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ABSTRACT
Deterministic multithreading (DMT) eliminates many pernicious
software problems caused by nondeterminism. It works by con-
straining a program to repeat the same thread interleavings, or
schedules, when given same input. Despite much recent research,
it remains an open challenge to build both deterministic and effi-
cient DMT systems for general programs on commodity hardware.
To deterministically resolve a data race, a DMT system must en-
force a deterministic schedule of shared memory accesses, or mem-
schedule, which can incur prohibitive overhead. By using schedules
consisting only of synchronization operations, or sync-schedule,
this overhead can be avoided. However, a sync-schedule is deter-
ministic only for race-free programs, but most programs have races.

Our key insight is that races tend to occur only within minor por-
tions of an execution, and a dominant majority of the execution
is still race-free. Thus, we can resort to a mem-schedule only for
the “racy” portions and enforce a sync-schedule otherwise, combin-
ing the efficiency of sync-schedules and the determinism of mem-
schedules. We call these combined schedules hybrid schedules.

Based on this insight, we have built PEREGRINE, an efficient de-
terministic multithreading system. When a program first runs on
an input, PEREGRINE records an execution trace. It then relaxes
this trace into a hybrid schedule and reuses the schedule on future
compatible inputs efficiently and deterministically. PEREGRINE
further improves efficiency with two new techniques: determinism-
preserving slicing to generalize a schedule to more inputs while
preserving determinism, and schedule-guided simplification to pre-
cisely analyze a program according to a specific schedule. Our eval-
uation on a diverse set of programs shows that PEREGRINE is deter-
ministic and efficient, and can frequently reuse schedules for half
of the evaluated programs.
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1 Introduction
Different runs of a multithreaded program may show different be-
haviors, depending on how the threads interleave. This nondeter-
minism makes it difficult to write, test, and debug multithreaded
programs. For instance, testing becomes less assuring because the
schedules tested may not be the ones run in the field. Similarly,
debugging can be a nightmare because developers may have to re-
produce the exact buggy schedules. These difficulties have resulted
in many “heisenbugs” in widespread multithreaded programs [39].

Recently, researchers have pioneered a technique called deter-
ministic multithreading (DMT) [9, 10, 12, 19, 20, 42]. DMT sys-
tems ensure that the same input is always processed with the same
deterministic schedule, thus eliminating heisenbugs and problems
due to nondeterminism. Unfortunately, despite these efforts, an
open challenge [11] well recognized by the DMT community re-
mains: how to build both deterministic and efficient DMT systems
for general multithreaded programs on commodity multiprocessors.
Existing DMT systems either incur prohibitive overhead, or are not
fully deterministic if there are data races.

Specifically, existing DMT systems enforce two forms of sched-
ules: (1) a mem-schedule is a deterministic schedule of shared
memory accesses [9, 10, 20], such as load/store instructions,
and (2) a sync-schedule is a deterministic order of synchronization
operations [19, 42], such as lock()/unlock(). Enforcing a mem-
schedule is truly deterministic even for programs with data races,
but may incur prohibitive overhead (e.g., roughly 1.2X-6X [9]).
Enforcing a sync-schedule is efficient (e.g., average 16% slow-
down [42]) because most code does not control synchronization and
can still run in parallel, but a sync-schedule is only deterministic for
race-free programs, when, in fact, most real programs have races,
harmful or benign [39, 54]. The dilemma is, then, to pick either
determinism or efficiency but not both.

Our key insight is that although most programs have races, these
races tend to occur only within minor portions of an execution, and
the majority of the execution is still race-free. Thus, we can resort
to a mem-schedule only for the “racy” portions of an execution and
enforce a sync-schedule otherwise, combining both the efficiency
of sync-schedules and the determinism of mem-schedules. We call
these combined schedules hybrid schedules.

Based on this insight, we have built PEREGRINE, an efficient
deterministic multithreading system to address the aforementioned
open challenge. When a program first runs on an input, PEREGRINE
records a detailed execution trace including memory accesses in
case the execution runs into races. PEREGRINE then relaxes this
detailed trace into a hybrid schedule, including (1) a total order of
synchronization operations and (2) a set of execution order con-
straints to deterministically resolve each occurred race. When the
same input is provided again, PEREGRINE can reuse this schedule
deterministically and efficiently.

Reusing a schedule only when the program input matches ex-



actly is too limiting. Fortunately, the schedules PEREGRINE com-
putes are often “coarse-grained” and reusable on a broad range of
inputs. Indeed, our previous work has shown that a small number
of sync-schedules can often cover over 90% of the workloads for
real programs such as Apache [19]. The higher the reuse rates,
the more efficient PEREGRINE is. Moreover, by reusing schedules,
PEREGRINE makes program behaviors more stable across differ-
ent inputs, so that slight input changes do not lead to vastly differ-
ent schedules [19] and thus “input-heisenbugs” where slight input
changes cause concurrency bugs to appear or disappear.

Before reusing a schedule on an input, PEREGRINE must check
that the input satisfies the preconditions of the schedule, so that (1)
the schedule is feasible, i.e., the execution on the input will reach
all events in the same deterministic order as in the schedule and (2)
the execution will not introduce new races. (New races may oc-
cur if they are input-dependent; see §4.1.) A naïve approach is to
collect preconditions from all input-dependent branches in an ex-
ecution trace. For instance, if a branch instruction inspects input
variable X and goes down the true branch, we collect a precondition
that X must be nonzero. Preconditions collected via this approach
ensures that an execution on an input satisfying the preconditions
will always follow the path of the recorded execution in all threads.
However, many of these branches concern thread-local computa-
tions and do not affect the program’s ability to follow the schedule.
Including them in the preconditions thus unnecessarily decreases
schedule-reuse rates.

How can PEREGRINE compute sufficient preconditions to avoid
new races and ensure that a schedule is feasible? How can PERE-
GRINE filter out unnecessary branches to increase schedule-reuse
rates? Our previous work [19] requires developers to grovel through
the code and mark the input affecting schedules; even so, it does not
guarantee full determinism if there are data races.

PEREGRINE addresses these challenges with two new program
analysis techniques. First, given an execution trace and a hybrid
schedule, it computes sufficient preconditions using determinism-
preserving slicing, a new precondition slicing [18] technique de-
signed for multithreaded programs. Precondition slicing takes an
execution trace and a target instruction in the trace, and computes
a trace slice that captures the instructions required for the execu-
tion to reach the target with equivalent operand values. Intuitively,
these instructions include “branches whose outcome matters” to
reach the target and “mutations that affect the outcome of those
branches” [18]. This trace slice typically has much fewer branches
than the original execution trace, so that we can compute more re-
laxed preconditions. However, previous work [18] does not com-
pute correct trace slices for multithreaded programs or handle mul-
tiple targets; our slicing technique correctly handles both cases.

Our slicing technique often needs to determine whether two
pointer variables may point to the same object. Alias analysis is the
standard static technique to answer these queries. Unfortunately,
one of the best alias analyses [52] yields overly imprecise results
for 30% of the evaluated programs, forcing PEREGRINE to reuse
schedules only when the input matches almost exactly. The reason
is that standard alias analysis has to be conservative and assume all
possible executions, yet PEREGRINE cares about alias results ac-
cording only to the executions that reuse a specific schedule. To im-
prove precision, PEREGRINE uses schedule-guided simplification to
first simplify a program according to a schedule, then runs standard
alias analysis on the simplified program to get more precise results.
For instance, if the schedule dictates eight threads, PEREGRINE can
clone the corresponding thread function eight times, so that alias
analysis can separate the results for each thread, instead of impre-
cisely merging results for all threads.
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Figure 1: PEREGRINE Architecture: components and data structures are
shaded (and in green).

We have built a prototype of PEREGRINE that runs in user-space.
It automatically tracks main() arguments, data read from files and
sockets, and values returned by random()-variants as input. It han-
dles long-running servers by splitting their executions into windows
and reusing schedules across windows [19]. The hybrid schedules
it computes are fully deterministic for programs that (1) have no
nondeterminism sources beyond thread scheduling, data races, and
inputs tracked by PEREGRINE and (2) adhere to the assumptions of
the tools PEREGRINE uses.

We evaluated PEREGRINE on a diverse set of 18 programs, in-
cluding the Apache web server [6]; three desktop programs, such
as PBZip2 [3], a parallel compression utility; implementations of
12 computation-intensive algorithms in the popular SPLASH2 and
PARSEC benchmark suites; and racey [29], a benchmark with nu-
merous intentional races for evaluating deterministic execution and
replay systems. Our results show that PEREGRINE is both determin-
istic and efficient (executions reusing schedules range from 68.7%
faster to 46.6% slower than nondeterministic executions); it can fre-
quently reuse schedules for half of the programs (e.g., two sched-
ules cover all possible inputs to PBZip2 compression as long as the
number of threads is the same); both its slicing and simplification
techniques are crucial for increasing schedule-reuse rates, and have
reasonable overhead when run offline; its recording overhead is rel-
atively high, but can be reduced using existing techniques [13]; and
it requires no manual efforts except a few annotations for handling
server programs and for improving precision.

Our main contributions are the schedule-relaxation approach and
PEREGRINE, an efficient DMT system. Additional contributions
include the ideas of hybrid schedules, determinism-preserving slic-
ing, and schedule-guided simplification. To our knowledge, our
slicing technique is the first to compute correct (non-trivial) pre-
conditions for multithreaded programs. We believe these ideas ap-
ply beyond PEREGRINE (§2.2).

The remainder of this paper is organized as follows. We first
present a detailed overview of PEREGRINE (§2). We then describe
its core ideas: hybrid schedules (§3), determinism-preserving slic-
ing (§4), and schedule-guided simplification (§5). We then present
implementation issues (§6) and evaluation (§7). We finally discuss
related work (§8) and conclude (§9).

