taipei, Taiwan Anonymous Submission – #122

objects of these classes from serialized bytes. Then, PickleBall’s
model-loading component enforces the inferred policies.

We evaluated PickleBall and the state-of-the-art approaches on
a dataset of 336 models. Our dataset is meant represent the kinds of
models that PickleBall must handle, including malicious models
from attackers presenting as benign models used for inference tasks.
We used 252 benign models sourced from Hugging Face, and 84 real
and synthetic malicious models. PickleBall loads 79.8% of benign
models for inference tasks and prevents all malicious models from
executing their payloads. PickleBall adds a runtime overhead
of ∼2.62% to safely load a model. Compared to other approaches,
PickleBall achieved favorable precision and recall.

In summary, we contribute:
(1) An ecosystem-scale study of pickle security considerations

in the Hugging Face Model Hub. Repositories with only pickle
models are downloaded over 400 million times per month, de-
spite the introduction of new model formats. We find that 15%
of repositories with only pickle models have a model that can-
not be loaded by the SOTA secure pickle model loader, the
weights-only unpickler.

(2) The design and implementation of PickleBall, a frame-
work for securely loading pickle models. PickleBall tailors
loading policies to models, and enforces these policies lazily,
for secure, efficient, and robust model loading.

(3) A novel dataset of 336 benign and malicious pickle-based
models for evaluating pickle security efforts. It has 252 benign
models collected from Hugging Face, and 84 malicious models.1

2 Background

Here we describe the ML model reuse ecosystem and formats (§2.1),
then how the pickle format is used and the risks it entails (§2.2).

2.1 Model Reuse

2.1.1 The Model Supply Chain. Training ML models from scratch
requires massive compute and data [31, 73], so engineers and com-
panies save resources by reusing machine-learning models trained
by others (pre-trained models) [27, 42, 55, 102]. Open model repos-
itories like Hugging Face host over 1.8M models [47] for many
tasks [53, 55].

A supply chain of pre-trained models has grown from model
reuse, which comes with risks similar to those in the traditional soft-
ware supply chain [55, 69]. Bad actors apply techniques familiar in
traditional software security, such as typosquatting [51, 52, 60, 66]
and code injection [103], as well asML-specific ones like datamanip-
ulation [41]. Model hubs like Hugging Face try to detect malicious
models using both traditional code scanners like ClamAV [55] and
domain-specific pickle scanners [8, 44] due to the proliferation of
malicious pickle models [14, 112].

Machine learning libraries facilitate the development and ex-
change of models. Libraries like PyTorch [71], TensorFlow [6], and
JAX [12] provide a core of general ML library utilities, like model
training and serialization functions. Other popular but more specific
libraries build upon the core libraries with task-specific utilities,
like ultralytics (formerly YOLO) [99] for image recognition, PyAn-
note [75] for audio processing, and flair [67] for text processing.
1Code and data will be published on acceptance and provided for artifact review.

To create a model, an engineer uses one of these libraries to write
a model saver program, which trains a model and serializes it for
reuse. To load and use the model, an engineer uses the same li-
brary (identified in documentation that accompanies the model) to
write a model loader program. The libraries provide the interface
for interacting with the shared models.

2.1.2 Model Serialization Formats. Model savers and loaders must
agree on the serialization format; there are various formats avail-
able, each with its own tradeoffs in terms of security, flexibility,
and performance.2 Python is the primary language for using ML
models, and its native serialization module, pickle [77], provides
a convenient and flexible interface for saving objects; pickle pro-
liferated for being easy to use and is used by popular libraries like
PyTorch [80]. Hugging Face released the SafeTensors format in
September 2022 as an alternative that prioritizes security [45]. The
GGUF format, released August 2023, is optimized for fast model
loading and inference tasks, especially for large language mod-
els [39, 46]. Other formats may be selected for library coupling (e.g.,
TensorFlow SavedModel), interoperability (e.g., ONNX), or inter-
mediate tradeoffs between security, flexibility, and performance.

The security of a format depends on the expressivity of the op-
erations needed to deserialize a model. The SafeTensors format
requires very few different operations to load a model, because it
effectively only encodes model weight values, and is considered
a secure format after independent security audits [72, 94]. Some
formats, like TensorFlow SavedModel and ONNX, are known to
permit operations that could be abused in specific settings [95, 113],
but with no observed real-world attacks. Pickle is an extremely
expressive format that permits nearly arbitrary operations during
deserialization, and numerous malicious pickle models are discov-
ered on Hugging Face [14, 18, 104, 108, 112].

We focus our efforts on picklemodels due to their insecure format
(explained in §2.2) and their continued popularity (measured in §3).

2.2 Pickle Serialization and Risks

Pickle is popular because of its flexibility and convenience, due
to its ability to represent almost any Python object. The pickle
module implements a virtual machine, the Pickle Machine (PM),
that executes a sequence of opcodes [56] to deserialize an object.
The expressiveness of the PM allows it to serialize and reconstruct
complex Python data structures, but also make it vulnerable to
attacks, allowing attackers to invoke arbitrary Python callables [68].
Pickle Program Structure and Semantics: A pickle program
consists of opcode sequences interpreted by the PM, a stack-based
VM implemented in the Python pickle module [68].When the pickle
program halts, the object at the top of the PM stack is returned to
the Python interpreter as the deserialized object.

The Pickle Machine is integrated into the Python interpreter.
Many of the PM’s opcodes create or manipulate native-type ob-
jects, e.g., NEWFALSE to create a bool, while others import and
invoke Python callables (classes and functions) [78]. Specifically,
the callable importing opcodes GLOBAL and STACK_GLOBAL take a
callable’s name, import it, and push it to the top of the PM stack.
Class instances are instantiated using callable allocating opcodes,
2A convenient table showing these tradeoffs is provided in the SafeTensors repository
README: https://github.com/huggingface/safetensors.

https://github.com/huggingface/safetensors

PickleBall: Secure Deserialization of Pickle-based Machine Learning Models CCS ’25, October 13–17, 2025, Taipei, Taiwan

1 import pickle
2
3 def read_weights_to_tensor(filename: str) -> Tensor:
4 # Read a file containing weights and
5 # return a Tensor object.
6
7 class Tensor(object):
8 ...
9 def __reduce__(self):
10 return (read_weights_to_tensor, self.filename)
11
12 class Model(object):
13 def __init__(self, weights: library.Tensor):
14 self.weights = weights
15
16 def save(self, filename):
17 pickle.dump(filename, self)
18
19 @classmethod
20 def load(path)
21 return pickle.load(path)
22 ...

Figure 1: Example of a machine learning library with a

model that can be pickled. The Tensor class’s __reduce__

method registers the read_weights_to_tensor function

for execution during deserialization.

like NEWOBJ, which calls the class’s __new__ method. Function
references are called via callable invoking opcodes like REDUCE. Ar-
guments can be passed to both allocations and invocations, and the
return value is pushed to the PM stack. Lastly, the callable building
BUILD opcode can modify an object (e.g., set/change its attributes).

Pickle allows users to define custom deserializing behaviors per
class with the __reduce__ method. The method must return a
reference to a function and arguments. During serialization, an
object’s __reduce__ method is called and the returned function
reference and argument values are written to the serialized output
opcodes. During deserialization, the function is invoked with the
arguments, and the return value is pushed onto the Pickle Machine
stack. This provides a primitive to invoke arbitrary functions in a
pickle program. Figure 1 shows an example class that registers a
handler function (line 10) that is invoked with a callable invoking
opcode during deserialization.
Pickle Deserialization Attacks: Pickle’s opcodes allow a pickle
program to import and invoke arbitrary Python callables during un-
pickling. In particular, an attacker can make use of pickle’s callable
importing and callable invoking opcodes to achieve arbitrary code
execution—for example by executing an arbitrary shell command
by invoking the os.system function. The dangers of deserializ-
ing arbitrary pickle programs have been publicized for over a
decade [19, 32, 68, 77].
Protecting Pickle Models: Two existing approaches help engi-
neers load pickle models more securely:

(1) Model scanners identify malicious models using denylists
of unsafe callables. As with many denylist approaches, model
scanners are useful for identifying recognizable malicious con-
tent, but are bypassed by malicious models that avoid denied

Figure 2: A longitudinal analysis of Hugging Face model

formats for repositories with ≥ 1000 monthly downloads.

Repositories can contain multiple models, each in different

formats. Each color groups repositories by themodel formats

they contain: at least one pickle model (green), exclusively

pickle (red), and exclusively SafeTensor (blue).

callables, or that indirectly invoke callables [97].3 Examples are
Hugging Face’s picklescan [44] and ProtectAI’s scanner [74].

(2) Restricted loaders restrict the PM to execute only allowed,
safe callables. The only available restricted pickle model loader
is PyTorch’s weights-only unpickler [82]. Its default allowlist is
specialized for models produced by PyTorch.

3 Motivation

To summarize Section 2: it is dangerous to load untrusted pickle
models, but alternative secure formats exist. Do pickle models re-
main a security threat? We answer this with a longitudinal study
of pickle model usage (§3.1), and assessments of the usability of the
PyTorch weights-only unpickler (§3.2),

3.1 Study of Pickle Models on Hugging Face

To determinewhether picklemodels are used despite the availability
of alternate formats, we conducted a longitudinal study of the Hug-
ging Face ecosystem. We investigated Hugging Face because it is
the largest repository of pre-trained models [55], and because mali-
cious pickled models have been reported on it [14, 18, 104, 108, 112].
At 10 points in time over a ∼2-year period, we measured the down-
load rates and model formats in repositories with ≥ 1000 monthly
downloads (as a proxy for real-world impact).4 The number of repos-
itories in ameasurement ranged from 2,296 in the first measurement
to 16,661 in the last, with the number increasing monotonically at
each point. We mined two existing datasets that covered January–
October 2023 (PTMTorrent [54] andHFCommunity [10]), and added
new measurements in August 2024, November 2024, and March
2025 via the huggingface_hub API. In accordance with previous
research [112], we determined model formats using file extensions;
interested readers can refer to Appendix A for details.

3We demonstrate this in Appendix B by creating two backdoored models that bypass
two state-of-the-art scanners. One model uses callables that are missed by the scanners,
and the other model uses disallowed callables by invoking them indirectly.
4Downloads are tracked using Hugging Face metrics.

https://huggingface.co/docs/hub/en/models-download-stats

CCS ’25, October 13–17, 2025, Taipei, Taiwan Anonymous Submission – #122

0 20 40 60 80 100
Percentage (%)

GGUF

SafeTensors Only

Pickle

17.3%

33.9%

26.6% 18.3% 44.9%

5.0%

12.7%

19.1% 61.4% 80.5%

Proportion of Models
Proportion of Downloads
Pickle + ST
Pickle Only

Figure 3: Proportions of model formats and downloads in

March 2025, the final month of our longitudinal study. Nota-

tion: “Pickle+ST” indicates repositories with both formats.

Figure 2 summarizes our results. First, as the red lines show,
many important models continue to use only the pickle format, and
these pickle-only models are downloaded 400M+ times per month.
Following the green lines, repositories that contain both pickle and
SafeTensor versions of models are also increasingly downloaded,
with 1.70 billion monthly downloads. As models are converted to
the SafeTensor format, the associated pickle model is often kept for
legacy purposes, and can still present security risks [62].

Figure 3 represents present-day usage with data from the final
month of our study. Repositories with only SafeTensors or GGUF
models are downloaded infrequently, in comparison to those with
pickle models. Overall,∼44.9% of repositories contain pickle models,
which aligns with previous estimates of 41%–55% [14, 112].

We anticipate that pickle models will continue to pose risks
to the Hugging Face community for the next few years (cf. §7).
Monthly download rates of pickle models are increasing, and many
(21%) models are still exclusively in the pickle format, including
29 models in the top-100 most downloaded and over 500 models
from Meta, Google, Microsoft, NVIDIA, and Intel. PyTorch remains
the primary framework for model development, which reinforces
reliance on pickle due to user familiarity [91]. Interoperability chal-
lenges persist during model conversion [22, 50, 105], complicating
movement to other formats.

Summary: Despite positive steps to introduce secure alter-
native model formats like SafeTensors, pickle models are still
prevalent and monthly downloads are increasing.

3.2 PyTorch Weights-Only Unpickler Usability

Our longitudinal study showed that pickle remains popular. Next,
we assess whether the state-of-the-art safe loading approach, the
PyTorch weights-only unpickler, can effectively load the pickle
models we identify.

3.2.1 Measurements. The weights-only unpickler, introduced in
PyTorch 1.13 (Nov. 2022) and enabled by default in PyTorch 2.6
(Nov. 2024) [84], prevents access to insecure callables, but can only
load models that use callables from a small allowed set of PyTorch
APIs.5 Models that use more callables cannot be loaded without user
intervention; convenience and pressure from end-users results in
library maintainers explicitly disabling the weights-only unpickler

5PyTorch provides a mechanism for the user to manually expand the set of allowed
callables [83], but the user is left to determine by themselves which callables to allow.

Figure 4: The Hugging Face repository for the

flair\ner-english-fast model shows the results of

the Hugging Face pickle scanning tool directly in the web

application interface [35]. The pickle scanning tool warns

that some imports in the model’s pickle file are suspicious

and require attention (highlighted).

to maintain compatibility.6 We investigate a sample of the pickle
models in our study to determine whether they use callables disal-
lowed by the weights-only unpickler, which affects the usability of
the weights-only unpickler as a solution.
Methods: We sampled the most popular 1,500 of the 4,553 pickle-
only repositories in our survey (§3.1). For each repository, we used
the Hugging Face API to download its pickle models and used
the fickling tool [68] to statically trace and inspect the callables
used. We compared the callables in the model trace to the callables
permitted by the weights-only unpickler’s default policy. Models
from 74 repositories failed to download or trace, leaving us with a
sample of 1,426 repositories.
Results: Of the 1,426 model repositories surveyed, 219 repositories

(15.4%) contained at least one pickle-basedmodel that cannot be loaded
by the weights-only unpickler due to disallowed Python callables.
These 219 repositories were downloaded 79.6 million times in the
final month of our longitudinal study. In total, 36 unique disallowed
callables appear in the 219 repositories. Many come from major
libraries (e.g., numpy and Hugging Face Transformers). We list all
disallowed callables that appear in traces in Figure 8 (Appendix A).
These models cannot be loaded securely by the weights-only un-
pickler, so users must instead rely on the weaker model scanners
(§2.2) and their own assessments of the models’ safety.

3.2.2 Motivating Example. We use an example to show the im-
plications of these weights-only unpickler incompatibilities. Con-
sider the flair ner-english-fast [35] model, a pre-trained pickle
model for named entity recognition of English text that gained over
1 million downloads. To load the model, its documentation refers
to the flair library’s SequenceTagger.load API.

The flair loading API exposes the user to risk. Flair models,
like this one, use callables that are not part of the weights-only
unpickler allowlist, so the API explicitly disables the weights-only
unpickler to load its models. To protect themselves during load-
ing, the user must depend on scanners. For this (benign) model,

6As in the case of the flairNLP model (https://github.com/flairNLP/flair/commit/79
aa33706e7f753f2edf962feb1d75de22af0d1d).

https://github.com/flairNLP/flair/commit/79aa33706e7f753f2edf962feb1d75de22af0d1d
https://github.com/flairNLP/flair/commit/79aa33706e7f753f2edf962feb1d75de22af0d1d

PickleBall: Secure Deserialization of Pickle-based Machine Learning Models CCS ’25, October 13–17, 2025, Taipei, Taiwan

the Hugging Face pickle scanner [44] warns the user that some
imports in the model pickle file are suspicious and require attention
(Figure 4). We determined that the model is benign by manually
reviewing its operations, and then reviewing the source code of the
flair library to ensure that these operations are expected. This task
is costly for every user to perform for every model. Our system
successfully infers the expected operations and securely loads this
model (§6.3) without manual effort.