2 PEREGRINE Overview
Figure 1 shows the architecture of PEREGRINE. It has four main
components: the instrumentor, recorder, analyzer, and replayer.
The instrumentor is an LLVM [2] compiler plugin that prepares a
program for use with PEREGRINE. It instruments synchronization
operations such as pthread_mutex_lock(), which the recorder
and replayer control at runtime. It marks the main() arguments,
data read from read(), fscanf(), and recv(), and values re-
turned by random()-variants as inputs. We chose LLVM [2] as
our instrumentation framework for its compatibility with GCC and
easy-to-analyze intermediate representation (IR). However, our ap-
proach is general and should apply beyond LLVM. For clarity, we
will present our examples and algorithms at the source level, instead
of the LLVM IR level.
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Figure 2: Analyses performed by the analyzer.

The recorder is similar to existing systems that deterministically
record executions [13, 22, 33]. Our current recorder is implemented
as an LLVM interpreter. When a program runs, the recorder saves
the LLVM instructions interpreted for each thread into a central log
file. The recorder does not record external input data, such as data
read from a file, because our analysis does not need this informa-
tion. To schedule synchronization operations issued by different
threads, the recorder can use a variety of DMT algorithms [19].

The analyzer is a stand-alone program that computes (1) a hy-
brid schedule S and (2) the preconditions C required for reusing
the schedule on future inputs. It does so using a series of analy-
ses, shown in Figure 2. To compute a hybrid schedule, the analyzer
first extracts a total order of synchronization operations from the
execution trace. It then detects data races according to this syn-
chronization order, and computes additional execution order con-
straints to deterministically resolve the detected races. To compute
the preconditions of a schedule, the analyzer first simplifies the pro-
gram according to the schedule, so that alias analysis can compute
more precise results. It then slices the execution trace into a trace
slice with instructions required to avoid new races and reach all
events in the schedule. It then uses symbolic execution [31] to col-
lect preconditions from the input-dependent branches in the slice.
The trace slice is typically much smaller than the execution trace, so
that the analyzer can compute relaxed preconditions, allowing fre-
quent reuses of the schedule. The analyzer finally stores 〈C, S〉 into
the schedule cache, which conceptually holds a set of such tuples.
(The actual representation is tree-based for fast lookup [19].)

The replayer is a lightweight user-space scheduler for reusing
schedules. When an input arrives, it searches the schedule cache for
a 〈C, S〉 tuple such that the input satisfies the preconditions C. If
it finds such a tuple, it simply runs the program enforcing schedule
S efficiently and deterministically. Otherwise, it forwards the input
to the recorder.

In the remainder of this section, we first use an example to il-
lustrate how PEREGRINE works, highlighting the operation of the
analyzer (§2.1). We then describe PEREGRINE’s deployment and
usage scenarios (§2.2) and assumptions (§2.3).

2.1 An Example

Figure 3 shows our running example, a simple multithreaded pro-
gram based on the real ones used in our evaluation. It first
parses the command line arguments into nthread (line L1) and
size (L2), then spawns nthread threads including the main
thread (L4–L5) and processes size/nthread bytes of data in each
thread. The thread function worker() allocates a local buffer
(L10), reads data from a file (L11), processes the data (L12–L13),
and sums the results into the shared variable result (L14–L16).
The main() function may further update result depending on
argv[3] (L7–L8), and finally prints out result (L9). This ex-
ample has read-write and write-write races on result due to miss-
ing pthread_join(). This error pattern matches some of the real
errors in the evaluated programs such as PBZip2.

Instrumentor. To run this program with PEREGRINE, we first
compile it into LLVM IR and instrument it with the instrumentor.

int size; // total size of data
int nthread; // total number of threads
unsigned long result = 0;

int main(int argc, char *argv[ ]) {
L1: nthread = atoi(argv[1]);
L2: size = atoi(argv[2]);
L3: assert(nthread>0 && size>=nthread);
L4: for(int i=1; i<nthread; ++i)
L5: pthread create(. . ., worker, NULL);
L6: worker(NULL);

// NOTE: missing pthread join()
L7: if(atoi(argv[3]) == 1)
L8: result += . . .; // race with line L15
L9: printf("result = %lu\n", result); // race with line L15

. . .
}
void *worker(void *arg) {

L10: char *data = malloc(size/nthread);
L11: read(. . ., data, size/nthread);
L12: for(int i=0; i<size/nthread; ++i)
L13: data[i] = . . .; // compute using data
L14: pthread mutex lock(&mutex);
L15: result += . . .; // race with lines L8 and L9
L16: pthread mutex unlock(&mutex);

. . .
}

Figure 3: Running example. It uses the common divide-and-conquer idiom
to split work among multiple threads. It contains write-write (lines L8 and
L15) and read-write (lines L9 and L15) races on result because of missing
pthread_join().

The instrumentor replaces the synchronization operations (lines L5,
L14, and L16) with PEREGRINE-provided wrappers controlled by
the recorder and replayer at runtime. It also inserts code to mark the
contents of argv[i] and the data from read() (line L11) as input.

Recorder: execution trace. When we run the instrumented pro-
gram with arguments “2 2 0” to spawn two threads and process
two bytes of data, suppose that the recorder records the execution
trace in Figure 4. (This figure also shows the hybrid schedule and
preconditions PEREGRINE computes, explained later in this subsec-
tion.) This trace is just one possible trace depending on the schedul-
ing algorithm the recorder uses.

Analyzer: hybrid schedule. Given the execution trace, the ana-
lyzer starts by computing a hybrid schedule. It first extracts a sync-
schedule consisting of the operations tagged with (1), (2), ..., (8) in
Figure 4. It then detects races in the trace according to this sync-
schedule, and finds the race on result between L15 of thread t1
and L9 of t0. It then computes an execution order constraint to de-
terministically resolve this race, shown as the dotted arrow in Fig-
ure 4. The sync-schedule and execution order constraint together
form the hybrid schedule. Although this hybrid schedule constrains
the order of synchronization and the last two accesses to result,
it can still be efficiently reused because the core computation done
by worker can still run in parallel.

Analyzer: simplified program. To improve analysis precision,
the analyzer simplifies the program according to the hybrid sched-
ule. For instance, based on the number of pthread_create() op-
erations in the schedule, the analyzer clones function worker() to
give each thread a copy, so that the alias analysis separates different
threads and determines that the two instances of L13 in t0 and t1
access different malloc’ed locations and never race.

Analyzer: trace slice. The analyzer uses determinism-
preserving slicing to reduce the execution trace into a trace slice,
so that it can compute relaxed preconditions. The final trace slice
consists of the instructions not crossed out in Figure 4. The ana-
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Figure 4: Execution trace, hybrid schedule, and trace slice. An execution
trace of the program in Figure 3 on arguments “2 2 0” is shown. Each ex-
ecuted instruction is tagged with its static line number Li. Branch instruc-
tions are also tagged with their outcome (true or false). Synchronization
operations (green), including thread entry and exit, are tagged with their
relative positions in the synchronization order. They form a sync-schedule
whose order constraints are shown with solid arrows. L15 of thread t1 and
L9 of thread t0 race on result, and this race is deterministically resolved
by enforcing an execution order constraint shown by the dotted arrow. To-
gether, these order constraints form a hybrid schedule. Instruction L7 of
t0 (italic and blue) is included in the trace slice to avoid new races, while
L6, L4:false, L4:true, L3, L2, and L1 of t0 are included due to intra-thread
dependencies. Crossed-out (gray) instructions are elided from the slice.

lyzer computes this trace slice using inter-thread and intra-thread
steps. In the inter-thread step, it adds instructions required to avoid
new races into the slice. Specifically, for t0 it adds the false branch
of L7, or L7:false, because if the true branch is taken, a new race
between L8 of t0 and L15 of t1 occurs. It ignores branches of line
L12 because alias analysis already determines that L13 of t0 and
L13 of t1 never race.

In the intra-thread step, the analyzer adds instructions required
to reach all instructions identified in the inter-thread step (L7:false
of t0 in this example) and all events in the hybrid schedule. It
does so by traversing the execution trace backwards and tracking
control- and data-dependencies. In this example, it removes L15,
L13, L12, L11, and L10 because no instructions currently in the
trace slice depend on them. It adds L6 because without this call,
the execution will not reach instructions L14 and L16 of thread
t0. It adds L4:false because if the true branch is taken, the exe-
cution of t0 will reach one more pthread_create(), instead of
L14, pthread_mutex_lock(), of t0. It adds L4:true because this
branch is required to reach L5, the pthread_create() call. It
similarly adds L3, L2, and L1 because later instructions in the trace
slice depend on them.

Analyzer: preconditions. After slicing, all branches from L12
are gone. The analyzer joins the remaining branches together as
the preconditions, using a version of KLEE [15] augmented with
thread support [19]. Specifically, the analyzer marks input data as
symbolic, and then uses KLEE to track how this symbolic data is

(atoi_argv1 = 2)∧(atoi_argv2 ≥ atoi_argv1)∧(atoi_argv3 6= 1)

Figure 5: Preconditions computed from the trace slice in Figure 4. Variable
atoi_argvi represents the return of atoi(arg[i]).

propagated and observed by the instructions in the trace slice. (Our
PEREGRINE prototype runs symbolic execution within the recorder
for simplicity; see §6.1.) If a branch instruction inspects symbolic
data and proceeds down the true branch, the analyzer adds the pre-
condition that the symbolic data makes the branch condition true.
The analyzer uses symbolic summaries [18] to succinctly general-
ize common library functions. For instance, it considers the return
of atoi(arg) symbolic if arg is symbolic.

Figure 5 shows the preconditions the analyzer computes from the
trace slice in Figure 4. These preconditions illustrate two key ben-
efits of PEREGRINE. First, they are sufficient to ensure determin-
istic reuses of the schedule. Second, they only loosely constrain
the data size (atoi_argv2) and do not constrain the data contents
(from read()), allowing frequent schedule-reuses. The reason is
that L10–L13 are all sliced out. One way to leverage this bene-
fit is to populate a schedule cache with small workloads to reduce
analysis time, and then reuse the schedules on large workloads.

Replayer. Suppose we run this program again on different argu-
ments “2 1000 8.” The replayer checks the new arguments against
the preconditions in Figure 5 using KLEE’s constraint checker, and
finds that these arguments satisfy the preconditions, despite the
much larger data size. It can therefore reuse the hybrid schedule
in Figure 4 on this new input by enforcing the same order of syn-
chronization operations and accesses to result.

2.2 Deployment and Usage Scenarios
PEREGRINE runs in user-space and requires no special hardware,
presenting few challenges for deployment. To populate a schedule
cache, a user can record execution traces from real workloads; or a
developer can run (small) representative workloads to pre-compute
schedules before deployment. PEREGRINE efficiently makes the
behaviors of multithreaded programs more repeatable, even across
a range of inputs. We envision that users can use this repeatability
in at least four ways.

Concurrency error avoidance. PEREGRINE can reuse well-
tested schedules collected from the testing lab or the field, reducing
the risk of running into untested, buggy schedules. Currently PERE-
GRINE detects and avoids only data races. However, combined with
the right error detectors, PEREGRINE can be easily extended to de-
tect and avoid other types of concurrency errors.

Record and replay. Existing deterministic record-replay sys-
tems tend to incur high CPU and storage overhead (e.g., 15X slow-
down [13] and 11.7 GB/day storage [22]). A record-replay system
on top of PEREGRINE may drastically reduce this overhead: for in-
puts that hit the schedule cache, we do not have to log any schedule.

Replication. To keep replicas of a multithreaded program con-
sistent, a replication tool often records the thread schedules at one
replica and replays them at others. This technique is essentially
online replay [35]. It may thus incur high CPU, storage, and band-
width overhead. With PEREGRINE, replicas can maintain a consis-
tent schedule cache. If an input hits the schedule cache, all replicas
will automatically select the same deterministic schedule, incurring
zero bandwidth overhead.

Schedule-diversification. Replication can tolerate hardware or
network failures, but the replicas may still run into the same con-
currency error because they all use the same schedules. Fortunately,
many programs are already “mostly-deterministic” as they either
compute the same correct result or encounter heisenbugs. We can
thus run PEREGRINE to deterministically diversify the schedules



at different replicas (e.g., using different scheduling algorithms or
schedule caches) to tolerate unknown concurrency errors,

Applications of individual techniques. The individual ideas in
PEREGRINE can also benefit other research efforts. For instance,
hybrid schedules can make the sync-schedule approach determinis-
tic without recording executions, by coupling it with a sound static
race detector. Determinism-preserving slicing can (1) compute in-
put filters to block bad inputs [18] causing concurrency errors and
(2) randomize an input causing a concurrency error for use with
anonymous bug reporting [16]. Schedule-guided simplification can
transparently improve the precision of many existing static analy-
ses: simply run them on the simplified programs. This improved
precision may be leveraged to accurately detect errors or even ver-
ify the correctness of a program according to a set of schedules. In-
deed, from a verification perspective, our simplification technique
helps verify that executions reusing schedules have no new races.

2.3 Assumptions

At a design level, we anticipate the schedule-relaxation approach
to work well for many programs/workloads as long as (1) they
can benefit from repeatability, (2) their schedules can be frequently
reused, (3) their races are rare, and (4) their nondeterminism comes
from the sources tracked by PEREGRINE. This approach is cer-
tainly not designed for every multithreaded program. For instance,
like other DMT systems, PEREGRINE should not be used for paral-
lel simulators that desire nondeterminism for statistical confidence.
For programs/workloads that rarely reuse schedules, PEREGRINE
may be unable to amortize the cost of recording and analyzing ex-
ecution traces. For programs full of races, enforcing hybrid sched-
ules may be as slow as mem-schedules. PEREGRINE addresses non-
determinism due to thread scheduling and data races. It mitigates
input nondeterminism by reusing schedules on different inputs. It
currently considers command line arguments, data read from a file
or a socket, and the values returned by random()-variants as inputs.
PEREGRINE ensures that schedule-reuses are fully deterministic if
a program contains only these nondeterminism sources, an assump-
tion met by typical programs. If a program is nondeterministic due
to other sources, such as functions that query physical time (e.g.,
gettimeofday()), pointer addresses returned by malloc(), and
nondeterminism in the kernel or external libraries, PEREGRINE re-
lies on developers to annotate these sources.

The underlying techniques that PEREGRINE leverages make as-
sumptions as well. PEREGRINE computes preconditions from a
trace slice using the symbolic execution engine KLEE, which does
not handle floating point operations; though recent work [17] has
made advances in symbolic execution of floating point programs.
(Note that floating point operations not in trace slices are not an
issue.) We explicitly designed PEREGRINE’s slicing technique to
compute sufficient preconditions, but these preconditions may still
include unnecessary ones, because computing the weakest (most re-
laxed) preconditions in general is undecidable [4]. The alias analy-
sis PEREGRINE uses makes a few assumptions about the analyzed
programs [8]; a “sounder” alias analysis [28] would remove these
assumptions. These analyses may all get expensive for large pro-
grams. For server programs, PEREGRINE borrows the windowing
idea from our previous work [19]; it is thus similarly limited (§6.3).

At an implementation level, PEREGRINE uses the LLVM frame-
work, thus requiring that a program is in either source (so we can
compile using LLVM) or LLVM IR format. PEREGRINE ignores
inline x86 assembly or calls to external functions it does not know.
For soundness, developers have to lift x86 assembly to LLVM IR
and provide summaries for external functions. (The external func-
tion problem is alleviated because KLEE comes with a Libc imple-

pthread_mutex_lock(&m0)

pthread_mutex_unlock(&m0)

pthread_mutex_unlock(&m1)

pthread_mutex_lock(&m1)

thread t0

result += ...

thread t1

result += ...

printf(], result)

Figure 6: No PEREGRINE race with respect to this schedule.

mentation.) Currently PEREGRINE works only with a single pro-
cess, but previous work [10] has demonstrated how DMT systems
can be extended to multiple processes.

3 Hybrid Schedules
This section describes how PEREGRINE computes (§3.1) and en-
forces (§3.2) hybrid schedules.

3.1 Computing Hybrid Schedules

To compute a hybrid schedule, PEREGRINE first extracts a
total order of synchronization operations from an execution
trace. Currently, it considers 28 pthread operations, such as
pthread_mutex_lock() and pthread_cond_wait(). It also
considers the entry and exit of a thread as synchronization oper-
ations so that it can order these events together with other synchro-
nization operations. These operations are sufficient to run the pro-
grams evaluated, and more can be easily added. PEREGRINE uses
a total, instead of a partial, order because previous work has shown
that a total order is already efficient [19, 42].

For determinism, PEREGRINE must detect races that occurred
during the recorded execution and compute execution order con-
straints to deterministically resolve the races. An off-the-shelf race
detector would flag too many races because it considers the original
synchronization constraints of the program, whereas PEREGRINE
wants to detect races according to a sync-schedule [44, 45]. To il-
lustrate, consider Figure 6, a modified sync-schedule based on the
one in Figure 4. Suppose the two threads acquire different mutex
variables, and thread t1 acquires and releases its mutex before t0.
Typical lockset-based [47] or happens-before-based [34] race de-
tectors would flag a race on result, but our race detector does not:
the sync-schedule in the figure deterministically resolves the order
of accesses to result. Sync-schedules anecdotally reduced the
number of possible races greatly, in one extreme case, from more
than a million to four [44].

Mechanically, PEREGRINE detects occurred races using a
happens-before-based algorithm. It flags two memory accesses as a
race iff (1) they access the same memory location and at least one is
a store and (2) they are concurrent. To determine whether two ac-
cesses are concurrent, typical happens-before-based detectors use
vector clocks [40] to track logically when the accesses occur. Since
PEREGRINE already enforces a total synchronization order, it uses
a simpler and more memory-efficient logical clock representation.

Specifically, given two adjacent synchronization operations
within one thread with relative positions m and n in the sync-
schedule, PEREGRINE uses [m, n) as the logical clock of all in-
structions executed by the thread between the two synchroniza-
tion operations. For instance, in Figure 4, all instructions run by
thread t0 between the pthread_mutex_unlock() operation and
the thread exit have clock [4, 8). PEREGRINE considers two ac-
cesses with clocks [m0, n0) and [m1, n1) concurrent if the two
clock ranges overlap, i.e., m0 < n1 ∧ m1 < n0. For instance,
[4, 8) and [5, 6) are concurrent.

To deterministically resolve a race, PEREGRINE enforces an ex-
ecution order constraint inst1 → inst2 where inst1 and inst2 are



inst1

inst2

inst4

inst3

thread t0 thread t1

Subsumed

Figure 7: Example subsumed execution order constraint.

the two dynamic instruction instances involved in the race. PERE-
GRINE identifies a dynamic instruction instance by 〈sid, tid, nbr〉
where sid refers to the unique ID of a static instruction in the ex-
ecutable file; tid refers to the internal thread ID maintained by
PEREGRINE, which always starts from zero and increments deter-
ministically upon each pthread_create(); and nbr refers to the
number of control-transfer instructions (branch, call, and return) lo-
cally executed within the thread from the last synchronization to in-
struction insti. For instance, PEREGRINE represents the execution
order constraint in Figure 4 as 〈L15, t1, 0〉 → 〈L9, t0, 2〉, where
the branch count 2 includes the return from worker and the branch
L7 of thread t0. We must distinguish different dynamic instances of
a static instruction because some of these dynamic instances may
be involved in races while others are not. We do so by counting
branches because if an instruction is executed twice, there must be a
control-transfer between the two instances [22]. We count branches
starting from the last synchronization operation because the partial
schedule preceding this operation is already made deterministic.