Summary: While the weights-only unpickler offers security,
15.4% of sampled pickle repositories, with 79.6 million monthly
downloads, contain a model that cannot use it. Library APIs
disable the weights-only unpickler to load models, leaving users
to rely on (incomplete) model scanners and manual assessments
to determine if models are malicious.

4 System and Threat Model

Our motivational study shows the need for a new defense that
is both usable and secure. Here, we model the system we aim to
protect, and the adversary to be thwarted:
System Model: The system loads a pickle-based model from an
untrusted source (e.g., Hugging Face Model Hub) using APIs pro-
vided by a trusted ML library (e.g., PyTorch). We specifically aim to
protect the system from the code introduced by the pickle program
and executed by the Pickle Machine.
Threat Model: The attacker provides a maliciously crafted pickle
to the victim with the intention of compromising the system. The
attacker’s goal is to execute arbitrary Python code (a “payload”),
either directly during model loading, or after by e.g., overwriting a
method in the model object with a reference to the payload.
• In scope: Manipulation of a pickle program in a pickle-based
serialized model to execute arbitrary code.

• Out of scope: Manipulation of the data or code in the serialized
model beyond the pickle program (e.g., model weights, data
pipeline programs); manipulation of the trusted library code
(e.g., PyTorch) used to load the serialized model.
We focus on the threat of pickle program code execution, and

exclude other threats from untrusted ML models. Other ML supply
chain attacks are orthogonal and can be approachedwith layered de-
fenses, like manipulating model weights to insert “backdoors” [17]
and compromising other model components. We don’t consider
other forms of attacks that manipulate pickle programs, e.g., for
denial of service [20] due to their weaker attack primitives.

5 PickleBall Design and Implementation

PickleBall is designed to protect applications that use libraries
to load untrusted pickle models. The desired system guarantee is
that PickleBall raises a security exception when an adversary
invokes an unnecessary callable during model loading, while trans-
parently loading benign models. The idea behind PickleBall is to
first generate a policy describing a minimal set of operations (i.e.,
the callables that need to be imported and invoked) for instantiat-
ing a given model object during an offline policy generation phase
(§5.1), and then to enforce the generated policy during unpickling,
rejecting spurious operations performed by malicious models (§5.2).
Figure 5 provides an overview of the aforementioned PickleBall

Policy Generation

lib.py

Library Code

Model Class
Identifier

Policy Generator

Static Analysis

Model Loading Policy

Allowed Imports

Allowed Callables

app.py

Model Loading
PickleBall Loader

Pickle Program

GLOBAL ModelClass
GLOBAL os.system

...

REDUCE foo(arg)
data.pkl

Allowed
Import?

Allowed
Callable?

ModelClass

Stub Object

foo(arg)

model = library.load(’data.pkl’)

model.infer()
. Exception

ModelClass.infer()

✓

p

✓

p

Figure 5: PickleBall works in two phases: 1) policy gener-

ation and 2) safe model loading. During policy generation,

PickleBall takes as input the source code of a ML library

and a class definition to analyze, and outputs a policy of al-

lowed imports and invocations. During safe model loading,

PickleBall enforces the extracted policy to protect the load-

ing process. The loading application specifies the policy to

enforce, based on the expected class of the model, and begins

loading the model with the library API. The loading appli-

cation can trust that any invocations of the Pickle Machine

will be restricted to the configured policy.

components. PickleBall guarantees that, given correct AST and
type information, PickleBall raises a security exception when the
adversary invokes an unnecessary callable (§5.3). We implement
the design of PickleBall as a software artifact (§5.4).

5.1 Policy Generation

PickleBall’s policy generation component is designed to automat-
ically create a policy that describes the set of operations (i.e., the set
of callables imported and invoked) permitted when loading a model
for a given loading API. The policy is generated before loading the
untrusted pickle model, and restricts the loading behaviors to only
those that are necessary for the library API.
Design Rationale: We guide our design by studying how pickle
models make use of Python callables. In regular usage, a pickle
program needs a callable to construct non-primitive objects and
(recursively) initialize the values of its attributes. Callables that
are not needed to instantiate a given object should not appear in a
pickle program; malicious payloads insert new code that does not
have a role in object initialization.

The challenging task of policy generation is determining which
callables are needed to instantiate an object. Python is a dynamic
language that permits a single variable to receive different types
at various program paths, and for objects to receive new attribute

CCS ’25, October 13–17, 2025, Taipei, Taiwan Anonymous Submission – #122

variables after initialization. Identifying all attribute types requires
a path-sensitive analysis of the object creation code up to the point
that the object is serialized. Further, in the ML setting, the code
that creates the object (model) is not provided: the model saving
program is not provided alongside the serialized model, since it s
used to trained the model; the goal of sharing the serialized model
to obviate the need for executing a training program.

However, we recognize that we can generate approximate poli-
cies for serialized models by analyzing the class definition of the
model, even without access to the model saving program. The ma-
jority of the class instance attribute information is contained in the
class definition, in the shared library code, rather than in the model
saving application. Intuitively, for the object to be reusable, it has
to conform to an expected interface that is defined in the library.

We hypothesize that any unobserved object writes after the
model is created will either not introduce new types to the variables,
or will describe specialized metadata that is not necessary for the
general-use operations that the model loading application is likely
to perform, like inference. If new types are introduced, the model
class interface shared between the saving and loading programs is
violated. This is supported by our evaluation (§6.3.2).
Policy Generation Algorithm: Given an ML library and model
class definition, PickleBall analyzes the class definition to gener-
ate a model loading policy as the sets of allowed imports and allowed
invocations; these represent the operations that a pickle program
needs to instantiate an instance of the class:

(1) Allowed imports: the set of callables permitted as arguments
to Pickle Machine import operations.

(2) Allowed invocations: the set of callables permitted arguments
to Pickle Machine invoking operations.

The set of allowed invocations is a sub-set of allowed imports—
before being invoked, the callable must be imported. However, a
callable that is imported but not invoked may only be used as a
reference or as a constructor with its allocator method (__new__).

To statically generate the policy for a given class, PickleBall
implements and applies rules starting at the class definition, and
proceeds until the analysis terminates. PickleBall maintains a
candidate queue of classes that is initialized with the class definition.
PickleBall adds new classes to the queue as they are discovered
by the analysis rules, and removes them as each class is analyzed.
A class is only added to the candidate queue once to ensure that
the analysis terminates.

PickleBall applies the following class-analysis rules:

(1) If the class implements a __reduce__ method: identify the
method return values (a callable, arguments for the callable, and
optional state initialization values); add the returned callable to
the allowed imports and allowed invocations sets; identify the
types of all arguments for the callable and state initialization
values, and add their class definitions to the candidate queue.

(2) Otherwise: add the class to the allowed imports sets; add all
sub-classes of the class to the candidate queue; add all types
of the class’s attributes (including attributes inherited) to the
candidate queue.

The PickleBall policy generation algorithm, shown in Algo-
rithm 1, operates over an abstract syntax tree (AST) representation

of the analyzed program, and expects recovered type information
to be labeled in the AST.

PickleBall’s static analysis cannot produce perfectly sound and
precise policies due to fundamental challenges in statically analyz-
ing Python code, which is dynamically typed [11, 40, 106]. When
recovered type information is over-approximate, PickleBall pro-
duces policies that contain more callables than is strictly necessary.
Python’s dynamic features, like dynamic typing and runtime at-
tribute manipulation, can lead to unaccounted data dependencies
during type recovery, resulting in missing type information and
therefore in policies that incorrectly exclude callables. To account
for these potential errors, we design for security by separately en-
forcing allowed import and allowed invocations, and for robustness
with a lazy enforcement mechanism (§5.2). We discuss how static
analysis limitations affect the whole-system analysis in Section 5.3.

Algorithm 1: The pseudocode algorithm designed to gen-
erate a model loading policy for a given class, performed
over an AST augmented with recovered type information.
Errors in the recovered type information introduce in-
correctness in the results of GetReduceReturnTypes and
GetAttributeTypes.
Input:ModelClass
Output: AllowedImports
Output: AllowedInvocations

1 Candidates := UniqueQueue(ModelClass)
2 AllowedImports := EmptySet

3 AllowedInvocations := EmptySet

4 while NotEmpty(Candidates) do

5 Candidate := Pop(Candidates)
6 if HasReduceMethods(Candidate) then

7 AllowedImports+= GetReduceReturn(Candidate)
8 AllowedInvocations+= GetReduceReturn(Candidate)
9 Candidates+= GetReduceReturnTypes(Candidate)

10 else

11 AllowedImports+= Candidate
12 Candidates+= GetSubclasses(Candidate)
13 Candidates+= GetAttributeTypes(Candidate)

5.2 Policy Enforcement

PickleBall’s policy enforcement module is designed to protect
the model loading application during loading. It is a drop-in re-
placement for the system pickle module. It restricts the behavior of
the Pickle Machine operations that import, initialize, and invoke
Python callables, so that only the callables permitted by the model
loading policy are accessible to the pickle program in the model.

The module receives the loading policy and pickle program as
inputs, and either outputs the deserialized object from the pickle
program, or raises a security exception. “Importing opcodes” can
only access callables that are allowed by the allowed imports policy.
“Allocating opcodes” are allowed to create instances of objects listed
in the allowed imports set by invoking their __new__ methods.
Callable-invoking opcodes are either removed entirely, or restricted
to only invoke callables that are in the allowed invocations. To

PickleBall: Secure Deserialization of Pickle-based Machine Learning Models CCS ’25, October 13–17, 2025, Taipei, Taiwan

enforce this, the module verifies that the name of a given callable
is present in the allowed invocations set. Conceptually, an attacker
could bypass the allowed imports/allowed invocations separation
by importing a callable present in the allowed imports set but not in
the allowed invocations set, then “renaming” it into a callable that
is in the allowed invocations set. To mitigate against this, the policy
enforcement module prevents building opcodes from modifying
the __name__ and __module__ attributes of callables.

As described in Section 5.1, PickleBall policies may exclude
valid callables when PickleBall fails to analyze dynamic Python
features; PickleBall is designed to be robust against this with lazy
enforcement. PickleBall aims to handle cases where the excluded
callables are not accessed in the model’s downstream use cases.
When PickleBall’s loader encounters a disallowed import oper-
ation, it creates a stub object instead of immediately raising an
exception. The stub object records the name of the callable, and
implements no functionality other than raising a security exception
when invoked or accessed. This permits the loader to proceed to
completion in the event that the stub object is never used, defer-
ring the violation until access. The security exception is also raised
when the stub object is accessed after initialization, preventing
an attacker from overwriting methods of the returned object with
denied callables that are later invoked.

5.3 Security Guarantees and Limitations

Whole-system Guarantees: PickleBall’s design thwarts the ad-
versary described in our Threat Model (§4) by restricting the Pickle
Machine’s access to Python callables. The design guarantees that
when provided a correct AST with type information for a Python
class definition and its dependencies, PickleBall (1) raises a secu-
rity exceptionwhen the adversary invokes a spurious callable, while
(2) successfully instantiating any object that respects the attribute
and type information defined class definition. In our evaluation
of PickleBall, we show that existing state-of-the-art static analy-
sis tools provide sufficient AST and type-recovery information for
practical use (§6).
Policy Generation Guarantees: When the PickleBall is pro-
vided a correct AST with type information, it is guaranteed to
output a loading policy that includes all allowed imports and al-
lowed invocations that can appear in when an object is saved in the
pickle format, provided that the object is not manipulated to add
attribute types outside of its object prototype.
Policy Enforcement Guarantees: When PickleBall loads a
model, it is guaranteed to prevent the invocation of any Python
callable that is not in the configured set of allowed invocations, and
to create sanitized stub objects for any callable that is not in the
configured set of allowed imports. The stub objects raise security
exceptions when accessed/invoked.
Whole-system Limitations: PickleBall is limited fundamen-
tally by the challenges of analyzing dynamic Python code with
static analysis techniques, but PickleBall takes steps to mitigate
these. Python’s dynamic features, like runtime attribute manip-
ulation and dynamic typing, prevent PickleBall’s static analy-
ses from creating an AST with sound and precise type informa-
tion; this makes PickleBall’s policies unsound and incomplete.
Over-approximations in the AST result in policies that permit more

Python callables than necessary; PickleBall mitigates this by hav-
ing separate allowed invocations and allowed imports policies, so that
only a small set of callables may be invoked. Under-approximations
in the AST result in policies that omit benign callables from valid
models; PickleBall mitigates this with lazy policy enforcement so
that omitted callables only raise exceptions if they are invoked
by the model, rather than just initialized but unused. We evaluate
PickleBall in Section 6 to determine whether these limitations
restrict it in practical settings (and find that they do not).
Remaining Attack Surface: PickleBall prevents attackers from
importing and invoking arbitrary callables for malicious payloads.
However, akin to return-to-libc attacks, PickleBall does not pre-
vent the attacker from invoking permitted callables in sequences
or with parameters that result in unintended outcomes. We are
unaware of attacks leveraging these primitives, but whether this re-
maining capability is exploitable is a subject for further research (§7).

5.4 Implementation

PickleBall is implemented in a total of ∼1,300 Scala lines of code
(LoC) and ∼300 Python LoC divided between two primary compo-
nents: a static program analysis that builds upon the Joern frame-
work [107]; and a dynamic loader that modifies the existing Pickle
Machine. In the static analysis, ∼700 Scala LoC implement Algo-
rithm 1, ∼600 Scala LoC extend and fix Joern features, and ∼200
Python LoC integrate components. In the loader, ∼100 Python
LoC modify the Pickle Machine to implement lazy policy enforce-
ment. Joern provides a program analysis platform for PickleBall
by generating a Code Property Graph (CPG) with recovered type
information for the target code; we extend Joern to improve type
recovery features and class inheritance tracking (for more details,
see Appendix C). Our analysis then queries Joern’s AST nodes for
the relevant information.
Limitations: PickleBall inherits some limitations from the Joern
program analysis framework. The limitations include that PickleBall:

• Cannot parse new Python syntax features (e.g., generic types).
• Cannot recognize type hints provided in docstring comments,
but it can process type annotations introduced in Python 3.5.

• May fail to resolve dependencies, especially of builtin types.
• Cannot identify attributes of classes implemented in C.

These are engineering limitations and can be addressed with im-
provements to the underlying static analysis framework; they are
not fundamental limitations of the PickleBall approach for deter-
mining model loading policies from library class definitions.

To account for these limitations when evaluating the PickleBall
approach, we apply some manual library pre-processing before
analysis (§6.1), and discuss future work to reduce the need for
manual changes (§7).

6 Evaluation

We evaluate PickleBall with four Research Questions (RQs):

• RQ1: Malicious Model Blocking. How well does PickleBall
block malicious pickled models from executing their payloads?

• RQ2: Benign Model Loading. How well does PickleBall cor-
rectly load benign pickled models?

CCS ’25, October 13–17, 2025, Taipei, Taiwan Anonymous Submission – #122

• RQ3: Performance. Is PickleBall’s runtime overhead practical
for deployment?

• RQ4: Comparison to SOTA. How does PickleBall compare
to the state-of-the-art security tools for protecting model loading
applications?

6.1 Constructing an Evaluation Dataset

To answer these questions, we need a comprehensive dataset of
pickle models consisting of both malicious and benign examples.
The dataset must contain models created by different libraries to
represent the diversity of loading APIs. We created our dataset by
combining existing datasets, open models on Hugging Face, and
constructing synthetic models. Our dataset contains 252 benign
and 84 malicious models, for a total of 336.
Benign Models and Trusted Libraries: Our dataset must repre-
sent the typical model reuse tasks of loading and inference; there-
fore, we need a set of benign models and the libraries used to load
and interact with them. We first searched for libraries that meet
three criteria: (1) they load pickle models; (2) they have a model
class type that is returned by a loading API; and (3) if a foundational
library (e.g., PyTorch or transformers) type is used, the custom class
adds new attributes to the type. These criteria are motivated by
PickleBall’s purpose: to restrict the pickle operations permitted
by a library loading API based on analysis of the intended class
type.

We identified candidate libraries by identifying popular pickle
models on Hugging Face and working backwards. We first searched
Hugging Face programmatically for pickle models, ordered by
monthly download rate, that had model loading documentation
directing users to a model loading library API. We manually re-
viewed the top 400 models (approximately 2 hours of review time)
to determine whether the identified libraries meet our criteria; this
resulted in 16 accepted libraries. All libraries and their associated
version information are listed in Appendix D (Table 3).

Then, we identified candidate models associated with each li-
brary. We again queried Hugging Face to identify models associated
with the library, either directly (as a piece of repository metadata)
or by mention in the model documentation or name. We collect
models with ≥ 100 monthly downloads at time of collection. In
total, we accumulated 252 models produced by 16 different libraries.
All collected models are listed in Appendix D (Table 4).

We acknowledge that these models could themselves be mali-
cious. We partially mitigate this by sampling from the most fre-
quently downloaded models and libraries, checking model scanner
indications, and investigating unexpected callables when identi-
fied by the restricted model loaders by checking for their origin in
library source code.
Malicious Models: Our dataset must also represent the models
created by our intended adversary (cf. our threat model — §4); there-
fore, we need a set of malicious pickle models. We first collected
82 malicious models and pickle programs that were identified on
Hugging Face by two state-of-the-art model scanners [14, 112].
We add our 2 malicious models constructed to bypass scanners
(see Appendix B), for a total of 84. All malicious models contain

pickle programs with payloads that import and invoke Python spu-
rious functions; payload behaviors include accessing sensitive files,
making network connections, and creating reverse shells.

We acknowledge that thesemodels do not represent the complete
set of malicious model behaviors; it is a best-effort collection of
real-world pickle model malware that represents today’s attackers.
We aim to thwart the adversary that executes arbitrary Python
functions during pickle loading, and the existing attacks all exercise
this feature.
Test Harnesses: PickleBall protects loading applications from
untrusted models during and after loading; therefore, we need a
representative set of loading programs to secure. We create one test
harness for each library in our dataset; the harness loads a model
using the library API and performs an inference task.
Library Pre-processing: We pre-process the libraries before ana-
lyzing them to account for limitations in the static analysis frame-
work (§5.4) and improve the correctness of the AST. We make
manual source code modifications (<10 LoC) when the library class
uses newer Python features of Python that Joern’s front-end parser
does not support, like generic type inheritance and type variables,
or when the analysis misidentifies an imported library alias. For
libraries that provide type hints in docstrings, which Joern does not
parse, we copy (but do not modify) the hints as type annotations
(<100 LoC).Wemanually copy dependencies into the analysis scope
when discovered during policy generation. Because model loading
policies are compositional, we pre-compute policies for some fre-
quently reused dependencies, including classes from the Python
standard library and PyTorch, and save them in a class “cache” for
PickleBall to access when it recognizes one of the classes in its
analysis. Due to the complexity and prevalence of dynamically dis-
patched and C code implementations in PyTorch, we supplement
our analysis of PyTorch modules with the weights-only unpickler
in the class cache.

6.2 RQ1: Malicious Model Blocking

PickleBall must protect loading programs from pickle models
with malicious payloads. To evaluate this, we assess whether any of
our test harness PickleBall policies permit any malicious model
executions.

6.2.1 Methods. For each harness program in our dataset, PickleBall
generates a loading policy by analyzing the library and associated
model class. We use PickleBall to enforce the generated policy
while the harness attempts to load all malicious models in our
dataset. For each malicious model, we consider the model blocked
if PickleBall raises a security exception during model loading or
inference, preventing the payload from executing.

Some library APIs only load the pickle model after validating
that the accompanying model metadata is well-formatted (e.g., ar-
chitecture, name, version). For these libraries, we directly invoke
pickle.loads on the malicious model, while enforcing the as-
sociated PickleBall policy.

6.2.2 Results. For all generated policies, PickleBall prevents
all (100%) malicious models from executing their payloads. Since
PickleBall’s generated policies do not contain the dangerous

PickleBall: Secure Deserialization of Pickle-based Machine Learning Models CCS ’25, October 13–17, 2025, Taipei, Taiwan

callables leveraged by themaliciousmodels (e.g., eval(), system()),
PickleBall’s loader raises an exception for all malicious models.

RQ1 Summary: PickleBall generates policies that effectively
prevent all malicious pickled models in our dataset from execut-
ing their payloads.

6.3 RQ2: Benign Model Loading

PickleBall must enable users to load and perform tasks with be-
nign models. Its policies must not be so restrictive that the models
are unusable. We therefore evaluate PickleBall’s policies for load-
ing and correctly using the benign models in our dataset (§6.3.1 and
§6.3.2). To ensure robustness of the loaded model despite lazy en-
forcement, we perform a dataset test of successfully loaded models
with stub objects (§6.3.3 and §6.3.4).

6.3.1 Methods. We measure PickleBall’s ability to generate and
enforce policies that correctly load and execute benign models. For
each library in our dataset, we generate a model loading policy.
Then, we enforce the policy while using the library’s test harness
to load each library’s models. Once loaded, we test the model by
performing one inference task with a test input, and capture the
output. For comparison, we then re-execute the test harnesswithout
enforcing any policy (by using the regular pickle module), and
capture the inference result. We consider the model load a success
when (1) PickleBall loads the model without raising exceptions,
and (2) the inference results are equivalent between the PickleBall
and unrestricted environments.

6.3.2 Results. PickleBall generates policies that, when enforced,
correctly load and execute 79.8% of benign models in the dataset
(Table 1). In most cases, the policies contain all callables (Table 1 –
Imports and Invocations Allowed) that are seen in the model traces
(Imports and Invocations Observed). In some cases, PickleBall’s
policies do not include callables that are included in the models
(flair, PyAnnote, YOLOv5, and YOLOv11), resulting in the creation
of a stub object, and which is occasionally invoked, resulting in a
security violation.

We investigated the failed models to determine their causes:
• Attributes set after initialization: PickleBall fails to identify
attribute types that are set outside of the type declaration. For
example, after initializing the model object, some libraries allow
users to write training metadata to the model, including data for
the optimizer used and paths to output files. In many cases (e.g.,
12 flair models), PickleBall misses callable types set this way
but still successfully loads the model, since this metadata is not
used. However, for one flair model and three PyAnnote models,
a metadata object is invoked during loading.

• Follow-on pickle loading: PickleBall fails to load two mod-
els from the MeloTTS library after they have been loaded, due
to additional pickle loading during inference. PickleBall’s pol-
icy includes all callables needed to load the MeloTTS models.
However, during inference, an additional pickle model is loaded;
this model invokes a disallowed callable, resulting in a security
violation.

• Library version drift: one PyAnnote model fails to load for
legacy reasons: it uses a callable that was included in models

created with previous versions of PyAnnote. The callable’s class
declaration exists in the library code base as an unused stub, with
a comment that it is needed for backward compatibility reasons,
but is otherwise unused. Therefore, PickleBall’s analysis failed
to recognize it as necessary for model loading.

• Namespace inconsistency: the remaining YOLOv5 and YOLOv11
models use inconsistent naming conventions. For example, a
policy includes the callable yolov5.models.common.Conv; however,
the model refers to this callable as models.common.Conv, while
referring to other callables by the full yolov5.* namespace.

6.3.3 Lazy Enforcement Robustness –Methods. Due to PickleBall’s
lazy enforcement, models can load successfully despite being in-
stantiated with stub objects. To further ensure that our benign
models are robustly instantiated for inference, we evaluate these
models with a more rigorous test suite of inputs during inference.
We investigated the libraries that successfully load models with
stub objects, i.e., Flair, PyAnnote, YOLOv5, and YOLOv11.

For each library, we find an extensive evaluation dataset to test
each loaded model with: for Flair, we used various Named Entity
Recognition and Universal Dependencies [30] datasets that come
pre-packaged with the Flair library [36]; for PyAnnote, we used the
AISHELL-4 speech dataset [37]; for YOLOv5 and YOLOv11, we used
the 2017 Test Images Common Objects in Context dataset [59].

For each model that PickleBall successfully loads, we evaluate
the model on the dataset and ensure that the models do not raise
security errors (i.e., they do not access any stub objects).

6.3.4 Lazy Enforcement Robustness – Results. All models yield the
same results when loaded with PickleBall, compared to when
loaded with the regular, unrestricted Pickle Machine. None of the
models raise security errors during dataset evaluation, indicating
that models are correctly instantiated, despite using stub objects.

RQ2 Summary: PickleBall generates policies that safely load
and execute 79.8% of benign pickled models in our dataset.

6.4 RQ3: Performance

PickleBall must be fast enough for practical use in developer and
user tasks. We analyze two aspects of PickleBall’s performance:
(1) the time to generate a policy for a class, which is an offline,
one-time analysis cost (see §5.1), and (2) the additional runtime
overhead of enforcing a policy to load and use a model, compared
to the regular Pickle Machine.

6.4.1 Methods. To measure the time to generate policies, we ex-
ecute PickleBall’s policy generator three times for each library
in our dataset and compute the average between the three. We
measure the real time using the Python time library. We run this ex-
periment on a laptop with a 14-core Intel i7 CPU and 32GB of RAM
(Linux Mint 22), representing a commodity developer environment.

Tomeasure the additional runtime overhead of PickleBall’s pol-
icy enforcer, we isolate and record the time each harness program
spends invoking the pickleload function during model loading. We
first execute harness program with the unrestricted Pickle Machine
environment to load a benign model. Then, we perform the same
execution with PickleBall enabled. For fair comparison, we en-
sure that the unrestricted environment always uses the Python

CCS ’25, October 13–17, 2025, Taipei, Taiwan Anonymous Submission – #122

Table 1: PickleBall generates loading policies for popular libraries (see GitHub Stars), which are evaluated by loading popular

models (see cumulative model downloads in March 2025). We compare the number callables observed in the models to the

callables allowed by the policies, and the number of stub objects that are created or invoked when the policies exclude callables.

We compare PickleBall’s loading success rate with the weights-only unpickler.

Popularity Imports Invocations Loading

Library Stars Downloads Observed Allowed Stub Objects Observed Allowed Stub Calls # Models WOUp (%) PickleBall (%)
CONCH [21] 342 13.7K 3 822 0 2 61 0 1 1 (100.0%) 1 (100.0%)
FlagEmbedding [34] 9.3K 11.1M 4 773 0 2 61 0 14 14 (100.0%) 14 (100.0%)
flair [67] 14.1K 3.05M 34 1186 17 6 62 2 18 0 (0.0%) 17 (94.4%)
GLiNER [109] 1.9K 760K 3 870 0 2 61 0 17 17 (100.0%) 17 (100.0%)
huggingsound [48] 447 56.1M 3 767 0 2 61 0 17 17 (100.0%) 17 (100.0%)
LanguageBind [57] 800 495K 4 992 0 2 61 0 8 8 (100.0%) 8 (100.0%)
MeloTTS [64] 5.9k 406K 3 852 0 2 61 0 8 8 (100.0%) 6 (75.0%)
Parrot_Paraphraser [24] 890 911K 3 774 0 2 61 0 1 1 (100.0%) 1 (100.0%)
PyAnnote [75] 7.2k 32.6M 18 1085 9 5 64 0 14 0 (0.0%) 10 (71.4%)
pysentimiento [85] 588 1.31M 4 777 0 2 61 0 4 4 (100.0%) 4 (100.0%)
sentence_transformers [87] 16.4k 204M 5 1087 0 2 61 0 76 76 (100.0%) 76 (100.0%)
super-image [33] 170 64.9K 3 1016 0 2 61 0 6 6 (100.0%) 6 (100.0%)
TNER [100] 387 25.0K 4 769 0 2 61 0 4 4 (100.0%) 4 (100.0%)
tweetnlp [13] 341 80.7K 4 778 0 2 61 0 1 1 (100.0%) 1 (100.0%)
YOLOv5 [98] 53.4k 24.8K 28 920 7 4 61 0 12 0 (0.0%) 4 (33.3%)
YOLOv11 (ultralytics) [99] 39.2k 38.4M 63 1816 13 11 61 6 51 0 (0.0%) 15 (29.4%)

Total 252 157 (62.3%) 201 (79.8%)
Average 75.0% 87.7%

implementation of the Pickle Machine, instead of an optimized C
implementation. We run this experiment on a server with a 32-core
AMD EPYC 7502 processor and 256GB of RAM (Ubuntu 24.04); this
is used for the attached hard-drive space for interacting with the
hundreds of models in our dataset.

6.4.2 Results. PickleBall generates policies for all libraries in a
median of 14.0 seconds, withminimum 9.0 seconds (CONCH library)
and maximum 29.8 seconds (YOLOv11 library) (Figure 6). This pol-
icy generation execution time is reasonable for integration within
project build systems, as the policy needs only to be generated when
the analyzed library source code is modified. PickleBall’s policy
enforcer incurs negligible overhead, with a 0.42ms (1.75%) median
runtime overhead compared to the unrestricted Pickle Machine, as
depicted in Figure 7.

RQ3 Summary: PickleBall policies are generated in a median
14.0 seconds across the evaluation libraries, PickleBall incurs
a median runtime overhead of 0.42ms when loading models.

6.5 RQ4: Comparison to SOTA

We compare PickleBallwith three existing state-of-the-art (SOTA)
tools that share the same goal of defending against our threat
model described in §4. As discussed in §2.2, existing pickle model
defense tools fall into two categories: model scanners and re-
stricted loading environments (like PickleBall). We compare
against two model scanners: ModelScan [8], and the scanner
implemented by Casey et al. [14] (henceforth, ModelTracer).7
ModelScan is a static analysis tool that applies a rigid denylist
to make determinations about models, and is integrated into Hug-
ging Face.ModelTracer is a dynamic analysis tool that traces the
model’s invocations while it is loaded via pickle.loads() and

7The authors provided access to the tool for evaluation purposes.

CONCH

Flag
Embe

dd
ing Flai

r

GLiN
ER

hu
gg

ing
sou

nd

Lan
gu

ag
eB

ind

Melo
TTS

Parr
ot_

Para
ph

ras
er

PyA
nn

ote

py
sen

tim
ien

to

sen
ten

ce-
tra

nsf
orm

ers

sup
er_

im
ag

e
TNER

tw
eet

nlp

YOLOv1
1

YOLOv5
0

10

20

30
Av

g.
 R

un
tim

e
(s

ec
)

Figure 6: Time to generate a policy for each library class in

dataset (averaged over 3 runs). This is a one-time step that

can be integrated into existing workflows — either by library

maintainers in the library’s release process, or by a user, prior

to loading the model.

torch.load(), and similarly applies a rigid denylist to make its
determinations.

We compare against one restricted loading environment: the
weights-only unpickler [82]. The weights-only unpickler loads
models by only permitting them access to callables in a rigid (but
manually configurable) allowlist policy.

6.5.1 Methods. We evaluate the model scanning tools by providing
each model in our dataset as an input to the tool. We expect the
model scanners to alert when provided a malicious model input, and
otherwise not to alert. We consider correctly identified malicious
models as true positives, correctly identified benign models as true
negatives, incorrectly identified malicious models as false negatives,
and incorrectly identified benign models as false positives.