If one execution order constraint subsumes another, PEREGRINE
does not add the subsumed one to the schedule. Figure 7 shows a
subsumed constraint example. Algorithmically, PEREGRINE con-
siders an execution order constraint inst1 → inst4 subsumed by
inst2 → inst3 if (1) inst1 and inst2 have the same logical clock
(so they must be executed by the same thread) and inst2 occurs
no earlier than inst1 in the recorded execution trace; (2) inst3
and inst4 have the same logical clock and inst3 occurs no later
than inst4 in the trace. This algorithm ignores transitive order
constraints, so it may miss some subsumed constraints. For in-
stance, it does not consider inst1 → inst4 subsumed if we re-
place constraint inst2 → inst3 with inst2 → instother and
instother → inst3 where instother is executed by a third thread.

3.2 Enforcing Hybrid Schedules

To enforce a synchronization order, PEREGRINE uses a technique
called semaphore relay [19] that orders synchronization operations
with per-thread semaphores. At runtime, a synchronization wrap-
per (recall that PEREGRINE instruments synchronization operations
for runtime control) waits on the semaphore of the current thread.
Once it is woken up, it proceeds with the actual synchronization
operation, then wakes up the next thread according to the synchro-
nization order. For programs that frequently do synchronization
operations, the overhead of semaphore may be large because it may
cause a thread to block. Thus, PEREGRINE also provides a spin-
wait version of semaphore relay called flag relay. This technique
turns out to be very fast for many programs evaluated (§7.2).

To enforce an execution order constraint, PEREGRINE uses pro-
gram instrumentation, avoiding the need for special hardware, such
as the often imprecise hardware branch counters [22]. Specifi-
cally, given a dynamic instruction instance 〈sid, tid, nbr〉, PERE-
GRINE instruments the static instruction sid with a semaphore up()
or down() operation. It also instruments the branch instructions
counted in nbr so that when each of these branch instructions
runs, a per-thread branch counter is incremented. PEREGRINE ac-
tivates the inserted semaphore operation for thread tid only when
the thread’s branch counter matches nbr. To avoid interference and
unnecessary contention when there are multiple order constraints,

void slot(int sid) { // sid is static instruction id
if(instruction sid is branch)

nbr[self()] ++; // increment per-thread branch counter
// get semaphore operations for current thread at instruction sid
my actions = actions[sid][self()];
for action in my actions

if nbr[self()] == action.nbr // check branch counter
actions.do(); // perform up() or down()

}

Figure 8: Instrumentation to enforce execution order constraints.

PEREGRINE assigns a unique semaphore to each constraint.
PEREGRINE instruments a program by leveraging a fast instru-

mentation framework we previously built [53]. It keeps two ver-
sions of each basic block: a normally compiled, fast version, and
a slow backup padded with calls to a slot() function before each
instruction. As shown in Figure 8, the slot() function interprets
the actions (semaphore up/down) to be taken at each instruction.
To instrument an instruction, PEREGRINE simply updates the ac-
tions for that instruction. This instrumentation may be expensive,
but fortunately, PEREGRINE leaves it off most of the time and turns
it on only at the last synchronization operation before an inserted
semaphore operation.

PEREGRINE turns on/off this instrumentation by switching a per-
thread flag. Upon each function entry, PEREGRINE inserts code to
check this flag and determine whether to run the normal or slow
version of the basic blocks. PEREGRINE also inserts this check after
each function returns in case the callee has switched the per-thread
flag. The overhead of these checks tend to be small because the
flags are rarely switched and hardware branch predication works
well in this case [53].

One potential issue with branch-counting is that PEREGRINE has
to “fix” the partial path from the last synchronization to the dynamic
instruction instance involved in a race so that the branch-counts
match between the recorded execution and all executions reusing
the extracted hybrid schedule, potentially reducing schedule-reuse
rates. Fortunately, races are rare, so this issue has not reduced
PEREGRINE’s schedule-reuse rates based on our evaluation.

4 Determinism-Preserving Slicing
PEREGRINE uses determinism-preserving slicing to (1) compute
sufficient preconditions to avoid new races and ensure that a sched-
ule is feasible, and (2) filter many unnecessary preconditions to in-
crease schedule-reuse rates. It does so using inter- and intra-thread
steps. In the inter-thread step (§4.1), it detects and avoids input-
dependent races that do not occur in the execution trace, but may
occur if we reuse the schedule on a different input. In the intra-
thread step (§4.1), the analyzer computes a path slice per thread by
including instructions that may affect the events in the schedule or
the instructions identified in the inter-thread step.

4.1 Inter-thread Step

In the inter-thread step, PEREGRINE detects and avoids input-
dependent races with respect to a hybrid schedule. An example
input-dependent race is the one between lines L8 and L15 in Fig-
ure 3, which occurs when atoi(argv[3]) returns 1 causing the
true branch of L7 to be taken. Figure 9 shows two more types of
input-dependent races.

// thread t1 // thread t2
a[input1]++; a[input2] = 0;

(a)

// thread t1 // thread t2
if(input1==0) if(input2==0)

a++; a = 0;
(b)

Figure 9: Input-dependent races. Race (a) occurs when input1 and
input2 are the same; Race (b) occurs when both true branches are taken.



// detect input-dependent races, and add involved dynamic instruction
// instances to slicing targets used by the inter-thread step. r1 and
// r2 are two concurrent regions
void detect input dependent races(r1, r2) {

// iterate through all instruction pairs in r1, r2
for (i1, i2) in (r1, r2) {

if (neither i1 nor i2 is a branch instruction) {
if(mayrace(i1, i2)) {

slicing targets.add(i1); // add i1 to slicing targets
slicing targets.add(i2); // add i2 to slicing targets

}
} else if (exactly one of i1, i2 is a branch instruction) {

br = branch instruction in i1, i2;
inst = the other instruction in i1, i2;
nottaken = the not taken branch of br in the execution trace;
if(mayrace br(br, nottaken, inst)) {

// add the taken branch of br to slicing targets
taken = the taken branch of br in trace;
slicing targets.add br(br, taken);

}
} else { // both i1, i2 are branches

nottaken1 = the not taken branch of i1 in trace;
nottaken2 = the not taken branch of i2 in trace;
if(mayrace br br(i1, nottaken1, i2, nottaken2) {

taken1 = the taken branch of i1 in trace;
slicing targets.add br(i1, taken1);

}
}

}
}
// return true if instructions i1 and i2 may race
bool mayrace(i1, i2) {

// query alias analysis
return mayalias(i1, i2) && ((i1 is a store) | | (i2 is a store));

}
// return true if the not-taken branch of br may race with inst
bool mayrace br(br, nottaken, inst) {

for i in (instructions in the nottaken branch of br) {
if(mayrace(i, inst))

return true;
}
return false;

}
// return true if the not-taken branch of br1 may race with the
// not-taken branch of br2
bool mayrace br br(br1, nottaken1, br2, nottaken2) {

for inst in (instructions in the nottaken2 branch of br2) {
if(mayrace br(br1, nottaken1, inst))

return true;
}
return false;

}
Figure 10: Input-dependent race detection algorithm.

To detect such races, PEREGRINE starts by refining the logical
clocks computed based on the sync-schedule (§3.1) with execu-
tion order constraints because it will also enforce these constraints.
PEREGRINE then iterates through all pairs of concurrent regions,
where a region is a set of instructions with an identical logical clock.
For each pair, it detects input-dependent races, and adds the racy in-
structions to a list of slicing targets used by the intra-thread step.

Figure 10 shows the algorithm to detect input-dependent races
for two concurrent regions. The algorithm iterates through each
pair of instructions respectively from the two regions, and han-
dles three types of input-dependent races. First, if neither instruc-
tion is a branch instruction, it queries alias analysis to determine
whether the instructions may race. If so, it adds both instruc-
tions to slicing_targets and adds additional preconditions to
ensure that the pointers dereferenced are different, so that reusing
the schedule on a different input does not cause the may-race to
become a real race. Figure 9(a) shows a race of this type.

Second, if exactly one of the instructions is a branch instruction,
the algorithm checks whether the instructions contained in the not-
taken branch1 of this instruction may race with the other instruction.
It must check the not-taken branch because a new execution may
well take the not-taken branch and cause a race. To avoid such a
race, PEREGRINE adds the taken branch into the trace slice so that
executions reusing the schedule always go down the taken branch.
For instance, to avoid the input-dependent race between lines L8
and L15 in Figure 3, PEREGRINE includes the false branch of L7 in
the trace slice.

Third, if both instructions are branch instructions, the algorithm
checks whether the not-taken branches of the instructions may race,
and if so, it adds either taken branch to slicing_targets. For
instance, to avoid the race in Figure 9(b), PEREGRINE includes one
of the false branches in the trace slice.

For efficiency, PEREGRINE avoids iterating through all pairs of
instructions from two concurrent regions because instructions in
one region often repeatedly access the same memory locations.
Thus, PEREGRINE computes memory locations read or written by
all instructions in one region, then checks whether instructions in
the other region also read or write these memory locations. These
locations are static operands, not dynamic addresses [14], so that
PEREGRINE can aggressively cache them per static function or
branch. The complexity of our algorithm thus drops from O(MN)
to O(M +N) where M and N are the numbers of memory instruc-
tions in the two regions respectively.

4.2 Intra-thread Step

In the intra-thread step, PEREGRINE leverages a previous algo-
rithm [18] to compute a per-thread path slice, by including instruc-
tions required for the thread to reach the slicing_targets iden-
tified in the inter-thread step and the events in the hybrid schedule.
To do so, PEREGRINE first prepares a per-thread ordered target list
by splitting slicing_targets and events in the hybrid schedule
and sorting them based on their order in the execution trace.