PickleBall: Secure Deserialization of Pickle-based Machine Learning Models CCS ’25, October 13–17, 2025, Taipei, Taiwan

CONCH

Flag
Embe

dd
ing Flai

r

GLiN
ER

hu
gg

ing
sou

nd

Lan
gu

ag
eB

ind

Mell
oT

TS

Parr
ot_

Para
ph

ras
er

PyA
nn

ote

py
sen

tim
en

tio

sen
ten

ce_
tra

nsf
orm

ers

sup
er-

im
ag

e
TNER

tw
eet

nlp

YOLOv1
1

YOLOv5
0

100

200

300

Ti
m

e
(m

se
c)

Without PickleBall
With PickleBall

Figure 7: Time spent executing pickle.load in test loading pro-

gram, with and without PickleBall (averaged over 3 runs

after 1 warmup run). PickleBall incurs a median runtime

overhead of 1.75% and average runtime overhead of 2.62%.

Table 2: Comparison of PickleBall to SOTA alternatives.

Model scanning tools achieve low false positives on our

dataset, but misclassify malicious models. Restricted loaders

(including PickleBall) are secure, at the cost of blocking

benign models. PickleBall loads more benign models than

the weights-only unpickler due to its custom policies for

each model class.

Tool # TP # TN # FP # FN FPR FNR

ModelScan [8] 75 236 16 9 6.3% 10.7%
ModelTracer [14] 44 252 0 40 0% 47.6%

Weights-Only Unpickler [82] 84 157 95 0 37.6% 0%
PickleBall (our work) 84 201 51 0 20.2% 0%

We evaluate the weights-only unpickler by attempting to load
each model in our dataset using the PyTorch loading API with the
weights-only unpickler enabled. We use the weights-only unpick-
ler’s default policy while loading models. We expect restricted load-
ing environments like the weights-only unpickler and PickleBall
to correctly load benign models and to raise exceptions when load-
ing malicious models. For parity when comparing with the model
scanning tools, we consider raising an exception during malicious
model loading as a true positive, correctly loading a benign model
as a true negative, incorrectly rejecting a benign model as a false
positive, and incorrectly loading a malicious model as a false nega-
tive. We apply the same criteria to compare PickleBall with these
tools, using the dataset and results obtained in Section 6.2 and
Section 6.3.

6.5.2 Results. Comparisons of the tools are shown in Table 2. The
model scanning tools resulted in few (16) false positives, while the
restricted loaders resulted in 0 false negatives. Table 1 compares the
success rate of PickleBall and the weights-only unpickler when
loading benign models.

ModelScan incorrectly identified 9 malicious models as benign
(false negatives) and did not report false positives. We identified

three categories of ModelScan’s false negatives: (1) five mod-
els implement payloads using callables that are not included in
ModelScan’s rigid denylist; (2) three models use dynamic runtime
operations (e.g., numpy.load()) to load additional payloads that
ModelScan fails to statically identify; and (3) one model uses mul-
tiple STOP pickle opcodes, resulting in ModelScan terminating its
analysis after reaching the first one and missing the rest of the mali-
cious payload. While this last model would not execute its malicious
payload when executed by the Pickle Machine, it could be loaded in
non-standard ways by another malicious pickle program to execute
its payload. Categories (1) and (2) are fundamental limitations to
using a static analysis denylist approach: the denylist cannot be
complete and can be subverted.

ModelTracer successfully identified 44 malicious models but
missed the remaining 40, resulting in a high false negative rate
of 47.6%, but did not report false any positives. ModelTracer’s
false negatives appear from its limited denylist: it alerts on models
that invoke the execve, connect, socket, or chmod system calls.
ModelTracer does not consider file access operations to be in-
dicators of malicious behavior, so malicious models that perform
dangerous file reads and writes are not identified. This once again
highlights the scanning limitation of relying on an incomplete
denylist to indicate malicious behavior.

The weights-only unpickler, like PickleBall, prevents all ma-
licious models from loading. However, it incorrectly blocks 95 be-
nign models from loading, compared to PickleBall’s 51. However,
PickleBall’s custom generated policies load additional models that
the weights-only unpickler can not.

RQ4 Summary:While PickleBall prevents all malicious mod-
els from loading, model scanning tools fail to identify all ma-
licious models. The weights-only unpickler is also effective at
preventing malicious models from loading, but is less effective
than PickleBall at loading benign models due to its rigid de-
fault policy.

7 Discussion and Future Work

PickleBall’s remaining attack surface: PickleBall reduces
the available attack surface by significantly restricting access to
callables, but it does not guarantee that the remaining callables
cannot be composed in a malicious payload (§5.3). Related software
security approaches provide desirable-yet-imperfect reductions in
attack surfaces, whether by removing access to system calls [29, 38]
or executable gadgets and control flows [7, 101, 110]. Similarly,
PickleBall could be compromised by code reuse or property-
oriented programming-like techniques [23, 70] to stitch together
permitted calls to construct an exploit. Thus far, no such attacks
have been observed, but the question remains: can we generate
malicious payloads that obey the policy constraints enforced by
PickleBall and the weights-only unpickler?

Huang et al. [43] studied manual implementations of restricted
unpicklers in the general (non-ML) setting, and devised attack
strategies to try to overcome callable allowlists. When faced with
well-implemented restricted unpicklers (i.e., when recursive at-
tribute look-ups and indexing are disallowed by design, as in

CCS ’25, October 13–17, 2025, Taipei, Taiwan Anonymous Submission – #122

PickleBall and the weights-only unpickler), their approach de-
grades to manual policy inspection. Future work should iden-
tify properties of callables to automatically distinguish whether a
callable can be used maliciously.
Long-term outlook for pickle in ML: Pickle remains a popu-
lar model format (§3), despite more secure alternatives. Each ma-
jor model format provides tradeoffs in flexibility (pickle), security
(SafeTensors), and efficiency (GGUF). Pickle is flexible, as it can se-
rialize virtually any Python object, including complex models with
custom operators and non-standard data structures. SafeTensors
was developed for security-sensitive deployments, with a struc-
tured, memory-mapped format. GGUF maximizes performance on
inference-optimized runtimes. Because these formats are comple-
mentary and used as defaults in different popular frameworks and
ecosystems, we expect them to coexist going forward. PickleBall
does not discourage the adoption of secure alternatives to pickle,
but provides a secure option for the (as our data show, large and
growing) pickle population.

One rapidly evolving area of MLmodels is large language models
(LLMs), where pickle still appears despite major industry leaders
releasing foundation models in the SafeTensors and GGUF formats.
Popular foundation models like LLaMA-4 [63], Qwen-3 [86], and
Deepseek-R1 [28] are encouragingly released with the SafeTensors
format (although some, like LLaMA-3.1 [62], still provide a pickle
model backup). However, foundation models are often adapted (e.g.,
fine-tuned) and redistributed, often with new formats and artifacts,
including pickle. For example, we observed instances of models
that are fine-tuned from LLama-4 [49, 61], Qwen-3 [88, 92], and
Deepseek-R1 [96] and distributed with an additional pickle file that
represents the training arguments used during fine-tuning. Even
when secure formats are adopted for foundation LLMmodels, pickle
continues to persist in the LLM ecosystem, which is consistent with
our analysis (§3.1) and justifies the need for PickleBall.
Generalizing PickleBall: PickleBall is designed to protect
pickle model loading and is evaluated on models found on Hugging
Face, but its approach can generalize to protect (1) other model
formats; and (2) other pickle applications.

PickleBall aims to protect pickle deserialization in the context
of ML models, but its policy generation and enforcement modules
do not rely on any ML-specific properties. This approach allows
PickleBall to protect other applications that receive pickle data. To
generalize, PickleBall’s analysis requires that the intended type of
the pickle object is known before loading (§5.1). In the ML setting, this
is reasonable because the protected program is a client application.
Other approaches are needed when the security analysis does not
know a priori the intended type of the serialized object [26, 111].

PickleBall’s approach works for the pickle format because
it has (dangerously) expressive deserialization operations, and is
used by trusted libraries that implement their own custom model
classes — which are analyzed to learn a specification for allowed
behaviors. Other model formats that meet these criteria are candi-
dates for protection in the PickleBall approach. Zhu et al. show
that the TensorFlow SavedModel format has undesirable opera-
tions [113]; libraries that extend the TensorFlow model class with
their own custom behaviors could use a PickleBall approach to
restrict the allowed behaviors, but we are not aware of any that
do. Formats like SafeTensors and GGUF are not known to have

dangerous operations; if any were discovered, then a PickleBall
approach might apply for identifying when to permit certain oper-
ations. We aim to explore which other model formats meet these
criteria for PickleBall to assist in securely loading.

We evaluated PickleBall using models sourced from Hugging
Face, but PickleBall will work similarly for models from any plat-
form. The inputs to PickleBall are ML libraries and pickle models,
which are ML artifacts that are not tied to the hosting platform.
Hugging Face is the largest model hosting platform, with over 1.8M
models available in July 2025. ModelScope [1] is a recent hub man-
aged by China’s Alibaba and hosts 80K models. It imitates Hugging
Face’s design and likewise has models with varying serialization for-
mats. Other model communities, including Qualcomm AI Hub [4],
PyTorch Hub [3], and TensorFlow Hub [5], have fewer than 500
models each and many are also hosted on Hugging Face. The ONNX
Model Zoo [2] is now deprecated and archived on Hugging Face.
Hugging Face models are representative of the kinds of models that
PickleBall can harden.
Policy maintenance and distribution: PickleBall’s intended

workflow is that when a library is updated, its PickleBall policy
would be updated as well. PickleBall makes policy maintenance
easy for users with fast policy generation, incremental changes,
and opportunities for seamless distribution.

PickleBall generates policies quickly, completing in under 30
seconds for each library in our evaluation (see §6.4, Figure 6). This is
reasonable for a task that must only occur when the library changes,
and not every time PickleBall loads a model.

In practice, library updates result in either incremental policy
changes or clearly documented breaks in supported model versions,
leading to easier policy maintenance. After our evaluation con-
cluded, we noticed one library, FlagEmbedding, receive updates
(commit bf6b649 to 875fd4f), but PickleBall produced policies
before and after with a 90% Jaccard similarity index, and which suc-
cessfully loaded the same models in our dataset. When the library
model class changes significantly, the library cannot load existing
models, but we find it easy in practice to match models with a
supported library version, due to the model documentation, as we
do in our evaluation (§6.3.2). For example, we easily distinguish all
models belonging to YOLOv5 and its newer version, ultralytics.

PickleBall provides opportunities for easier policy mainte-
nance when it is adopted further upstream in the model devel-
opment life cycle. PickleBall enables model consumers to pro-
tect themselves from malicious model producers by trusting only
code from library maintainers. Library maintainers can adopt
PickleBall themselves to generate policies automatically, as part
of the library release process, and provide the updated policies
alongside the libraries.
Removing library pre-processing: To account for implementa-
tion limitations (§5.4) when evaluating the fundamental PickleBall
idea, we performmanual pre-processing of some libraries (§6.1), but
future engineering work will remove this step. The purpose of the
pre-processing is to overcome implementation limitations of the
underlying static analysis framework that PickleBall depends on
to produce an accurate type-annotated AST. To account for these
limitations, we apply the following pre-processing steps:

• Remove generic type syntax from class inheritance statements.

PickleBall: Secure Deserialization of Pickle-based Machine Learning Models CCS ’25, October 13–17, 2025, Taipei, Taiwan

• Copy type hints in comments into type annotation form.
• Copy relevant dependencies into the analysis scope.
• Reference the weights-only unpickler policy when a class inherits
the torch.nn.Module class.

Manual source code modifications are applied to five out of 16
libraries in our dataset, and each account for between ∼10 and ∼100
modified LoC. Future engineering work to improve the underlying
static analysis framework will remove the need for manual source
code pre-processing.

8 Related Work

MLModel Loading Security: Pickle is not intended for untrusted
data, but its proliferation as a model format created a security prob-
lem. To bring attention to the issue, security company Trail of Bits
released the fickling tool for manipulating and analyzing pickle
programs in ML models [68]. New proposals for identifying mali-
cious pickle models include dynamic [14] and static [112] scanners.
Scanners take a model as input, and attempt to make an assess-
ment of it based on fixed rules about malicious behaviors. Instead,
PickleBall takes a model and the source code library that allegedly
produced the model for context, and produces policies for the model
based on that context. We showed in Section 6.5 that PickleBall’s
tailor-made policies result in no false negatives while comparative
model scanners do produce false negatives due to their fixed rules.
Deserialization Attacks and Defenses: Deserialization vulner-
abilities exist beyond the ML context. PainPickle [43] explored
Python pickle security by creating a taxonomy of errors in cus-
tom Unpickler implementations, and devised attack strategies. We
use their contributions to guide the proper implementation of
PickleBall’s loader.

Other programming languages have also have insecure deserial-
ization APIs that need to be secured. Quack [26] propose a generic
deserialization defenses for PHP by employing a “static duck typing”
static analysis, and Zhang et al. [110] propose a static analysis de-
fense for Java. Python’s pickle deserialization is a more expressive
interface than in PHP or Java, which are unable to directly invoke
functions; this expressivity adds complexity to security policies.
Querying Code-graphs for Software Security: Graph represen-
tations are well-established for general program analysis tasks.
For security specific tasks, Joern [107] introduced the Code Prop-
erty Graph (CPG), a data structure that combines classic program
analysis concepts into a representation that is easy queried to iden-
tify vulnerabilities. Follow on work ODGEN [58] extended Joern’s
CPGs into an Object Dependence Graph (ODG), capturing inter-
actions from the object’s point of view to detect vulnerabilities in
Node.js packages. RogueOne [90] further evolved ODGs to form
a data-flow relationship graph, fully capturing data-flows among
objects. QL [65] and Datalog [89] based approaches inspired the
CodeQL [15] query platform, which is used for vulnerability vari-
ant analysis tasks. PickleBall’s implementation uses these code
querying features and extends them to improve the accuracy of the
program types recovered. Improvements to these program repre-
sentations can lead to improved accuracy of PickleBall’s policies.

9 Conclusion

Serialization and deserialization enable code and data exchange, en-
abling software re-use. Many recent works observe security vulner-
abilities in deserialization, across various programming languages
and contexts. We specifically examined the security vulnerabilities
in pre-trained model deserialization that result from the use of
(dynamically typed) Python and the reliance on Python’s (insecure)
pickle format. We found that pickle use is common among the
most popular models on Hugging Face, and that existing defenses
are insecure or inapplicable to a substantial fraction of these mod-
els. Our PickleBall approach applies a novel program analysis to
add greater type-safety to model deserialization. In our evaluation,
PickleBall supported most existing benign models transparently
while preventing all known attacks in malicious models. We be-
lieve PickleBall is a promising complement to existing security
resources in the pre-trained model ecosystem.

Data Accessibility

Upon acceptance, we will open-source PickleBall, our evaluation
scripts, and our pickle +ML security dataset.

Research Ethics

Our primary contribution is PickleBall, a defense that improves
security for ML models. Our Hugging Face study abides by the plat-
form policies for API use. We did identify some possible shortcom-
ings of existing security approaches, and have followed a respon-
sible disclosure process—we privately disclosed the ModelScan
bypass described in Appendix B to its author, the company Protect
AI, and similarly to the ModelTracer team.

References

[1] 2025. ModelScope. https://www.modelscope.cn/home.
[2] 2025. ONNX Model Zoo. https://onnx.ai/models/.
[3] 2025. PyTorch Hub for Researchers. https://pytorch.org/hub/.
[4] 2025. Qualcomm AI Hub. https://aihub.qualcomm.com/models.
[5] 2025. TensorFlow Models and Datasets. https://www.tensorflow.org/resources/

models-datasets.
[6] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. https://www.tensorflow.org/ Software available from
tensorflow.org.

[7] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis, and Geor-
gios Portokalidis. 2019. Nibbler: debloating binary shared libraries. In Proceedings
of the 35th Annual Computer Security Applications Conference (San Juan, Puerto
Rico, USA) (ACSAC ’19). Association for Computing Machinery, New York, NY,
USA, 70–83. doi:10.1145/3359789.3359823

[8] Protect AI. 2024. modelscan. https://github.com/protectai/modelscan. commit:
81338386b669526c14b839e7ccc36c160cd53b88.

[9] Protect AI. 2024. modelscan allowed globals. https://github.com/protectai/mod
elscan/blob/fea91edd59773d738a0572f7a4466a9b127748b3/modelscan/settings.
py#L117.

[10] Adem Ait, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2023. Hfcommunity:
A tool to analyze the hugging face hub community. In 2023 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
728–732.

[11] John Aycock. 2000. International Python Conference (2000).
[12] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris

Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye

https://www.modelscope.cn/home
https://onnx.ai/models/
https://pytorch.org/hub/
https://aihub.qualcomm.com/models
https://www.tensorflow.org/resources/models-datasets
https://www.tensorflow.org/resources/models-datasets
https://www.tensorflow.org/
https://doi.org/10.1145/3359789.3359823
https://github.com/protectai/modelscan
https://github.com/protectai/modelscan/blob/fea91edd59773d738a0572f7a4466a9b127748b3/modelscan/settings.py#L117
https://github.com/protectai/modelscan/blob/fea91edd59773d738a0572f7a4466a9b127748b3/modelscan/settings.py#L117
https://github.com/protectai/modelscan/blob/fea91edd59773d738a0572f7a4466a9b127748b3/modelscan/settings.py#L117

CCS ’25, October 13–17, 2025, Taipei, Taiwan Anonymous Submission – #122

Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/jax-ml/jax.

[13] Jose Camacho-Collados, Kiamehr Rezaee, Talayeh Riahi, Asahi Ushio, Daniel
Loureiro, Dimosthenis Antypas, Joanne Boisson, Luis Espinosa-Anke, Fangyu
Liu, Eugenio Martínez-Cámara, et al. 2025. Python library tweetnlp provides
a collection of useful tools to analyze/understand tweets such as sentiment
analysis, etc. https://github.com/cardiffnlp/tweetnlp.

[14] Beatrice Casey, Joanna C. S. Santos, and Mehdi Mirakhorli. 2024. A Large-Scale
Exploit Instrumentation Study of AI/ML Supply Chain Attacks in Hugging Face
Models. arXiv:2410.04490 [cs.CR] https://arxiv.org/abs/2410.04490

[15] Walker Chabbott and James Fletcher. 2023. Multi-repository variant analysis:
a powerful new way to perform security research across GitHub. https:
//github.blog/security/vulnerability-research/multi-repository-variant-
analysis-a-powerful-new-way-to-perform-security-research-across-github/

[16] Kenneth Ward Church, Zeyu Chen, and Yanjun Ma. 2021. Emerging trends: A
gentle introduction to fine-tuning. Natural Language Engineering 27, 6 (2021),
763–778.

[17] Eleanor Clifford, Ilia Shumailov, Yiren Zhao, Ross Anderson, and Robert Mullins.
2024. ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled
neural networks. https://doi.ieeecomputersociety.org/10.1109/SaTML59370.202
4.00024. In 2024 IEEE Conference on Secure and Trustworthy Machine Learning
(SaTML). 344–357. doi:10.1109/SaTML59370.2024.00024

[18] David Cohen. 2024. Data Scientists Targeted by Malicious Hugging Face ML
Models with Silent Backdoor. https://jfrog.com/blog/data-scientists-targeted-
by-malicious-hugging-face-ml-models-with-silent-backdoor/

[19] ColdwaterQ. 2022. BACKDOORING Pickles: A decade only made things worse.
https://forum.defcon.org/node/241825.

[20] coldwaterq. 2024. GitHub Issue: Fickling DoS. https://github.com/trailofbits/fic
kling/issues/111.

[21] Conch. 2025. A Vision-Language Foundation Model for Computational Pathol-
ogy. https://github.com/mahmoodlab/CONCH/.

[22] Fredrik Dahlgren, Suha Hussain, Heidy Khlaaf, and Evan Sultanik. 2023.
EleutherAI, Hugging Face Safetensors Library. Technical Report. Trail of Bits.

[23] Johannes Dahse, Nikolai Krein, and Thorsten Holz. 2014. Code reuse attacks in
php: Automated pop chain generation. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. 42–53.

[24] Prithiviraj Damodaran. 2025. Parrot: Paraphrase generation for NLU. https:
//github.com/PrithivirajDamodaran/Parrot_Paraphraser/.

[25] Dark Reading Staff. 2024. Sleepy Pickle: Exploit Subtly Poisons ML Models.
https://www.darkreading.com/threat- intelligence/sleepy-pickle-exploit-
subtly-poisons-ml-models

[26] Yaniv David, Neophytos Christou, Andreas D. Kellas, Vasileios P. Kemerlis, and
Junfeng Yang. 2024. QUACK: Hindering Deserialization Attacks via Static Duck
Typing. https://www.ndss-symposium.org/wp-content/uploads/2024-1015-pa
per.pdf. In Proceedings 2024 Network and Distributed System Security Symposium.
Internet Society, San Diego, CA, USA. doi:10.14722/ndss.2024.241015

[27] James C Davis, Purvish Jajal, Wenxin Jiang, Taylor R Schorlemmer, Nicholas
Synovic, and George K Thiruvathukal. 2023. Reusing deep learning models:
Challenges and directions in software engineering. In 2023 IEEE John Vincent
Atanasoff International Symposium on Modern Computing (JVA). IEEE, 17–30.

[28] deepseek ai. 2025. DeepSeek-R1-Distill-Qwen-32B. https:/ /huggingf
ace.co/deepseek- a i /DeepSeek- R1- Dist i l l - Qwen- 32B. commit:
711ad2ea6aa40cfca18895e8aca02ab92df1a746.

[29] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fonseca, and
Vasileios P. Kemerlis. 2020. sysfilter: Automated System Call Filtering for
Commodity Software. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020). USENIX Association, San Sebastian, 459–
474. https://www.usenix.org/conference/raid2020/presentation/demarinis

[30] Universal Dependencies. 2025. Universal Dependencies. https://universaldepen
dencies.org/.

[31] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).

[32] Nelson Elhage. 2023. What’s with ML software and pickles? https://blog.nelha
ge.com/post/pickles-and-ml/.

[33] eugenesiow et al. 2025. Image super resolution models for PyTorch. https:
//github.com/eugenesiow/super-image/.

[34] FlagEmbedding. 2025. BGE: One-Stop Retrieval Toolkit For Search and RAG.
https://github.com/FlagOpen/FlagEmbedding.

[35] Flair. 2024. ner-english-fast. https://huggingface.co/f lair/ner-english-fast.
commit: f75577be7dbb6f47ea7681664560349e870aef18.

[36] Flair. 2025. How to load a prepared dataset. https://flairnlp.github.io/docs/tutor
ial-training/how-to-load-prepared-dataset.

[37] Yihui Fu, Luyao Cheng, Shubo Lv, Yukai Jv, Yuxiang Kong, Zhuo Chen,
Yanxin Hu, Lei Xie, Jian Wu, Hui Bu, Xin Xu, Jun Du, and Jingdong Chen.
2021. AISHELL-4: An Open Source Dataset for Speech Enhancement, Sepa-
ration, Recognition and Speaker Diarization in Conference Scenario. CoRR
abs/2104.03603 (2021). arXiv:2104.03603 https://arxiv.org/abs/2104.03603

[38] Alexander J. Gaidis, Vaggelis Atlidakis, and Vasileios P. Kemerlis. 2023. SysX-
CHG: Refining Privilege with Adaptive System Call Filters. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications Security
(Copenhagen, Denmark) (CCS ’23). Association for Computing Machinery, New
York, NY, USA, 1964–1978. doi:10.1145/3576915.3623137

[39] GGML. 2025. GGUF. https://github.com/ggml-org/ggml/blob/master/docs/gguf
.md.

[40] Michael Gorbovitski, Yanhong A. Liu, Scott D. Stoller, Tom Rothamel, and
Tuncay K. Tekle. 2010. Alias analysis for optimization of dynamic languages. In
Proceedings of the 6th Symposium on Dynamic Languages (Reno/Tahoe, Nevada,
USA) (DLS ’10). Association for Computing Machinery, New York, NY, USA,
27–42. doi:10.1145/1869631.1869635

[41] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. Badnets:
Evaluating backdooring attacks on deep neural networks. IEEE Access 7 (2019),
47230–47244.

[42] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong
Qiu, Yuan Yao, Ao Zhang, Liang Zhang, et al. 2021. Pre-trained models: Past,
present and future. AI Open 2 (2021), 225–250.

[43] Nan-Jung Huang, Chih-Jen Huang, and Shih-Kun Huang. 2022. Pain Pickle:
Bypassing Python Restricted Unpickler for Automatic Exploit Generation. In
2022 IEEE 22nd International Conference on Software Quality, Reliability and
Security (QRS). 1079–1090. doi:10.1109/QRS57517.2022.00111

[44] Hugging Face. 2024. Pickle Scanning. https://huggingface.co/docs/hub/en/sec
urity-pickle.

[45] Hugging Face. 2024. Safetensors. https://huggingface.co/docs/safetensors.
[46] Hugging Face. 2025. GGUF. https://huggingface.co/docs/hub/en/gguf.
[47] Hugging Face. 2025. Hugging Face Hub documentation. https://huggingface.co

/docs/hub/en/index.
[48] HuggingSound. 2025. HuggingSound: A toolkit for speech-related tasks based

on Hugging Face’s tools. https://github.com/jonatasgrosman/huggingsound.
[49] Ilya-bs1. 2025. llama4-scout-interpreter-model. h t tps : / /hugg ingf ac

e . c o / I l y a - b s 1 / l l am a4 - s c o u t - i n t e r p r e t e r - mo d e l. commit:
d61cd8c577fcce5910f990718346034d710932c1.

[50] Purvish Jajal, Wenxin Jiang, Arav Tewari, Erik Kocinare, Joseph Woo, Anusha
Sarraf, Yung-Hsiang Lu, George K Thiruvathukal, and James C Davis. 2024.
Interoperability in Deep Learning: A User Survey and Failure Analysis of ONNX
Model Converters. In Proceedings of the 33rd ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. 1466–1478.

[51] Wenxin Jiang, Berk Çakar, Mikola Lysenko, and James C Davis. 2025. Detecting
Active and Stealthy Typosquatting Threats in Package Registries. arXiv preprint
arXiv:2502.20528 (2025).

[52] Wenxin Jiang, Chingwo Cheung, Mingyu Kim, Heesoo Kim, George K Thiru-
vathukal, and James C Davis. 2024. Naming Practices of Pre-Trained Models in
Hugging Face. arXiv preprint arXiv:2310.01642 (2024).

[53] Wenxin Jiang, Nicholas Synovic, Matt Hyatt, Taylor R Schorlemmer, Rohan
Sethi, Yung-Hsiang Lu, George K Thiruvathukal, and James C Davis. 2023. An
empirical study of pre-trained model reuse in the hugging face deep learning
model registry. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). IEEE, 2463–2475.

[54] Wenxin Jiang, Nicholas Synovic, Purvish Jajal, Taylor R Schorlemmer, Arav
Tewari, Bhavesh Pareek, George K Thiruvathukal, and James C Davis. 2023.
PTMTorrent: a dataset for mining open-source pre-trained model packages. In
2023 IEEE/ACM 20th International Conference on Mining Software Repositories
(MSR). IEEE, 57–61.

[55] Wenxin Jiang, Nicholas Synovic, Rohan Sethi, Aryan Indarapu, Matt Hyatt,
Taylor R Schorlemmer, George K Thiruvathukal, and James C Davis. 2022. An
empirical study of artifacts and security risks in the pre-trained model supply
chain. In Proceedings of the 2022 ACM Workshop on Software Supply Chain
Offensive Research and Ecosystem Defenses. 105–114.

[56] Kaitai Project. 2025. Python pickle serialization format: format specification.
http://formats.kaitai.io/python_pickle/.

[57] LanguageBind. 2025. Extending Video-Language Pretraining to N-modality by
Language-based Semantic Alignment. https://github.com/PKU-YuanGroup/La
nguageBind/.

[58] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2022. Mining Node.js
Vulnerabilities via Object Dependence Graph and Query. https://www.usenix.o
rg/conference/usenixsecurity22/presentation/li-song. In 31st USENIX Security
Symposium (SEC ’22). USENIX Association, Boston, MA, 143–160.

[59] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Gir-
shick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. 2014. Microsoft COCO: Common Objects in Context. CoRR
abs/1405.0312 (2014). arXiv:1405.0312 http://arxiv.org/abs/1405.0312

[60] Guannan Liu, Xing Gao, Haining Wang, and Kun Sun. 2022. Exploring the
Unchartered Space of Container Registry Typosquatting. https://www.usenix
.org/conference/usenixsecurity22/presentation/liu-guannan. In 31st USENIX
Security Symposium (USENIX Security 22). USENIX Association, Boston, MA,
35–51.

http://github.com/jax-ml/jax
https://github.com/cardiffnlp/tweetnlp
https://arxiv.org/abs/2410.04490
https://arxiv.org/abs/2410.04490
https://github.blog/security/vulnerability-research/multi-repository-variant-analysis-a-powerful-new-way-to-perform-security-research-across-github/
https://github.blog/security/vulnerability-research/multi-repository-variant-analysis-a-powerful-new-way-to-perform-security-research-across-github/
https://github.blog/security/vulnerability-research/multi-repository-variant-analysis-a-powerful-new-way-to-perform-security-research-across-github/
https://doi.ieeecomputersociety.org/10.1109/SaTML59370.2024.00024
https://doi.ieeecomputersociety.org/10.1109/SaTML59370.2024.00024
https://doi.org/10.1109/SaTML59370.2024.00024
https://jfrog.com/blog/data-scientists-targeted-by-malicious-hugging-face-ml-models-with-silent-backdoor/
https://jfrog.com/blog/data-scientists-targeted-by-malicious-hugging-face-ml-models-with-silent-backdoor/
https://forum.defcon.org/node/241825
https://github.com/trailofbits/fickling/issues/111
https://github.com/trailofbits/fickling/issues/111
https://github.com/mahmoodlab/CONCH/
https://github.com/PrithivirajDamodaran/Parrot_Paraphraser/
https://github.com/PrithivirajDamodaran/Parrot_Paraphraser/
https://www.darkreading.com/threat-intelligence/sleepy-pickle-exploit-subtly-poisons-ml-models
https://www.darkreading.com/threat-intelligence/sleepy-pickle-exploit-subtly-poisons-ml-models
https://www.ndss-symposium.org/wp-content/uploads/2024-1015-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2024-1015-paper.pdf
https://doi.org/10.14722/ndss.2024.241015
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://www.usenix.org/conference/raid2020/presentation/demarinis
https://universaldependencies.org/
https://universaldependencies.org/
https://blog.nelhage.com/post/pickles-and-ml/
https://blog.nelhage.com/post/pickles-and-ml/
https://github.com/eugenesiow/super-image/
https://github.com/eugenesiow/super-image/
https://github.com/FlagOpen/FlagEmbedding
https://huggingface.co/flair/ner-english-fast
https://flairnlp.github.io/docs/tutorial-training/how-to-load-prepared-dataset
https://flairnlp.github.io/docs/tutorial-training/how-to-load-prepared-dataset
https://arxiv.org/abs/2104.03603
https://arxiv.org/abs/2104.03603
https://doi.org/10.1145/3576915.3623137
https://github.com/ggml-org/ggml/blob/master/docs/gguf.md
https://github.com/ggml-org/ggml/blob/master/docs/gguf.md
https://doi.org/10.1145/1869631.1869635
https://doi.org/10.1109/QRS57517.2022.00111
https://huggingface.co/docs/hub/en/security-pickle
https://huggingface.co/docs/hub/en/security-pickle
https://huggingface.co/docs/safetensors
https://huggingface.co/docs/hub/en/gguf
https://huggingface.co/docs/hub/en/index
https://huggingface.co/docs/hub/en/index
https://github.com/jonatasgrosman/huggingsound
https://huggingface.co/Ilya-bs1/llama4-scout-interpreter-model
https://huggingface.co/Ilya-bs1/llama4-scout-interpreter-model
http://formats.kaitai.io/python_pickle/
https://github.com/PKU-YuanGroup/LanguageBind/
https://github.com/PKU-YuanGroup/LanguageBind/
https://www.usenix.org/conference/usenixsecurity22/presentation/li-song
https://www.usenix.org/conference/usenixsecurity22/presentation/li-song
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://www.usenix.org/conference/usenixsecurity22/presentation/liu-guannan
https://www.usenix.org/conference/usenixsecurity22/presentation/liu-guannan

PickleBall: Secure Deserialization of Pickle-based Machine Learning Models CCS ’25, October 13–17, 2025, Taipei, Taiwan

[61] madilcy. 2025. arabic-medical-llama4. https://huggingface.co/madilcy/arabic-
medical-llama4. commit: 826ac2b97a5724aba87ceeb9001aebeb1300b7d5.