PEREGRINE then traverses the execution trace backwards to
compute path slices. When it sees a target, it adds the target to
the path slice of the corresponding thread, and starts to track the
control- and data-dependencies of this target.2 PEREGRINE adds
a branch instruction to the path slice if taking the opposite branch
may cause the thread not to reach any instruction in the current
(partial) path slice; L3 in Figure 4 is added for this reason. It adds a
non-branch instruction to the path slice if the result of this instruc-
tion may be used by instructions in the current path slice; L1 in
Figure 4 is added for this reason.

A “load p” instruction may depend on an earlier “store q” if p
and q may alias even though p and q may not be the same in the ex-
ecution trace, because an execution on a different input may cause
p and q to be the same. Thus, PEREGRINE queries alias analysis
to compute such may-dependencies and include the depended-upon
instructions in the trace slice.

Our main modification to [18] is to slice toward multiple or-
dered targets. To illustrate this need, consider branch L4:false
of t0 in Figure 4. PEREGRINE must add this branch to thread
t0’s slice, because otherwise, the thread would reach another

1PEREGRINE computes instructions contained in a not-taken
branch using an interprocedural post-dominator analysis [4].
2For readers familiar with precondition slicing, PEREGRINE does
not always track data-dependencies for the operands of a target. For
instance, consider instruction L9 of thread t0 in Figure 4. PERE-
GRINE’s goal is to deterministically resolve the race involving L9
of t0, but it allows the value of result to be different. Thus, PERE-
GRINE does not track dependencies for the value of result; L15
of t0 is elided from the slice for this reason.



pthread_create(), a different synchronization operation than the
pthread_mutex_lock() operation in the schedule.

The choice of LLVM IR has considerably simplified our slicing
implementation. First, LLVM IR limits memory access to only two
instructions, load and store, so that our algorithms need consider
only these instructions. Second, LLVM IR uses an unlimited num-
ber of virtual registers, so that our analysis does not get poisoned by
stack spilling instructions. Third, each virtual register is defined ex-
actly once, and multiple definitions to a variable are merged using
a special instruction. This representation (static single assignment)
simplifies control- and data-dependency tracking. Lastly, the type
information LLVM IR preserves helps improving the precision of
the alias analysis.

5 Schedule-Guided Simplification
In both the inter- and intra-thread steps of determinism-preserving
slicing, PEREGRINE frequently queries alias analysis. The inter-
thread step needs alias information to determine whether two in-
structions may race (mayalias() in Figure 10). The intra-thread
step needs alias information to track potential dependencies.

We thus integrated bddbddb [51, 52], one of the best alias analy-
ses, into PEREGRINE by creating an LLVM frontend to collect pro-
gram facts into the format bddbddb expects. However, our initial
evaluation showed that bddbddb sometimes yielded overly impre-
cise results, causing PEREGRINE to prune few branches, reducing
schedule-reuse rates (§7.3). The cause of the imprecision is that
standard alias analysis is purely static, and has to be conservative
and assume all possible executions. However, PEREGRINE requires
alias results only for the executions that may reuse a schedule, thus
suffering from unnecessary imprecision of standard alias analysis.

To illustrate, consider the example in Figure 3. Since the number
of threads is determined at runtime, static analysis has to abstract
this unknown number of dynamic thread instances, often coalescing
results for multiple threads into one. When PEREGRINE slices the
trace in Figure 4, bddbddb reports that the accesses to data (L13
instances) in different threads may alias. PEREGRINE thus has to
add them to the trace slice to avoid new races (§4.1). Since L13
depends on L12, L11, and L10, PEREGRINE has to add them to the
trace slice, too. Eventually, an imprecise alias result snowballs into
a slice as large as the trace itself. The preconditions from this slice
constrains the data size to be exactly 2, so PEREGRINE cannot reuse
the hybrid schedule in Figure 4 on other data sizes.

To improve precision, PEREGRINE uses schedule-guided simpli-
fication to simplify a program according to a schedule, so that alias
analysis is less likely to get confused. Specifically, PEREGRINE
performs three main simplifications:
1. It clones the functions as needed. For instance, it gives each

thread in a schedule a copy of the thread function.
2. It unrolls a loop when it can determine the loop bound

based on a schedule. For instance, from the number of the
pthread_create() operations in a schedule, it can determine
how many times the loop at lines L4–L5 in Figure 3 executes.

3. It removes branches that contradict the schedule. Loop un-
rolling can be viewed as a special case of this simplification.

PEREGRINE does all three simplifications using one algorithm.
From a high level, this algorithm iterates through the events in a
schedule. For each pair of adjacent events, it checks whether they
are “at the same level,” i.e., within the same function and loop itera-
tion. If so, PEREGRINE does not clone anything; otherwise, PERE-
GRINE clones the mismatched portion of instructions between the
events. (To find these instructions, PEREGRINE uses an interpro-
cedural reachability analysis by traversing the control flow graph
of the program.) Once these simplifications are applied, PERE-

GRINE can further simplify the program by running stock LLVM
transformations such as constant folding. It then feeds the sim-
plified program to bddbddb, which can now distinguish different
thread instances (thread-sensitivity in programing language terms)
and precisely reports that L13 of t0 and L13 of t1 are not aliases,
enabling PEREGRINE to compute the small trace slice in Figure 4.

By simplifying a program, PEREGRINE can automatically im-
prove the precision of not only alias analysis, but also other anal-
yses. We have implemented range analysis [46] to improve the
precision of alias analysis on programs that divide a global array
into disjoint partitions, then process each partition within a thread.
The accesses to these disjoint partitions from different threads do
not alias, but bddbddb often collapses the elements of an array into
one or two abstract locations, and reports the accesses as aliases.
Range analysis can solve this problem by tracking the lower and
upper bounds of the integers and pointers. With range analysis,
PEREGRINE answers alias queries as follows. Given two pointers
(p+i) and (q+i), it first queries bddbddb whether p and q may
alias. If so, it queries the more expensive range analysis whether
p+i and q+j may be equal. It considers the pointers as aliases only
when both queries are true. Note that our simplification technique is
again key to precision because standard range analysis would merge
ranges of different threads into one.

While schedule-guided simplification improves precision, PERE-
GRINE has to run alias analysis for each schedule, instead of once
for the program. This analysis time is reasonable as PEREGRINE’s
analyzer runs offline. Nonetheless, the simplified programs PERE-
GRINE computes for different schedules are largely the same, so a
potential optimization is to incrementally analyze a program, which
we leave for future work.

6 Implementation Issues
6.1 Recording an Execution

To record an execution trace, PEREGRINE can use one of the ex-
isting deterministic record-replay systems [13, 22, 33] provided
that PEREGRINE can extract an instruction trace. For simplicity,
we have built a crude recorder on top of the LLVM interpreter in
KLEE. When an program calls the PEREGRINE-provided wrapper
to pthread_create(..., func, args), the recorder spawns a
thread to run func(args) within an interpreter instance. These
interpreter instances log each instruction interpreted into a central
file. For simplicity, PEREGRINE does symbolic execution during
recording because it already runs KLEE when recording an execu-
tion and pays the high overhead of interpretation. A faster recorder
would enable PEREGRINE to symbolically execute only the trace
slices instead of the typically larger execution traces. Since deter-
ministic record-replay is a well studied topic, we have not focused
our efforts on optimizing the recorder.

6.2 Handling Blocking System Calls

Blocking system calls are natural scheduling points, so PEREGRINE
includes them in the schedules [19]. It currently considers eight
blocking system calls, such as sleep(), accept(), and read().
For each blocking system call, the recorder logs when the call is
issued and when the call is returned. When PEREGRINE computes
a schedule, it includes these blocking system call and return oper-
ations. When reusing a schedule, PEREGRINE attempts to enforce
the same call and return order. This method works well for blocking
system calls that access local state, such as sleep() or read() on
local file descriptors. However, other blocking system calls receive
input from the external world, which may or may not arrive each
time a schedule is reused. Fortunately, programs that use these op-
erations tend to be server programs, and PEREGRINE handles this



class of programs differently.

6.3 Handling Server Programs

Server programs present two challenges for PEREGRINE. First, they
are more prone to timing nondeterminism than batch programs be-
cause their inputs (client requests) arrive nondeterministically. Sec-
ond, they often run continuously, making their schedules too spe-
cific to reuse.

PEREGRINE addresses these challenges with the windowing idea
from our previous work [19]. The insight is that server programs
tend to return to the same quiescent states. Thus, instead of pro-
cessing requests as they arrive, PEREGRINE breaks a continuous
request stream down into windows of requests. Within each win-
dow, it admits requests only at fixed points in the current schedule.
If no requests arrive at an admission point for a predefined timeout,
PEREGRINE simply proceeds with the partial window. While a win-
dow is running, PEREGRINE buffers newly arrived requests so that
they do not interfere with the running window. With windowing,
PEREGRINE can record and reuse schedules across windows.

PEREGRINE requires developers to annotate points at which re-
quest processing begins and ends. It also assumes that after a server
processes all current requests, it returns to the same quiescent state.
That is, the input from the requests does not propagate further after
the requests are processed. The same assumption applies to the data
read from local files. For server programs not meeting this assump-
tion, developers can manually annotate the functions that observe
the changed server state, so that PEREGRINE can consider the re-
turn values of these functions as input. For instance, since Apache
caches client requests, we made it work with PEREGRINE by anno-
tating the return of cache_find() as input.

One limitation of applying our PEREGRINE prototype to server
programs is that our current implementation of schedule-guided
simplification does not work well with thread pooling. To give each
thread a copy of the corresponding thread function, PEREGRINE
identifies pthread_create(...,func,...) operations in a pro-
gram and clones function func. Server programs that use thread
pooling tend to create worker threads to run generic thread func-
tions during program initialization, then repeatedly use the threads
to process client requests. Cloning these generic thread functions
thus helps little with precision. One method to solve this problem
is to clone the relevant functions for processing client requests. We
have not implemented this method because the programs we eval-
uated include only one server program, Apache, on which slicing
already performs reasonably well without simplification (§7.3).