[62] meta llama. 2024. Llama-3.1-8B-Instruct - original/. https://huggingf ac
e.co/meta- llama/Llama-3.1-8B- Instruct/tree/main/original. commit:
0e9e39f249a16976918f6564b8830bc894c89659.

[63] meta llama. 2025. Llama-4-Scout-17B-16E-Instruct. https://huggingf
ace.co/meta- l lama/Llama- 4- Scout- 17B- 16E- Instruct. commit:
92f3b1597a195b523d8d9e5700e57e4fbb8f20d3.

[64] MIT and Myshell.ai. 2025. MeloTTS is a high-quality multi-lingual text-to-
speech library. https://github.com/myshell-ai/MeloTTS/.

[65] Oege de Moor, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov, Torbjorn
Ekman, Neil Ongkingco, Damien Sereni, and Julian Tibble. 2007. Keynote
Address: .QL for Source Code Analysis. In Seventh IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM 2007). 3–16. doi:10
.1109/SCAM.2007.31

[66] Shradha Neupane, Grant Holmes, Elizabeth Wyss, Drew Davidson, and
Lorenzo De Carli. 2023. Beyond Typosquatting: An In-depth Look at Pack-
age Confusion. https://www.usenix.org/conference/usenixsecurity23/prese
ntation/neupane. In 32nd USENIX Security Symposium (USENIX Security 23).
USENIX Association, Anaheim, CA, 3439–3456.

[67] Humboldt University of Berlin and friends. 2025. A very simple framework for
state-of-the-art NLP. https://github.com/flairNLP/flair.

[68] Trail of Bits. 2024. fickling. https://github.com/trailofbits/fickling.
[69] Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael Meier. 2020. Backstab-

ber’s knife collection: A review of open source software supply chain attacks.
In Detection of Intrusions and Malware, and Vulnerability Assessment: 17th Inter-
national Conference, DIMVA 2020, Lisbon, Portugal, June 24–26, 2020, Proceedings
17. Springer, 23–43.

[70] Sunnyeo Park, Daejun Kim, Suman Jana, and Sooel Son. 2022. {FUGIO}: Au-
tomatic Exploit Generation for {PHP} Object Injection Vulnerabilities. In 31st
USENIX Security Symposium (USENIX Security 22). 197–214.

[71] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

[72] Patry, Nicolas and Biderman, Stella. 2023. Audit shows that safetensors is safe
and ready to become the default. https://huggingface.co/blog/safetensors-
security-audit.

[73] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2021. Carbon emissions
and large neural network training. arXiv preprint arXiv:2104.10350 (2021).

[74] Protect AI. 2024. Protect AI and Hugging Face: Securing the ML Supply Chain.
https://protectai.com/blog/protect-ai-hugging-face-ml-supply-chain.

[75] pyannoteAI. 2025. pyannote.audio speaker diarization toolkit. https://github.c
om/pyannote/pyannote-audio.

[76] Python. 2025. CPython – pickle.py. https://github.com/python/cpython/blob/a
365dd64c2a1f0d142540d5031003f24986f489f/Lib/pickle.py.

[77] Python. 2025. pickle — Python object serialization. https://docs.python.org/3/li
brary/pickle.html.

[78] Python. 2025. Python Glossary – Callable. https://docs.python.org/3/glossary.h
tml#term-callable.

[79] Python pathlib library. 2025. pathlib — Object-oriented filesystem paths. https:
//docs.python.org/3/library/pathlib.html.

[80] PyTorch. 2024. PyTorch serialization.py. https://github.com/pytorch/pytorch/b
lob/726424f4deac82b7cd74cc86a55c610085698535/torch/serialization.py#L6.

[81] PyTorch. 2024. TorchScript. https://pytorch.org/docs/stable/jit.html.
[82] PyTorch. 2024. Weights-only Unpickler. https://github.com/pytorch/pytorch/b

lob/main/torch/_weights_only_unpickler.py.
[83] PyTorch. 2025. PyTorch Commit 66dc8fb. https://github.com/pytorch/pytorch

/commit/66dc8fb7ff822033c4b161fc216e21d6886568c7.
[84] PyTorch. 2025. Serialization semantics. https://github.com/pytorch/pytorch/blo

b/eb2df46b6af691cc13abfc8435c33963b30c7cb1/docs/source/notes/serializati
on.rst#torchload-with-weights_onlytrue.

[85] Juan Manuel Pérez, Mariela Rajngewerc, Juan Carlos Giudici, Damián A. Fur-
man, Franco Luque, Laura Alonso Alemany, and María Vanina Martínez. 2025.
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks.
https://github.com/pysentimiento/pysentimiento.

[86] Qwen. 2025. Qwen3-0.6B. https://huggingface.co/Qwen/Qwen3-0.6B. commit:
e6de91484c29aa9480d55605af694f39b081c455.

[87] Nils Reimers and Iryna Gurevych. 2025. Sentence Transformers: Embeddings,
Retrieval, and Reranking. https://github.com/UKPLab/sentence-transformers/.

[88] sarahbadr. 2025. MNLP_M2_dpo_model. https://huggingface.co/sarahbadr/M
NLP_M2_dpo_model. commit: 1d67b4e322ebe2613c45a950a71ef204f93d1562.

[89] Max Schäfer and Oege de Moor. 2010. Type inference for datalog with complex
type hierarchies. SIGPLAN Not. 45, 1 (Jan. 2010), 145–156. doi:10.1145/1707801.
1706317

[90] Raphael J. Sofaer, Yaniv David, Mingqing Kang, Jianjia Yu, Yinzhi Cao, Junfeng
Yang, and Jason Nieh. 2024. RogueOne: Detecting Rogue Updates via Differential
Data-flow Analysis Using Trust Domains. https://dl.acm.org/doi/10.1145/359

7503.3639199. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. ACM, Lisbon Portugal, 1–13. doi:10.1145/3597503.3639199

[91] Xin Tan, Kai Gao, Minghui Zhou, and Li Zhang. 2022. An exploratory study of
deep learning supply chain. In Proceedings of the 44th International Conference
on Software Engineering. 86–98.

[92] TarhanE. 2025. sft-base_loss-Qwen3-0.6B. https://huggingf ace.co/T
arhanE/sft - base_loss- Qwen3- 0 .6B-mle0- ul0- tox0- e4. commit:
b2f51e83b726679bd64c9d34f3775e3d95b58a66.

[93] The HDF Group. 2025. HDF5. https://www.hdfgroup.org/solutions/hdf5/.
[94] Trail of Bits. 2023. EleutherAl, Hugging Face Safetensors Library Security

Assessment. https://github.com/trailofbits/publications/blob/master/reviews/
2023-03-eleutherai-huggingface-safetensors-securityreview.pdf.

[95] Adelin Travers. 2021. ONNX runtime hacks. https://github.com/alkaet/Loboto
Ml/tree/main/ONNX_runtime_hacks

[96] tttx. 2025. models-p10-ttt-18feb-fixed-sft-clip-step1. https://huggingf
ace.co/tttx/models- p10- ttt- 18feb- fixed- sf t- cl ip- step1. commit:
0c3f92ef17faac10ad927bde668144f37cac0040.

[97] Dor Tumarkin. 2024. “Free Hugs” – What to be Wary of in Hugging Face – Part
4. https://checkmarx.com/blog/free-hugs-what-to-be-wary-of-in-hugging-
face-part-4/

[98] Ultralytics. 2025. Real-time object detection and image segmentation model.
https://github.com/ultralytics/yolov5.

[99] Ultralytics. 2025. (SOTA) Real-time object detection and image segmentation
model. https://github.com/ultralytics/ultralytics.

[100] Asahi Ushio and Jose Camacho-Collados. 2025. T-NER: An All-Round Python
Library for Transformer-based Named Entity Recognition. https://github.com
/asahi417/tner/.

[101] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical Context-
Sensitive CFI. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (Denver, Colorado, USA) (CCS ’15). Association
for Computing Machinery, New York, NY, USA, 927–940. doi:10.1145/2810103.
2813673

[102] Haifeng Wang, Jiwei Li, Hua Wu, Eduard Hovy, and Yu Sun. 2022. Pre-trained
language models and their applications. Engineering (2022).

[103] Zhi Wang, Chaoge Liu, Xiang Cui, Jie Yin, and Xutong Wang. 2022. Evilmodel
2.0: bringing neural network models into malware attacks. Computers & Security
120 (2022), 102807.

[104] Eoin Wickens and Tom Bonner. 2024. Machine Learning Threat Roundup:
February 2023: reverse shells and a steganography payload discovered in-the-
wild. https://hiddenlayer.com/research/machine-learning-threat-roundup/

[105] Eoin Wickens and Kasimir Schulz. 2024. Hijacking SafeTensors Conversion on
Hugging Face. https://hiddenlayer.com/research/silent-sabotage/

[106] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. 2016. Python
probabilistic type inference with natural language support. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (Seattle, WA, USA) (FSE). Association for Computing Machinery,
New York, NY, USA, 607–618. doi:10.1145/2950290.2950343

[107] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Model-
ing and Discovering Vulnerabilities with Code Property Graphs. In 2014 IEEE
Symposium on Security and Privacy. 590–604. doi:10.1109/SP.2014.44

[108] Karlo Zanki. 2025. Malicious ML models discovered on Hugging Face platform.
https://www.reversinglabs.com/blog/rl-identifies-malware-ml-model-hosted-
on-hugging-face

[109] Urchade Zaratiana, Nadi Tomeh, Pierre Holat, and Thierry Charnois. 2025.
Generalist and Lightweight Model for Named Entity Recognition. https:
//github.com/urchade/GLiNER/.

[110] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, László Szekeres, Stephen
McCamant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity
and Randomization for Binary Executables. In 2013 IEEE Symposium on Security
and Privacy. 559–573. doi:10.1109/SP.2013.44

[111] Quan Zhang, Yiwen Xu, Zijing Yin, Chijin Zhou, and Yu Jiang. 2024. Automatic
Policy Synthesis and Enforcement for Protecting Untrusted Deserialization.
https://www.ndss-symposium.org/wp-content/uploads/2024-53-paper.pdf. In
Proceedings 2024 Network and Distributed System Security Symposium. Internet
Society, San Diego, CA, USA. doi:10.14722/ndss.2024.24053

[112] Jian Zhao, Shenao Wang, Yanjie Zhao, Xinyi Hou, Kailong Wang, Peiming
Gao, Yuanchao Zhang, Chen Wei, and Haoyu Wang. 2024. Models Are Codes:
Towards Measuring Malicious Code Poisoning Attacks on Pre-trained Model
Hubs. In Proceedings of the 39th IEEE/ACM International Conference on Automated
Software Engineering (ASE).

[113] Ruofan Zhu, Ganhao Chen, Wenbo Shen, Xiaofei Xie, and Rui Chang. 2025. My
Model is Malware to You: Transforming AI Models into Malware by Abusing
TensorFlow APIs . https://doi.ieeecomputersociety.org/10.1109/SP61157.2025
.00012. In 2025 IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, Los Alamitos, CA, USA, 12–12. doi:10.1109/SP61157.2025.00012

https://huggingface.co/madilcy/arabic-medical-llama4
https://huggingface.co/madilcy/arabic-medical-llama4
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct/tree/main/original
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct/tree/main/original
https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
https://github.com/myshell-ai/MeloTTS/
https://doi.org/10.1109/SCAM.2007.31
https://doi.org/10.1109/SCAM.2007.31
https://www.usenix.org/conference/usenixsecurity23/presentation/neupane
https://www.usenix.org/conference/usenixsecurity23/presentation/neupane
https://github.com/flairNLP/flair
https://github.com/trailofbits/fickling
https://huggingface.co/blog/safetensors-security-audit
https://huggingface.co/blog/safetensors-security-audit
https://protectai.com/blog/protect-ai-hugging-face-ml-supply-chain
https://github.com/pyannote/pyannote-audio
https://github.com/pyannote/pyannote-audio
https://github.com/python/cpython/blob/a365dd64c2a1f0d142540d5031003f24986f489f/Lib/pickle.py
https://github.com/python/cpython/blob/a365dd64c2a1f0d142540d5031003f24986f489f/Lib/pickle.py
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/glossary.html#term-callable
https://docs.python.org/3/glossary.html#term-callable
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://github.com/pytorch/pytorch/blob/726424f4deac82b7cd74cc86a55c610085698535/torch/serialization.py#L6
https://github.com/pytorch/pytorch/blob/726424f4deac82b7cd74cc86a55c610085698535/torch/serialization.py#L6
https://pytorch.org/docs/stable/jit.html
https://github.com/pytorch/pytorch/blob/main/torch/_weights_only_unpickler.py
https://github.com/pytorch/pytorch/blob/main/torch/_weights_only_unpickler.py
https://github.com/pytorch/pytorch/commit/66dc8fb7ff822033c4b161fc216e21d6886568c7
https://github.com/pytorch/pytorch/commit/66dc8fb7ff822033c4b161fc216e21d6886568c7
https://github.com/pytorch/pytorch/blob/eb2df46b6af691cc13abfc8435c33963b30c7cb1/docs/source/notes/serialization.rst#torchload-with-weights_onlytrue
https://github.com/pytorch/pytorch/blob/eb2df46b6af691cc13abfc8435c33963b30c7cb1/docs/source/notes/serialization.rst#torchload-with-weights_onlytrue
https://github.com/pytorch/pytorch/blob/eb2df46b6af691cc13abfc8435c33963b30c7cb1/docs/source/notes/serialization.rst#torchload-with-weights_onlytrue
https://github.com/pysentimiento/pysentimiento
https://huggingface.co/Qwen/Qwen3-0.6B
https://github.com/UKPLab/sentence-transformers/
https://huggingface.co/sarahbadr/MNLP_M2_dpo_model
https://huggingface.co/sarahbadr/MNLP_M2_dpo_model
https://doi.org/10.1145/1707801.1706317
https://doi.org/10.1145/1707801.1706317
https://dl.acm.org/doi/10.1145/3597503.3639199
https://dl.acm.org/doi/10.1145/3597503.3639199
https://doi.org/10.1145/3597503.3639199
https://huggingface.co/TarhanE/sft-base_loss-Qwen3-0.6B-mle0-ul0-tox0-e4
https://huggingface.co/TarhanE/sft-base_loss-Qwen3-0.6B-mle0-ul0-tox0-e4
https://www.hdfgroup.org/solutions/hdf5/
https://github.com/trailofbits/publications/blob/master/reviews/2023-03-eleutherai-huggingface-safetensors-securityreview.pdf
https://github.com/trailofbits/publications/blob/master/reviews/2023-03-eleutherai-huggingface-safetensors-securityreview.pdf
https://github.com/alkaet/LobotoMl/tree/main/ONNX_runtime_hacks
https://github.com/alkaet/LobotoMl/tree/main/ONNX_runtime_hacks
https://huggingface.co/tttx/models-p10-ttt-18feb-fixed-sft-clip-step1
https://huggingface.co/tttx/models-p10-ttt-18feb-fixed-sft-clip-step1
https://checkmarx.com/blog/free-hugs-what-to-be-wary-of-in-hugging-face-part-4/
https://checkmarx.com/blog/free-hugs-what-to-be-wary-of-in-hugging-face-part-4/
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/ultralytics
https://github.com/asahi417/tner/
https://github.com/asahi417/tner/
https://doi.org/10.1145/2810103.2813673
https://doi.org/10.1145/2810103.2813673
https://hiddenlayer.com/research/machine-learning-threat-roundup/
https://hiddenlayer.com/research/silent-sabotage/
https://doi.org/10.1145/2950290.2950343
https://doi.org/10.1109/SP.2014.44
https://www.reversinglabs.com/blog/rl-identifies-malware-ml-model-hosted-on-hugging-face
https://www.reversinglabs.com/blog/rl-identifies-malware-ml-model-hosted-on-hugging-face
https://github.com/urchade/GLiNER/
https://github.com/urchade/GLiNER/
https://doi.org/10.1109/SP.2013.44
https://www.ndss-symposium.org/wp-content/uploads/2024-53-paper.pdf
https://doi.org/10.14722/ndss.2024.24053
https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00012
https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00012
https://doi.org/10.1109/SP61157.2025.00012

CCS ’25, October 13–17, 2025, Taipei, Taiwan Anonymous Submission – #122

Outline of Appendices

The appendix contains the following material:
• Appendix A: Hugging Face Measurement Supplemental De-
tails.