6.4 Skipping Wait Operations

When reusing a schedule, PEREGRINE enforces a total order of
synchronization operations, which subsumes the execution order
enforced by the original synchronization operations. Thus, for
speed, PEREGRINE can actually skip the original synchronization
operations as in [19]. PEREGRINE currently skips sleep-related
operations such as sleep() and wait-related operations such as
pthread_barrier_wait(). These operations often uncondition-
ally block the calling thread, incurring context switch overhead, yet
this blocking is unnecessary as PEREGRINE already enforces a cor-
rect execution order. Our evaluation shows that skipping blocking
operations significantly speeds up executions.

6.5 Manual Annotations

PEREGRINE works automatically for most of the programs we eval-
uated. However, as discussed in §6.3, it requires manual annota-
tions for server programs. In addition, if a program has nondeter-
minism sources beyond what PEREGRINE automatically tracks, de-
velopers should annotate these sources with input(void* addr,

size_t nbyte) to mark nbyte of data starting from addr as in-
put, so that PEREGRINE can track this data.

Developers can also supply optional annotations to improve
PEREGRINE’s precision in four ways. First, for better alias re-
sults, developers can add custom memory allocators and memcpy-
like functions to a configuration file of PEREGRINE. Second, they
can help PEREGRINE better track ranges by adding assert() state-
ments. For instance, a function in the FFT implementation we
evaluated uses bit-flip operations to transform an array index into
another, yet both indexes have the same range. The range analy-
sis we implemented cannot precisely track these bit-flip operations,
so it assumes the resultant index is unbounded. Developers can
fix this problem by annotating the range of the index with an as-
sertion “assert(index<bound).” Third, they can provide sym-
bolic summaries to help PEREGRINE compute more relaxed con-
straints. For instance, consider Figure 5 and a typical implemen-
tation of atoi() that iterates through all characters in the input
string and checks whether each character is a digit. Without a sum-
mary of atoi(), PEREGRINE would symbolically execute the body
of atoi(). The preconditions it computes for argv[3] would be
(argv3,0 6= 49)∧ (argv3,1 < 48∨ argv3,1 > 57), where argv3,i

is the ith byte of argv[3] and 48, 49, and 57 are ASCII codes
of ‘0’, ‘1’, and ‘9’. These preconditions thus unnecessarily con-
strain argv[3] to have a valid length of one. Another example is
string search. When a program calls strstr(), it often concerns
whether there exists a match, not specifically where the match oc-
curs. Without a symbolic summary of strstr(), the preconditions
from strstr() would constrain the exact location where the match
occurs. Similarly, if a trace slice contains complex code such as a
decryption function, users can provide a summary of this function
to mark the decrypted data as symbolic when the argument is sym-
bolic. Note that complex code not included in trace slices, such as
the read() in Figure 3, is not an issue.

7 Evaluation
Our PEREGRINE implementation consists of 29,582 lines of C++
code, including 1,338 lines for the recorder; 2,277 lines for the re-
player; and 25,967 lines for the analyzer. The analyzer further splits
into 7,845 lines for determinism-preserving slicing, 12,332 lines for
schedule-guided simplification, and 5,790 lines for our LLVM fron-
tend to bddbddb.

We evaluated our PEREGRINE implementation on a diverse set
of 18 programs, including Apache, a popular web server; PBZip2,
a parallel compression utility; aget, a parallel wget-like util-
ity; pfscan, a parallel grep-like utility; parallel implementations
of 13 computation-intensive algorithms, 10 in SPLASH2 and 3
in PARSEC; and racey, a benchmark specifically designed to
exercise deterministic execution and replay systems [29]. All
SPLASH2 benchmarks were included except one that we cannot
compile, one that our current prototype cannot handle due to an
implementation bug, and one that does not run correctly in 64-bit
environment. The chosen PARSEC benchmarks (blackscholes,
swaptions and streamcluster) include the ones that (1) we
can compile, (2) use threads, and (3) use no x86 inline assem-
blies. These programs were widely used in previous studies
(e.g., [12, 39, 54]).

Our evaluation machine was a 2.67 GHz dual-socket quad-core
Intel Xeon machine with 24 GB memory running Linux 2.6.35.
When evaluating PEREGRINE on Apache and aget, we ran the
evaluated program on this machine and the corresponding client or
server on another to avoid contention between the programs. These
machines were connected via 1Gbps LAN. We compiled all pro-
grams to machine code using llvm-gcc -O2 and the LLVM com-



Program Race Description
Apache Reference count decrement and check against 0 are not atomic, resulting in a program crash.
PBZip2 Variable fifo is used by one thread after being freed by another thread, resulting in a program crash.
barnes Variable tracktime is read by one thread before assigned the correct value by another thread.
fft initdonetime and finishtime are read by one thread before assigned the correct values by another thread.

lu-non-contig Variable rf is read by one thread before assigned the correct value by another thread.
streamcluster PARSEC has a custom barrier implementation that synchronizes using a shared integer flag is_arrival_phase.

racey Numerous intentional races caused by multiple threads reading and writing global arrays sig and m without synchronization.

Table 1: Programs used for evaluating PEREGRINE’s determinism.

Program Races Order Constraints
Apache 0 0
PBZip2 4 3
barnes 5 1
fft 10 4

lu-non-contig 10 7
streamcluster 0 0

racey 167974 9963

Table 2: Hybrid schedule statistics. Column Races shows the number of
races detected according the corresponding sync-schedule, and Column Or-
der Constraints shows the number of execution order constraints PERE-
GRINE adds to the final hybrid schedule. The latter can be smaller than the
former because PEREGRINE prunes subsumed execution order constraints
(§3). PEREGRINE detected no races for Apache and streamcluster be-
cause the corresponding sync-schedules are sufficient to resolve the races
deterministically; it thus adds no order constraints for these programs.

piler llc. We used eight worker threads for all experiments.
Unless otherwise specified, we used the following workloads in

our experiments. For Apache, we used ApacheBench [1] to repeat-
edly download a 100 KB webpage. For PBZip2, we compressed a
10 MB randomly generated text file. For aget, we downloaded a
77 MB file (Linux-3.0.1.tar.bz2). For pfscan, we scanned
the keyword return from 100 randomly chosen files in GCC. For
SPLASH2 and PARSEC programs, we ran workloads which typi-
cally completed in 1-100 ms.

In the remainder of this section, we focus on four questions:
§7.1: Is PEREGRINE deterministic if there are data races? Deter-

minism is one of the strengths of PEREGRINE over the sync-
schedule approach.

§7.2: Is PEREGRINE fast? For typical multithreaded programs that
have rare data races, PEREGRINE should be roughly as fast as
the sync-schedule approach. Efficiency is one of the strengths
of PEREGRINE over the mem-schedule approach.

§7.3: Is PEREGRINE stable? That is, can it frequently reuse sched-
ules? The higher the reuse rate, the more repeatable program
behaviors become and the more PEREGRINE can amortize the
cost of computing hybrid schedules.

§7.4: Can PEREGRINE significantly reduce manual annotation over-
head? Recall that our previous work [19] required developers
to manually annotate the input affecting schedules.

7.1 Determinism

We evaluated PEREGRINE’s determinism by checking whether
PEREGRINE could deterministically resolve races. Table 1 lists
the seven racy programs used in this experiment. We selected
the first five because they were frequently used in previous stud-
ies [37, 39, 43, 44] and we could reproduce their races on our eval-
uation machine. We selected the integer flag race in PARSEC to
test whether PEREGRINE can handle ad hoc synchronization [54].
We selected racey to stress test PEREGRINE: each run of racey
may have thousands of races, and if any of these races is resolved
differently, racey’s final output changes with high probability [29].

For each program with races, we recorded an execution trace and
computed a hybrid schedule from the trace. Table 2 shows for each

Program Deterministic?
sync-schedule hybrid schedule

Apache 4 4
PBZip2 6 4
barnes 6 4
fft 6 4

lu-non-contig 6 4
streamcluster 4 4

racey 6 4

Table 3: Determinism of sync-schedules v.s. hybrid schedules.

program (1) the number of dynamic races detected according to the
sync-schedule and (2) the number of execution order constraints
in the hybrid schedule. The reduction from the former to the lat-
ter shows how effectively PEREGRINE can prune redundant order
constraints (§3). In particular, PEREGRINE prunes 94% of the con-
straints for racey. For Apache and streamcluster, their races
are already resolved deterministically by their sync-schedules, so
PEREGRINE adds no execution order constraints.

To verify that the hybrid schedules PEREGRINE computed are de-
terministic, we first manually inspected the order constraints PERE-
GRINE added for each program except racey (because it has too
many races for manual verification). Our inspection results show
that these constraints are sufficient to resolve the corresponding
races. We then re-ran each program including racey 1000 times
while enforcing the hybrid schedule and injecting delays; and ver-
ified that each run reused the schedule and computed equivalent
results. (We determined result equivalence by checking either the
output or whether the program crashed.)

We also compared the determinism of PEREGRINE to our pre-
vious work [19] which only enforces sync-schedules. Specifically,
we reran the seven programs with races 50 times enforcing only
the sync-schedules and injecting delays, and checked whether the
reuse runs computed equivalent results as the recorded run. As
shown in Table 3, sync-schedules are unsurprisingly deterministic
for Apache and streamcluster, because no races are detected ac-
cording to the corresponding sync-schedules. However, they are not
deterministic for the other five programs, illustrating one advantage
of PEREGRINE over the sync-schedule approach.

7.2 Efficiency

Replayer overhead. The most performance-critical component
is the replayer because it operates within a deployed program.
Figure 11 shows the execution times when reusing hybrid sched-
ules; these times are normalized to the nondeterministic execu-
tion time. (The next paragraph compares these times to those of
sync-schedules.) For Apache, we show the throughput (TPUT)
and response time (RESP). All numbers reported were averaged
over 500 runs. PEREGRINE has relatively high overhead on
water-nsquared (22.6%) and cholesky (46.6%) because these
programs do a large number of mutex operations within tight loops.
Still, this overhead is lower than the reported 1.2X-6X overhead of
a mem-schedule DMT system [9]. Moreover, PEREGRINE speeds
up barnes, lu-non-contig, radix, water-spatial, and ocean
(by up to 68.7%) because it safely skips synchronization and sleep
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Figure 11: Normalized execution time when reusing sync-schedules v.s. hy-
brid schedules. A time value greater than 1 indicates a slowdown compared
to a nondeterministic execution without PEREGRINE. We did not include
racey because it was not designed for performance benchmarking.

operations (§6.4). For the other programs, PEREGRINE’s overhead
or speedup is within 15%. (Note that increasing the page or file
sizes of the workload tends to reduce PEREGRINE’s relative over-
head because the network and disk latencies dwarf PEREGRINE’s.)

For comparison, Figure 11 shows the normalized execution
time when enforcing just the sync-schedules. This overhead is
comparable to our previous work [19]. For all programs except
water-nsquared, the overhead of enforcing hybrid schedules is
only slightly larger (at most 5.4%) than that of enforcing sync-
schedules. This slight increase comes from two sources: (1) PERE-
GRINE has to enforce execution order constraints to resolve races
deterministically for PBZip2, barnes, fft, and lu-non-contig;
and (2) the instrumentation framework PEREGRINE uses also in-
curs overhead (§3.2). The overhead for water-nsquared increases
by 13.4% because it calls functions more frequently than the other
benchmarks, and our instrumentation framework inserts code at
each function entry and return (§3.2).

Figure 12 shows the speedup of flag relay (§3.2) and skip-
ping blocking operations (§6.4). Besides water-nsquared and
cholesky, a second group of programs, including barnes,
lu-non-contig, radix, water-spatial, and ocean, also per-
form many synchronization operations, so flag relay speeds up both
groups of programs significantly. Moreover, among the synchro-
nization operations done by the second group of programs, many
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Figure 12: Speedup of optimization techniques. Note that Y axis is broken.

Program Trace Det Sli Sim Sym
Apache 449 0.4 885.32 n/a 5.8
PBZip2 2,227 0.1 587.9 317.8 19.7
aget 233 0.4 78.8 60.1 13.2

pfscan 46,602 1.1 1,601.4 2,047.9 1,136.6
barnes 324 0.2 300.5 481.5 56.9
fft 39 0.0 2.1 3,661.7 0.4

lu-contig 44,799 19.9 1,271.5 124.9 1,126.7
lu-non-contig 41,302 21.2 1,999.8 14,243.8 1,201.0

radix 3,110 1.5 46.2 96.4 182.9
water-spatial 7,508 1.0 1,407.0 9,628.1 120.6
water-nsquared 12,381 1.7 962.3 1,841.4 215.7

ocean 55,247 26.4 2,259.3 5,902.8 2,062.1
fmm 13,772 8.3 260.5 1,107.5 151.3

cholesky 47,200 28.8 3,102.9 6,350.1 685.5
blackscholes 62,024 16.5 539.9 542.9 3,284.8
swaptions 1,366 0.0 23.2 87.3 1.2

streamcluster 259 0.1 1.4 1.9 4.9

Table 4: Analysis time. Trace shows the number of thousand LLVM in-
structions in the execution trace of the evaluated programs, the main factor
affecting the execution time of PEREGRINE’s various analysis techniques,
including race detection (Det), slicing (Sli), simplification and alias anal-
ysis (Sim), and symbolic execution (Sym). The execution time is mea-
sured in seconds. The Apache trace is collected from one window of eight
requests. Apache uses thread pooling which our simplification technique
currently does not handle well (§6.3); nonetheless, slicing without simplifi-
cation works reasonably well for Apache already (§7.3).

are pthread_barrier_wait() operations, so PEREGRINE further
speeds up these programs by skipping these wait operations.

Analyzer and recorder overhead. Table 4 shows the execu-
tion time of PEREGRINE’s various program analyses. The execu-
tion time largely depends on the size of the execution trace. All
analyses typically finish within a few hours. For PBZip2 and fft,
we used small workloads (compressing 1 KB file and transforming
a 256X256 matrix) to reduce analysis time and to illustrate that the
schedules learned from small workloads can be efficiently reused
on large workloads. The simplification and alias analysis time of
fft is large compared to its slicing time because it performs many
multiplications on array indexes, slowing down our range anal-
ysis. Although lu-non-contig and lu-contig implement the
same scientific algorithm, their data access patterns are very dif-
ferent (§7.3), causing PEREGRINE to spend more time analyzing
lu-non-contig than lu-contig.

As discussed in §6.1, PEREGRINE currently runs KLEE to record
executions. Column Sym is also the overhead of PEREGRINE’s
recorder. This crude, unoptimized recorder can incur large slow-
down compared to the normal execution of a program. However,
this slowdown can be reduced to around 10X using existing record-
replay techniques [13, 33]. Indeed, we have experimented with a
preliminary version of a new recorder that records an execution by
instrumenting load and store instructions and saving them into
per-thread logs [13]. Figure 13 shows that this new recorder incurs
roughly 2-35X slowdown on eight programs, comparable to exist-
ing record-replay systems. Due to time constraints, we have not
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Figure 13: Overhead of recording load and store instructions.
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Figure 14: Slicing ratio after applying determinism-preserving slicing alone
(§4) and after further applying schedule-guided simplification (§5).

integrated this new recorder with PEREGRINE.

7.3 Stability
Stability measures how frequently PEREGRINE can reuse sched-
ules. The more frequently PEREGRINE reuses schedules, the more
efficient it is, and the more repeatable a program running on top
of PEREGRINE becomes. While PEREGRINE achieves determinism
and efficiency through hybrid schedules, it may have to pay the cost
of slightly reduced reuse rates compared to a manual approach [19].

A key factor determining PEREGRINE’s schedule-reuse rates is
how effectively it can slice out irrelevant instructions from the ex-
ecution traces. Figure 14 shows the ratio of the slice size over the
trace size for PEREGRINE’s determinism-preserving slicing tech-
nique, with and without schedule-guided simplification. The slicing
technique alone reduces the trace size by over 50% for all programs
except PBZip2, aget, pfscan, fft, lu-non-contig, ocean, and
swaptions. The slicing technique combined with scheduled-guide
simplification vastly reduces the trace size for PBZip2, aget, fft,
lu-contig, and swaptions.

Recall that PEREGRINE computes the preconditions of a sched-
ule from the input-dependent branches in a trace slice. The fewer
branches included in the slice, the more general the preconditions
PEREGRINE computes tend to be. We further measured the number
of such branches in the trace slices. Table 5 shows the results, to-
gether with a upper bound determined by the total number of input-
dependent branches in the execution trace, and a lower bound de-
termined by only including branches required to reach the recorded
synchronization operations. This lower bound may not be tight as
we ignored data dependency. For barnes, fft, blackscholes,
swaptions, and streamcluster, slicing with simplification (Col-
umn “Slicing+Sim”) achieves the best possible reduction. For
PBZip2, aget, pfscan, and lu-contig, the number of input-
dependent branches in the trace slice is close to the lower bound.
In the remaining programs, Apache, fmm, and cholesky also en-
joy large reduction, while the other five programs do not. This table
also shows that schedule-guided simplification is key to reduce the
number of input-dependent branches for PBZip2, fft, lu-contig,
blackscholes, and swaptions, and to reach the lower bound for
blackscholes, swaptions, and streamcluster.

We manually examined the preconditions PEREGRINE computed
from the input-dependent branches for these programs. We cate-
gory these programs below.

Best case: PBZip2, fft, lu-contig, blackscholes,
swaptions, and streamcluster. PEREGRINE computes the
weakest (i.e., most relaxed) preconditions for these programs. The

Program UB PEREGRINE LBSlicing Slicing+Sim
Apache 4,522 624 n/a 56
PBZip2 913 865 101 94
aget 20,826 18,859 9,514 9,491

pfscan 1,062,047 992,524 992,520 992,501
barnes 92 52 52 52
fft 2,266 1,568 17 17

lu-contig 2,823,379 2,337,431 131 128
lu-non-contig 2,962,621 2,877,877 2,876,364 128

radix 175,679 98,750 89,732 75
water-spatial 98,054 77,567 76,763 233
water-nsquared 89,348 76,786 76,242 1,843

ocean 2,605,185 2,364,538 2,361,256 400
fmm 299,816 57,670 56,532 1,642

cholesky 7,459 1,627 1,627 1,233
blackscholes 421,909 409,618 10 10
swaptions 35,584 35,005 21 21

streamcluster 20,851 75 42 42

Table 5: Effectiveness of program analysis techniques. UB shows the total
number of input-dependent branches in the corresponding execution trace,
an upper bound on the number included in the trace slice. Slicing and Slic-
ing+Sim show the number of input-dependent branches in the slice after ap-
plying determinism-preserving slicing alone (§4) and after further applying
schedule-guided simplification (§5). LB shows a lower bound on the num-
ber of input-dependent branches, determined by only including branches re-
quired to reach the recorded synchronization operations. This lower bound
may not be tight as we ignored data dependency when computing it.

preconditions often allow PEREGRINE to reuse one or two sched-
ules for each number of threads, putting no or few constraints on the
data processed. Schedule-guided simplification is crucial for these
programs; without simplification, the preconditions would fix the
data size and contents.