• Appendix B: Techniques for Bypassing Model Scanners.
• Appendix C: PickleBall Implementation Details.
• Appendix D: Libraries and Models in Benign Dataset.

A Hugging Face Measurement

Our measurement of model serialization formats in Hugging Face
used file extensions to determine model serialization format. The
mapping from extension to format assignment is as follows:
• pickle: We used the core pickle file extension and those of variants
and wrappers (.pkl, .pickle, .joblib, and .dill). We also
used those of PyTorch-specific variants: .pt, .pth, and .bin.

• SafeTensor : We used the .safetensor extension.
• GUFF : We used the .gguf extension.
• Other or missing: We included additional extensions often asso-
ciated with serialized model data, such as .h5, .hdf5, .ckpt,
.model, .pb, .npy, .npz, .onnx, .msgpack, .nemo, .wav, and
.keras. Some models do not include actual model files; instead,
their model cards provide instructions for loading the model from
a third-party library. In our study, we marked these models as
“missing files”.
When models included files with multiple extensions, we cate-

gorized them as having multiple file types available. Our analysis
focuses on the package level within Hugging Face, i.e., on the most
recent version of each package. While some packages may have
multiple versions, the package name is the primary indicator of a
new package, as noted in prior work [52, 53].

We acknowledge that file extensions serve as a proxy for the
file’s actual content. While they suggest the type of content, they
do not attest it.
“Unusual” Callables: We analyzed 1,426 repositories containing
pickled models, and identified 219 repositories containing models
with “unusual” callables, i.e., those that are rejected during load-
ing by the weights-only unpickler. We show the set of observed
“unusual” callables in Figure 8.

B Bypassing Model Scanners

Model scanners use a denylist approach to determine whether a
model is malicious, but pickle denylists are circumventable, which
we demonstrate by example: we construct “malicious” pickle pro-
grams that state-of-the-art scanners misclassify as benign.

We identify two strategies for bypassing model denylists to guide
the implementation of the models:
(1) invoking callables that are missed by the denylist; and
(2) indirectly importing and invoking disallowed callables.
We demonstrate the efficacy of each strategy with constructed
pickle programs that bypass both static (i.e., ModelScan [8]) and
dynamic (i.e., ModelTracer [14]) scanners, and disclose the by-
passes to the scanner authors.

To demonstrate (1), we constructed a malicious pickle pro-
gram that writes to an attacker-chosen file using APIs from the
pathlib [79] Python library, rather than the builtin open and write

functions. ModelScan fails to recognize this as malicious because
the pathlib APIs are not part of its denylist [9]; ModelTracer
fails because it does not classify file write operations as malicious.

To demonstrate (2), we constructed a pickle program that invokes
the os.system function (which is disallowed by the ModelScan
scanner), by importing it through an allowed module (in our case,
torch.serialization.os.system). ModelScan fails to recog-
nize this as malicious because the malicious callable appears to be
part of an allowed module, and the scanner does not inspect deeper;
ModelTracer successfully identifies this malicious behavior, but
only after the malicious call has been invoked and its underlying
system call appears in the execution trace (this is by design, as a
dynamic scanning tool).

C PickleBall Implementation

In Section 5.4 we summarized the implementation of PickleBall.
Here we provide more details.
Integrated components: We built PickleBall’s policy genera-
tion using the Joern framework [107], a static program analysis
tool which supports Python code. We use it to construct an AST
with recovered type information for the analyzed library code. In
our implementation, forked from Joern version 2.0.385, we found
several limitations in Joern’s type recovery pass for Python fea-
tures, which we reported and fixed, such as failures to: (1) track
types of variables assigned to collection objects, (2) recover types
of nested attributes, (3) recover type information without an as-
signment expression, even when provided type annotations, and
(4) correctly record class inheritance information. PickleBall’s
policy generation component is implemented as a Scala program
that interfaces with the Joern CPG and implements Algorithm 1 by
querying for the required class properties.

We built PickleBall’s policy enforcement component by modi-
fying the existing CPython implementation of the Pickle Machine
(commit a365dd6) [76] to take model loading policies as inputs
and to lazily load pickle programs. We changed the semantics of
the GLOBAL, STACK_GLOBAL, and REDUCE opcodes to respect policy
settings, removed the OBJ and INST legacy opcodes, and removed
support for extension codes, in line with best practices when secur-
ing the Pickle Machine [82]. We also modified the BUILD opcode
to prevent altering the __name__ and __module__ attributes of
callables. We made no changes to the interface to invoke our modi-
fied Pickle Machine (pickle.load) so that it serves as a drop-in
replacement for the unrestricted Pickle Machine in the CPython
runtime.

D Libraries and Models in Benign Dataset

PickleBall generates policies for ML libraries to correctly load
models using those libraries. To evaluate this, we constructed a
dataset of 16 libraries and 252 benign models sourced from Hugging
Face (§6.1). Table 3 lists the libraries and identifying information,
including the git commit used during the evaluation. Table 4 lists
the models and identifying information, including the Hugging Face
git commit for the model version that PickleBall loads. Further
information, like generated policies for each library and model load
success rates, are available in the accompanying software artifact.

PickleBall: Secure Deserialization of Pickle-based Machine Learning Models CCS ’25, October 13–17, 2025, Taipei, Taiwan

0 10 20 30 40
Counts

transformers.training_args.OptimizerNames
numpy.ndarray

transformers.trainer_utils.SchedulerType
torch.device

ultralytics.nn.modules.block.DFL
transformers.trainer_utils.IntervalStrategy

ultralytics.nn.modules.head.Detect
numpy.core.multiarray._reconstruct

torch._tensor._rebuild_from_type_v2
transformers.trainer_utils.EvaluationStrategy

ultralytics.nn.tasks.SegmentationModel
numpy.core.multiarray.scalar

ultralytics.nn.modules.C2f
ultralytics.nn.modules.block.ContrastiveHead

flair.data.Dictionary
torch.nn.modules.pooling.MaxPool2d

flair.embeddings.token.TransformerWordEmbeddings
pyannote.audio.core.task.Resolution

argparse.Namespace
TTS.tts.configs.xtts_config.XttsConfig

torch.optim.sgd.SGD
yolov5.models.yolo.Detect

simpletransformers.config.model_args.NERArgs
numpy.dtype

simpletransformers.config.model_args.Seq2SeqArgs
simpletransformers.config.model_args.MultiLabelClassificationArgs

_io.BytesIO
__torch__.torch.nn.modules.container.___torch_mangle_66.Sequential

reranker.arguments.RerankerTrainingArguments
__main__.DistillationTrainingArguments

pyannote.audio.core.task.Specifications
torch.storage.UntypedStorage

pytorch_lightning.callbacks.early_stopping.EarlyStopping
simpletransformers.config.model_args.T5Args

transformers.deepspeed.HfDeepSpeedConfig
__torch__.<snip>.QuantizationDispatchModule

It
em

s

41
38

37
29

28
28

17
15
15

14
11

9
8

4
4

3
2
2
2
2
2
2

1
1
1
1
1
1
1
1
1
1
1
1
1
1

'Unusual' Callables

Figure 8: Callables observed in the 219 model repositories that cannot be loaded by the weights-only unpickler. A few callables

from popular libraries (Hugging Face transformers, numpy) dominate, but a tail of callables come from small ML libraries

(flair, fairseq, yolov5).

CCS ’25, October 13–17, 2025, Taipei, Taiwan Anonymous Submission – #122

Table 3: Source and commit information for all libraries in the PickleBall evaluation. A ✓ in the Modified column indicates

that we performed manual modifications to the library source code before analysis, described in Section 6.1.

Library Modified GitHub Repository Git Commit

CONCH - mahmoodlab/CONCH 02d6ac5
FlagEmbedding - FlagOpen/FlagEmbedding bf6b649
flair ✓ flairNLP/flair c674212
GLiNER - urchade/GLiNER 1169120
huggingsound - jonatasgrosman/huggingsound 50e9fba
LanguageBind - PKU-YuanGroup/LanguageBind 7070c53
MeloTTS - myshell-ai/MeloTTS 5b53848
Parrot_Paraphraser - PrithivirajDamodaran/Parrot_Paraphraser 03084c5
PyAnnote ✓ pyannote/pyannote-audio 0ea4c02
pysentimiento - pysentimiento/pysentimiento 60822ac
sentence_transformers ✓ UKPLab/sentence-transformers a1db32d
super-image - eugenesiow/super-image 50439ea
TNER - asahi417/tner 7730a62
tweetnlp - cardiffnlp/tweetnlp 68b08c8
YOLOv5 ✓ fcakyon/yolov5-pip 40a1887
YOLOv11 (ultralytics) ✓ ultralytics/ultralytics b18007e

PickleBall: Secure Deserialization of Pickle-based Machine Learning Models CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 4: Source and version information for all benign models in the PickleBall evaluation dataset (§6.1). When a single

repository contains multiple pickle models, we list the repository once per model with the model name listed in parentheses.

The Git Commit refers to the Hugging Face repository commit containing the version of the model in the dataset. Two models

in the dataset were removed from Hugging Face after the evaluation concluded and we were unable to record their commit

hashes; these are recorded as “N/A”.

Library Hugging Face Repository (Model Name) Git Commit

CONCH MahmoodLab/CONCH f9ca9f8
FlagEmbedding BAAI/bge-base-en b737bf5
FlagEmbedding BAAI/bge-base-en-v1.5 a5beb1e
FlagEmbedding BAAI/bge-base-zh-v1.5 f03589c
FlagEmbedding BAAI/bge-large-en abe7d9d
FlagEmbedding BAAI/bge-large-en-v1.5 d4aa690
FlagEmbedding BAAI/bge-large-zh b5d9f5c
FlagEmbedding BAAI/bge-large-zh-v1.5 79e7739
FlagEmbedding BAAI/bge-reranker-base 2cfc18c
FlagEmbedding BAAI/bge-reranker-large 55611d7
FlagEmbedding BAAI/bge-small-en 2275a7b
FlagEmbedding BAAI/bge-small-en-v1.5 5c38ec7
FlagEmbedding BAAI/bge-small-zh 1d2363c
FlagEmbedding BAAI/bge-small-zh-v1.5 7999e1d
FlagEmbedding BAAI/llm-embedder c3e8ac8
flair flair/chunk-english-fast 34cdda2
flair flair/ner-dutch-large 44c2859
flair flair/ner-english b13c26b
flair flair/ner-english-fast f75577b
flair flair/ner-english-large e2b1caa
flair flair/ner-english-ontonotes ffa7600
flair flair/ner-english-ontonotes-fast 4f31790
flair flair/ner-english-ontonotes-large 4ffb359
flair flair/ner-french 27fb2ba
flair flair/ner-german 4e3f3d1
flair flair/ner-german-large 4b459fa
flair flair/ner-multi 9e5dc17
flair flair/ner-spanish-large 9d4671d
flair flair/pos-english b32242e
flair flair/pos-english-fast 78bf413
flair flair/upos-english dbd8c36
flair flair/upos-english-fast 8748c22
flair flair/upos-multi 0ee3d86
GLiNER DeepMount00/GLiNER_ITA_BASE 8dadd43
GLiNER DeepMount00/GLiNER_ITA_LARGE 7f74be0
GLiNER DeepMount00/GLiNER_PII_ITA b31700c
GLiNER DeepMount00/universal_ner_ita 158e11d
GLiNER EmergentMethods/gliner_medium_news-v2.1 2450430
GLiNER gliner-community/gliner_large-v2.5 3b3bcae
GLiNER gliner-community/gliner_medium-v2.5 ed16f26
GLiNER numind/NuNER_Zero 9c23c20
GLiNER urchade/gliner_base b448aaf
GLiNER urchade/gliner_large-v1 1f55b52
GLiNER urchade/gliner_large-v2 416a9b8
GLiNER urchade/gliner_large-v2.1 abd49a1
GLiNER urchade/gliner_medium-v2.1 a3f776a
GLiNER urchade/gliner_multi b5720ab
GLiNER urchade/gliner_multi-v2.1 853ce23
GLiNER urchade/gliner_multi_pii-v1 1fcf13e

CCS ’25, October 13–17, 2025, Taipei, Taiwan Anonymous Submission – #122

Library Hugging Face Repository (Model Name) Git Commit

GLiNER urchade/gliner_small-v2.1 4e09141
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-arabic af46c2d
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn 99ccb27
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-dutch 46f2213
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-english 569a623
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-finnish a497f86
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-french 7c79e10
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-german 4b8a029
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-greek 489b34f
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-hungarian 2bd0786
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-italian dab04a3
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-japanese cf031e0
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-persian 2347140
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-polish 6b1cea3
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-portuguese 634ac65
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-russian 2329100
huggingsound jonatasgrosman/wav2vec2-large-xlsr-53-spanish 96d7e9b
huggingsound jonatasgrosman/wav2vec2-xls-r-1b-portuguese 8926743
LanguageBind LanguageBind/LanguageBind_Audio 7aea390
LanguageBind LanguageBind/LanguageBind_Audio_FT 4820c49
LanguageBind LanguageBind/LanguageBind_Image d8c2e37
LanguageBind LanguageBind/LanguageBind_Video 84bed6c
LanguageBind LanguageBind/LanguageBind_Video_FT 13f52c2
LanguageBind LanguageBind/LanguageBind_Video_Huge_V1.5_FT dd4bbe0
LanguageBind LanguageBind/LanguageBind_Video_merge efc40ec
LanguageBind LanguageBind/LanguageBind_Video_V1.5_FT 5d53aab
MeloTTS myshell-ai/MeloTTS-Chinese af5d207
MeloTTS myshell-ai/MeloTTS-English bb4fb73
MeloTTS myshell-ai/MeloTTS-English-v2 a53e350
MeloTTS myshell-ai/MeloTTS-English-v3 f7c4a35
MeloTTS myshell-ai/MeloTTS-French 1e9bf59
MeloTTS myshell-ai/MeloTTS-Japanese 367f879
MeloTTS myshell-ai/MeloTTS-Korean 0207e5a
MeloTTS myshell-ai/MeloTTS-Spanish dbb5496
Parrot_Paraphraser prithivida/parrot_paraphraser_on_T5 9f32aa1
PyAnnote collinbarnwell/pyannote-segmentation-30 f47575f
PyAnnote EonNextPlatform/pyannote-wespeaker-voxceleb-resnet34-LM N/A
PyAnnote EonNextPlatform/segmentation-3.0 N/A
PyAnnote fatymatariq/pyannote-wespeaker-voxceleb-resnet34-LM 27e7027
PyAnnote fatymatariq/segmentation-3.0 e1b9697
PyAnnote philschmid/pyannote-segmentation d13283c
PyAnnote pyannote/brouhaha c93c9b5
PyAnnote pyannote/embedding 4db4899
PyAnnote pyannote/segmentation 660b9e2
PyAnnote pyannote/segmentation-3.0 e66f3d3
PyAnnote pyannote/wespeaker-voxceleb-resnet34-LM 837717d
PyAnnote Revai/reverb-diarization-v1 4ad4567
PyAnnote Revai/reverb-diarization-v2 f086648
PyAnnote tensorlake/segmentation-3.0 035d994
pysentimiento pysentimiento/bertweet-pt-sentiment 7266128
pysentimiento pysentimiento/robertuito-ner 43dde63
pysentimiento pysentimiento/robertuito-sentiment-analysis a2cc0f6
sentence_transformers avsolatorio/GIST-all-MiniLM-L6-v2 ea89dfa
sentence_transformers avsolatorio/GIST-Embedding-v0 bf6b2e5
sentence_transformers avsolatorio/GIST-small-Embedding-v0 d6c4190

PickleBall: Secure Deserialization of Pickle-based Machine Learning Models CCS ’25, October 13–17, 2025, Taipei, Taiwan

Library Hugging Face Repository (Model Name) Git Commit

sentence_transformers BAAI/bge-base-en b737bf5
sentence_transformers BAAI/bge-base-en-v1.5 a5beb1e
sentence_transformers BAAI/bge-large-en abe7d9d
sentence_transformers BAAI/bge-large-en-v1.5 d4aa690
sentence_transformers BAAI/bge-large-zh-v1.5 79e7739
sentence_transformers BAAI/bge-reranker-base 2cfc18c
sentence_transformers BAAI/bge-reranker-large 55611d7
sentence_transformers BAAI/bge-small-en 2275a7b
sentence_transformers BAAI/bge-small-en-v1.5 5c38ec7
sentence_transformers BAAI/llm-embedder c3e8ac8
sentence_transformers cointegrated/rubert-tiny2 dad72b8
sentence_transformers DMetaSoul/sbert-chinese-general-v2 14b486c
sentence_transformers flax-sentence-embeddings/all_datasets_v4_MiniLM-L6 a407cc0
sentence_transformers hiiamsid/sentence_similarity_spanish_es 3118431
sentence_transformers intfloat/e5-base-v2 1c644c9
sentence_transformers intfloat/e5-large-v2 b322e09
sentence_transformers intfloat/e5-mistral-7b-instruct 07163b7
sentence_transformers intfloat/e5-small-v2 dca8b1a
sentence_transformers intfloat/multilingual-e5-base d13f1b2
sentence_transformers intfloat/multilingual-e5-large ab10c1a
sentence_transformers intfloat/multilingual-e5-small fd1525a
sentence_transformers jhgan/ko-sbert-nli b78c95e
sentence_transformers jhgan/ko-sroberta-multitask ab957ae
sentence_transformers naufalihsan/indonesian-sbert-large a5cbfbd
sentence_transformers NeuML/pubmedbert-base-embeddings ba210f4
sentence_transformers nomic-ai/nomic-embed-text-v1 cc62377
sentence_transformers pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb 82d4468
sentence_transformers pritamdeka/S-PubMedBert-MS-MARCO 96786c7
sentence_transformers sentence-transformers-testing/stsb-bert-tiny-safetensors f3cb857
sentence_transformers sentence-transformers/all-distilroberta-v1 8d88b92
sentence_transformers sentence-transformers/all-MiniLM-L12-v2 364dd28
sentence_transformers sentence-transformers/all-MiniLM-L6-v2 fa97f6e
sentence_transformers sentence-transformers/all-mpnet-base-v2 9a32259
sentence_transformers sentence-transformers/all-roberta-large-v1 c8b9f2a
sentence_transformers sentence-transformers/bert-base-nli-mean-tokens 2511498
sentence_transformers sentence-transformers/bert-base-nli-stsb-mean-tokens 767076a
sentence_transformers sentence-transformers/clip-ViT-B-32-multilingual-v1 58edf8c
sentence_transformers sentence-transformers/distilbert-base-nli-mean-tokens 5aa678b
sentence_transformers sentence-transformers/distilbert-base-nli-stsb-mean-tokens cb8a28f
sentence_transformers sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking 57cf088
sentence_transformers sentence-transformers/distiluse-base-multilingual-cased-v1 457e815
sentence_transformers sentence-transformers/distiluse-base-multilingual-cased-v2 dad0fa1
sentence_transformers sentence-transformers/LaBSE b7f9471
sentence_transformers sentence-transformers/msmarco-bert-base-dot-v5 c45bf94
sentence_transformers sentence-transformers/msmarco-distilbert-base-dot-prod-v3 0cf6cf1
sentence_transformers sentence-transformers/msmarco-distilbert-base-tas-b 136d171
sentence_transformers sentence-transformers/msmarco-distilbert-base-v4 19f0f4c
sentence_transformers sentence-transformers/msmarco-distilbert-cos-v5 c598d92
sentence_transformers sentence-transformers/msmarco-distilbert-dot-v5 6ad1718
sentence_transformers sentence-transformers/msmarco-MiniLM-L-6-v3 d273900
sentence_transformers sentence-transformers/msmarco-MiniLM-L12-cos-v5 09660d8
sentence_transformers sentence-transformers/msmarco-MiniLM-L6-cos-v5 14ca9be
sentence_transformers sentence-transformers/multi-qa-distilbert-cos-v1 bc2339d
sentence_transformers sentence-transformers/multi-qa-MiniLM-L6-cos-v1 b207367
sentence_transformers sentence-transformers/multi-qa-mpnet-base-cos-v1 822dbc9

CCS ’25, October 13–17, 2025, Taipei, Taiwan Anonymous Submission – #122

Library Hugging Face Repository (Model Name) Git Commit

sentence_transformers sentence-transformers/multi-qa-mpnet-base-dot-v1 4633e80
sentence_transformers sentence-transformers/nli-mpnet-base-v2 688eb0a
sentence_transformers sentence-transformers/paraphrase-albert-small-v2 39d5b65
sentence_transformers sentence-transformers/paraphrase-MiniLM-L12-v2 3f21b01
sentence_transformers sentence-transformers/paraphrase-MiniLM-L3-v2 029a79d
sentence_transformers sentence-transformers/paraphrase-MiniLM-L6-v2 9a27583
sentence_transformers sentence-transformers/paraphrase-mpnet-base-v2 bef3689
sentence_transformers sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 8d6b950
sentence_transformers sentence-transformers/paraphrase-multilingual-mpnet-base-v2 75c5775
sentence_transformers sentence-transformers/sentence-t5-base 50c53e2
sentence_transformers sentence-transformers/sentence-t5-xl 2965d31
sentence_transformers sentence-transformers/stsb-roberta-base fb8c0e7
sentence_transformers sentence-transformers/stsb-xlm-r-multilingual 18f85ee
sentence_transformers shibing624/text2vec-base-chinese 183bb99
sentence_transformers shibing624/text2vec-base-multilingual 6633dc4
sentence_transformers Supabase/gte-small 93b36ff
sentence_transformers thenlper/gte-base c078288
sentence_transformers thenlper/gte-large 4bef63f
sentence_transformers thenlper/gte-small 17e1f34
super-image eugenesiow/edsr (pytorch_model_2x.pt) 8f214a5
super-image eugenesiow/edsr (pytorch_model_3x.pt) 8f214a5
super-image eugenesiow/edsr (pytorch_model_4x.pt) 8f214a5
super-image eugenesiow/edsr-base (pytorch_model_2x.pt) d622f68
super-image eugenesiow/edsr-base (pytorch_model_3x.pt) d622f68
super-image eugenesiow/edsr-base (pytorch_model_4x.pt) d622f68
TNER tner/deberta-v3-large-ontonotes5 98a5818
TNER tner/roberta-large-ontonotes5 0bce50f
TNER tner/roberta-large-tweetner7-all e7fbeec
TNER tner/roberta-large-wnut2017 e2e15e4
tweetnlp cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual 82107f4
YOLOv5 keremberke/yolov5m-smoke 79dc392
YOLOv5 keremberke/yolov5m-license-plate 2bc5d84
YOLOv5 keremberke/yolov5n-license-plate b9a03ec
YOLOv5 Ultralytics/YOLOv5 (yolov5s.pt) 73fb27f
YOLOv5 Ultralytics/YOLOv5 (yolov5s6.pt) 73fb27f
YOLOv5 Ultralytics/YOLOv5 (yolov5n.pt) 73fb27f
YOLOv5 Ultralytics/YOLOv5 (yolov5n6.pt) 73fb27f
YOLOv5 Ultralytics/YOLOv5 (yolov5m.pt) 73fb27f
YOLOv5 Ultralytics/YOLOv5 (yolov5m6.pt) 73fb27f
YOLOv5 Ultralytics/YOLOv5 (yolov5l.pt) 73fb27f
YOLOv5 Ultralytics/YOLOv5 (yolov5l6.pt) 73fb27f
YOLOv5 keremberke/yolov5s-license-plate 038440e
YOLOv11 (ultralytics) Bingsu/yolo-world-mirror (yolov8l-world.pt) 414d0ee
YOLOv11 (ultralytics) Bingsu/yolo-world-mirror (yolov8l-worldv2.pt) 414d0ee
YOLOv11 (ultralytics) Bingsu/yolo-world-mirror (yolov8m-world.pt) 414d0ee
YOLOv11 (ultralytics) Bingsu/yolo-world-mirror (yolov8m-worldv2.pt) 414d0ee
YOLOv11 (ultralytics) Bingsu/yolo-world-mirror (yolov8s-world.pt) 414d0ee
YOLOv11 (ultralytics) Bingsu/yolo-world-mirror (yolov8s-worldv2.pt) 414d0ee
YOLOv11 (ultralytics) Bingsu/yolo-world-mirror (yolov8x-world.pt) 414d0ee
YOLOv11 (ultralytics) Bingsu/yolo-world-mirror (yolov8x-worldv2.pt) 414d0ee
YOLOv11 (ultralytics) keremberke/yolov8m-table-extraction 8826513
YOLOv11 (ultralytics) keremberke/yolov8s-table-extraction fc8bf12
YOLOv11 (ultralytics) Ultralytics/YOLOv8 (yolov8l.pt) 5d9ba66
YOLOv11 (ultralytics) Ultralytics/YOLOv8 (yolov8m.pt) 5d9ba66
YOLOv11 (ultralytics) Ultralytics/YOLOv8 (yolov8n.pt) 5d9ba66

PickleBall: Secure Deserialization of Pickle-based Machine Learning Models CCS ’25, October 13–17, 2025, Taipei, Taiwan

Library Hugging Face Repository (Model Name) Git Commit

YOLOv11 (ultralytics) Ultralytics/YOLOv8 (yolov8s.pt) 5d9ba66
YOLOv11 (ultralytics) Ultralytics/YOLOv8 (yolov8x.pt) 5d9ba66
YOLOv11 (ultralytics) Ultralytics/YOLO11 (yolo11l-pose.pt) 9cc3192
YOLOv11 (ultralytics) Ultralytics/YOLO11 (yolo11l.pt) 9cc3192
YOLOv11 (ultralytics) Ultralytics/YOLO11 (yolo11l-seg.pt) 9cc3192
YOLOv11 (ultralytics) Ultralytics/YOLO11 (yolo11m-pose.pt) 9cc3192
YOLOv11 (ultralytics) Ultralytics/YOLO11 (yolo11m.pt) 9cc3192
YOLOv11 (ultralytics) Ultralytics/YOLO11 (yolo11m-seg.pt) 9cc3192
YOLOv11 (ultralytics) Ultralytics/YOLO11 (yolo11n-pose.pt) 9cc3192
YOLOv11 (ultralytics) Ultralytics/YOLO11 (yolo11n.pt) 9cc3192
YOLOv11 (ultralytics) Ultralytics/YOLO11 (yolo11n-seg.pt) 9cc3192
YOLOv11 (ultralytics) Ultralytics/YOLO11 (yolo11s-pose.pt) 9cc3192
YOLOv11 (ultralytics) Ultralytics/YOLO11 (yolo11s.pt) 9cc3192
YOLOv11 (ultralytics) Ultralytics/YOLO11 (yolo11s-seg.pt) 9cc3192
YOLOv11 (ultralytics) Ultralytics/YOLO11 (yolo11x-pose.pt) 9cc3192
YOLOv11 (ultralytics) Ultralytics/YOLO11 (yolo11x.pt) 9cc3192
YOLOv11 (ultralytics) Ultralytics/YOLO11 (yolo11x-seg.pt) 9cc3192
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhc Breasts Seg v1 1024m.pt) 4bb7d18
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhc Breasts Seg v1 1024n.pt) 4bb7d18
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhc Breasts Seg v1 1024s.pt) 4bb7d18
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhc Eyes -seg-hd.pt) 4bb7d18
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhc Face seg 1024 v2 y8n.pt) 4bb7d18
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhc Face seg 640 v2 y8n.pt) 4bb7d18
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhc Face seg 640 v3 y11n.pt) 4bb7d18
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhc Face seg 768MS v2 y8n.pt) 4bb7d18
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhc Face seg 768 v2 y8n.pt) 4bb7d18
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhc Face -seg.pt) 4bb7d18
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhc HeadHair seg y8m.pt) 4bb7d18
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhc HeadHair seg y8n.pt) 4bb7d18
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhc Manga Panels -seg.pt) 4bb7d18
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhcs Drones v03 1024 y11n.pt) 4bb7d18
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhcs ManFace v02 1024 y8n.pt) 4bb7d18
YOLOv11 (ultralytics) Anzhc/Anzhcs_YOLOs (Anzhcs WomanFace v05 1024 y8n.pt) 4bb7d18
YOLOv11 (ultralytics) tech4humans/yolov8s-signature-detector c891f02
YOLOv11 (ultralytics) foduucom/stockmarket-pattern-detection-yolov8 31bbb9a
YOLOv11 (ultralytics) pitangent-ds/YOLOv8-human-detection-thermal a5d30f1
YOLOv11 (ultralytics) arnabdhar/YOLOv8-nano-aadhar-card d5f938d
YOLOv11 (ultralytics) keremberke/yolov8n-building-segmentation eb61328

	Abstract
	1 Introduction
	2 Background
	2.1 Model Reuse
	2.2 Pickle Serialization and Risks

	3 Motivation
	3.1 Study of Pickle Models on Hugging Face
	3.2 PyTorch Weights-Only Unpickler Usability

	4 System and Threat Model
	5 PickleBall Design and Implementation
	5.1 Policy Generation
	5.2 Policy Enforcement
	5.3 Security Guarantees and Limitations
	5.4 Implementation

	6 Evaluation
	6.1 Constructing an Evaluation Dataset
	6.2 RQ1: Malicious Model Blocking
	6.3 RQ2: Benign Model Loading
	6.4 RQ3: Performance
	6.5 RQ4: Comparison to SOTA

	7 Discussion and Future Work
	8 Related Work
	9 Conclusion
	References
	A Hugging Face Measurement
	B Bypassing Model Scanners
	C PickleBall Implementation
	D Libraries and Models in Benign Dataset