Slicing limitation: Apache and aget. The preconditions PERE-
GRINE computes for Apache fix the URL length; they also con-
strain the page size to be within an 8 KB-aligned range if the page
is not cached. The preconditions PEREGRINE computes for aget
fix the positions of “/” in the URL and narrow down the file size
to be within an 8 KB-aligned range. These preconditions thus un-
necessarily reduce the schedule-reuse rates. Nonetheless, they can
still match many different inputs, because they do not constrain the
page or file contents.

Symbolic execution limitation: barnes. barnes reads in two
floating point numbers from a file, and their values affect sched-
ules. Since PEREGRINE cannot symbolically execute floating point
instructions, it currently does not collect preconditions from them.

Alias limitation: lu-non-contig, radix, water-spatial,
water-nsquared, ocean, and cholesky. Even with simplifica-
tion, PEREGRINE’s alias analysis sometimes reports may-alias for
pointers accessed in different threads, causing PEREGRINE to in-
clude more instructions than necessary in the slices and compute
preconditions that fix the input data. For instance, each thread in
lu-non-contig accesses disjoint regions in a global array, but
the accesses from one thread are not continuous, confusing PERE-
GRINE’s alias analysis. (In contrast, each thread in lu-contig ac-
cesses a contiguous array partition.)

Programs that rarely reuse schedules: pfscan and fmm. For
instance, pfscan searches a keyword in a set of files using multiple
threads, and for each match, it grabs a lock to increment a counter.
A schedule computed on one set of files is unlikely to suit another.

7.4 Ease of Use
Table 6 shows the annotations (§6.5) we added to make the evalu-
ated programs work with PEREGRINE. For most programs, PERE-
GRINE works out of the box. Apache uses its own library functions
for common tasks such as memory allocation, so we annotated 21



Program LOC PEREGRINE TERN
Apache 464 K 24 6
PBZip2 7,371 1 3
aget 834 0 n/a

pfscan 776 0 n/a
barnes 1,954 0 9
fft 1,403 1 4

lu-contig 991 0 n/a
lu-non-contig 1,265 0 3

radix 661 0 4
water-spatial 1,573 0 9
water-nsquared 1,188 0 10

ocean 6,494 0 5
fmm 3,208 0 9

cholesky 3,683 0 4
blackscholes 1,275 0 n/a
swaptions 1,110 0 n/a

streamcluster 1,963 0 n/a
racey 124 0 n/a

Table 6: Source annotation requirements of PEREGRINE v.s. TERN. PERE-
GRINE represents the number of annotations added for PEREGRINE, and
TERN counts annotations added for TERN. Programs not included in the
TERN evaluation are labeled n/a. LOC of PBZip2 also includes the lines of
code of the compression library libbz2.

such functions. We added two annotations to mark the boundaries
of client request processing and one to expose the hidden state in
Apache (§6.3). PBZip2 decompression uses a custom search func-
tion (memstr) to scan through the input file for block boundaries.
We added one annotation for this function to relax the precondi-
tions PEREGRINE computes. (PEREGRINE works automatically
with PBZip2 compression.) We added one assertion to annotate
the range of a variable in fft (§6.5).

For comparison, Table 6 also shows the annotation overhead of
our previous DMT system TERN [19]. For all programs except
Apache, PEREGRINE has fewer number of annotations than TERN.
Although the number of annotations that TERN has is also small,
adding these annotations may require developers to manually re-
construct the control- and data-dependencies between instructions.

In order to make the evaluated programs work with PEREGRINE,
we had to fix several bugs in them. For aget, we fixed an off-
by-one write in revstr() which prevented us from tracking con-
straints for the problematic write, and a missing check on the
return value of pwrite() which prevented us from computing
precise ranges. We fixed similar missing checks in swaptions,
streamcluster, and radix. We did not count these modifications
in Table 6 because they are real bug fixes. (This interesting side-
effect illustrates the potential of PEREGRINE as an error detection
tool: the precision gained from simplification enables PEREGRINE
to detect real races in well-studied programs.)

8 Related Work
Deterministic execution. By reusing schedules, PEREGRINE mit-
igates input nondeterminism and makes program behaviors re-
peatable across inputs. This method is based on the schedule-
memoization idea in our previous work TERN [19], but PEREGRINE
largely eliminates manual annotations, and provides stronger deter-
minism guarantees than TERN. To our knowledge, no other DMT
systems mitigate input nondeterminism; some actually aggravate it,
potentially creating “input-heisenbugs.”

PEREGRINE and other DMT systems can be complementary:
PEREGRINE can use an existing DMT algorithm when it runs a pro-
gram on a new input so that it may compute the same schedules at
different sites; existing DMT systems can speed up their patholog-
ical cases using the schedule-relaxation idea.

Determinator [7] advocates a new, radical programming model

that converts all races, including races on memory and other shared
resources, into exceptions, to achieve pervasive determinism. This
programming model is not designed to be backward-compatible.
dOS [10] provides similar pervasive determinism with backward
compatibility, using a DMT algorithm first proposed in [20] to
enforce mem-schedules. While PEREGRINE currently focuses on
multithreaded programs, the ideas in PEREGRINE can be applied to
other shared resources to provide pervasive determinism. PERE-
GRINE’s hybrid schedule idea may help reduce dOS’s overhead.
Grace [12] makes multithreaded programs with fork-join paral-
lelism behave like sequential programs. It detects memory access
conflicts efficiently using hardware page protection. Unlike Grace,
PEREGRINE aims to make general multithreaded programs, not just
fork-join programs, repeatable.

Concurrent to our work, DTHREADS [36] is another efficient
DMT system. It tracks memory modifications using hardware
page protection and provides a protocol to deterministically com-
mit these modifications. In contrast to DTHREADS, PEREGRINE
is software-only and does not rely on page protection hardware
which may be expensive and suffer from false sharing; PEREGRINE
records and reuses schedules, thus it can handle programs with ad
hoc synchronizations [54] and make program behaviors stable.

Program analysis. Program slicing [49] is a general technique
to prune irrelevant statements from a program or trace. Recently,
systems researchers have leveraged or invented slicing techniques
to block malicious input [18], synthesize executions for better error
diagnosis [57], infer source code paths from log messages for post-
mortem analysis [56], and identify critical inter-thread reads that
may lead to concurrency errors [59]. Our determinism-preserving
slicing technique produces a correct trace slice for multithreaded
programs and supports multiple ordered targets. It thus has the po-
tential to benefit existing systems that use slicing.

Our schedule-guided simplification technique shares similarity
with SherLog [56] such as the removal of branches contradicting a
schedule. However, SherLog starts from log messages and tries
to compute an execution trace, whereas PEREGRINE starts with
a schedule and an execution trace and computes a simplified yet
runnable program. PEREGRINE can thus transparently improve the
precision of many existing analyses: simply run them on the sim-
plified program.

Replay and re-execution. Deterministic replay [5, 21, 22, 26,
27, 32, 33, 41, 44, 48, 50] aims to replay the exact recorded exe-
cutions, whereas PEREGRINE “replays” schedules on different in-
puts. Some recent deterministic replay systems include Scribe,
which tracks page ownership to enforce deterministic memory ac-
cess [33]; Capo, which defines a novel software-hardware interface
and a set of abstractions for efficient replay [41]; PRES and ODR,
which systematically search for a complete execution based on a
partial one [5, 44]; SMP-ReVirt, which uses page protection for
recording the order of conflicting memory accesses [22]; and Re-
spec [35], which uses online replay to keep multiple replicas of a
multithreaded program in sync. Several systems [35, 44] share the
same insight as PEREGRINE: although many programs have races,
these races tend to occur infrequently.

PEREGRINE can help these systems reduce CPU, disk, or net-
work bandwidth overhead, because for inputs that hit PEREGRINE’s
schedule cache, these systems do not have to record a schedule.

Retro [30] shares some similarity with PEREGRINE because it
also supports “mutated” replay. When repairing a compromised
system, Retro can replay legal actions while removing malicious
ones using a novel dependency graph and predicates to detect when
changes to an object need not be propagated further. PEREGRINE’s
determinism-preserving slicing algorithm may be used to automat-



ically compute these predicates, so that Retro does not have to rely
on programmer annotations.

Concurrency errors. The complexity in developing multi-
threaded programs has led to many concurrency errors [39]. Much
work exists on concurrency error detection, diagnosis, and correc-
tion (e.g., [23–25, 38, 43, 55, 58, 59]). PEREGRINE aims to make
the executions of multithreaded programs repeatable, and is com-
plementary to existing work on concurrency errors. PEREGRINE
may use existing work to detect and fix the errors in the schedules
it computes. Even for programs free of concurrency errors, PERE-
GRINE still provides value by making their behaviors repeatable.

9 Conclusion and Future Work
PEREGRINE is one of the first efficient and fully deterministic mul-
tithreading systems. Leveraging the insight that races are rare,
PEREGRINE combines sync-schedules and mem-schedules into hy-
brid schedules, getting the benefits of both. PEREGRINE reuses
schedules across different inputs, amortizing the cost of computing
hybrid schedules and making program behaviors repeatable across
inputs. It further improves efficiency using two new techniques:
determinism-preserving slicing to generalize a schedule to more
inputs while preserving determinism, and schedule-guided simpli-
fication to precisely analyze a program according to a dynamic
schedule. Our evaluation on a diverse set of programs shows that
PEREGRINE is both deterministic and efficient, and can frequently
reuse schedules for half of the evaluated programs.

PEREGRINE’s system and ideas have broad applications. Our
immediate future work is to build applications on top of PERE-
GRINE, such as fast deterministic replay, replication, and diversi-
fication systems. We will also extend our approach to system-wide
deterministic execution by computing inter-process communication
schedules and preconditions. PEREGRINE enables precise program
analysis according to a set of inputs and dynamic schedules. We
will leverage this capability to accurately detect concurrency errors
and verify concurrency-error-freedom for real programs.
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