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Abstract
Performance of data-parallel computing (e.g.,

MapReduce, DryadLINQ) heavily depends on its data
partitions. Solutions implemented by the current state
of the art systems are far from optimal. Techniques
proposed by the database community to find optimal
data partitions are not directly applicable when complex
user-defined functions and data models are involved. We
outline our solution, which draws expertise from various
fields such as programming languages and optimization,
and present our preliminary results.

1. Introduction
Recent advances in distributed execution engines

(MapReduce [8], Hadoop [1], and Dryad [12]) and
high-level language support (Pig [15], HIVE [2], and
DryadLINQ [18]) have greatly simplified the develop-
ment of large-scale, distributed data-intensive applica-
tions. In these systems, data partitioning is used to con-
trol the parallelism, and is central for these systems to
achieve scalability to large compute clusters. However,
the partitioning techniques employed by the systems are
very primitive, leading to serious performance problems.

Consider a real example from our previous work [19]
that computes some login statistics for each user using
a large service log of 270GB (Section 2.1 shows more
examples). It is a MapReduce job written as a simple
DryadLINQ program:

input.GroupBy(x => x.UserId)
.Select(g => ComputeStatistics(g))

The very first task is to partition the data so that com-
putation can be performed on multiple computers in par-
allel. Many questions naturally arise here. For example,
what partition function shall we choose and how many
partitions to generate? Despite the simplicity of the pro-
gram, a naı̈ve hash partitioning of the input into 1000 par-
titions using UserId resulted in skewed workloads and
bad performance. When running on a 240-node cluster,
the majority of the partitions finished within 1-2 min-
utes, while the largest partition had 9.08GB data and ran
for 1 hour and 13 minutes before it failed with an out-
of-memory exception. A user will have to wait for the
slowest node to finish (or fail!).

In current data-parallel computing systems, simple
hash and range partitioning are the most widely used

methods to partition datasets. However, as the systems
are being increasingly used for more complex applica-
tions such as building large-scale graphs to detect bot-
nets [19] and analyzing large-scale scientific data [13],
these naı̈ve partitioning schemes become a major perfor-
mance problem for the following reasons:

• Partitioning of data using either a hash function or
a set of equally spaced range keys often yields un-
balanced partitions in terms of data or computation,
resulting in bad performance or failures.

• Balanced workload is not the only factor to achieve
optimal performance. Another important factor is
the number of partitions. There often exists a trade-
off between the amount of computation per parti-
tion and the amount of cross-node network traffic
(e.g. Example 3 in Figure 1), making it challenging
to identify a sweet point.

• In multiple stage computation (e.g., Example 2 in
Figure 1), the data or computation skew may occur
in later stages. It is often difficult to predict such
skews before running the program.

• Even for a same program, the input datasets may
change frequently and have different characteris-
tics (e.g., generating statistics from daily service
logs), requiring partitioning schemes that adapt to
the changing data to achieve optimal performance.

Thus, the research problem we address in this pa-
per is as follows. Given a data-parallel program (e.g.,
a DryadLINQ or MapReduce program) and a large in-
put dataset, how can we automatically generate a data
partitioning plan that optimizes the performance without
running the program on the actual dataset? By perfor-
mance, we broadly refer to a wide range of cost metrics
including the number of processes required, CPU time,
job latency, memory utilization, disk and network I/O.
And our goal is to minimize these costs.

While database community has studied extensively
the important problem of reducing data-skews for SQL
queries (e.g. [9]), their solutions are not directly appli-
cable because they, in general, do not support compli-
cated data models and arbitrary user-defined functions.
Further, they typically assume highly structured data that
are indexed and carefully placed so that one can strategi-
cally send a small program (SQL query) to the data nodes
based on pre-computed data statistics [16].
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(1) Computation skew.
images.Select(img => ProcessImage(img));

(2) Multiple-stage computation.
query.Select(x => x.IP).Distinct();

(3) Computation per partition vs. cross-node traffic.
var records = input1.Apply(x => SelectRecords(x))

.HashPartition(x=>x.label, nump);
var output = input1.Apply(records,

(x,y) => ConstructGraph(x,y));

Figure 1. Examples of data-parallel programs.

We believe that this research problem remains largely
unsolved. So, in this paper we propose a framework that
takes a holistic view to explicitly measure and infer vari-
ous properties of both data and computation. It demands
techniques from different domains—including database,
programming language, optimization, and systems—to
perform cost estimation and optimization. Estimation in-
fers the cost given a candidate data partitioning plan. Op-
timization generates an optimal partitioning plan based
on the estimated costs of computation and I/O.

Obviously, performance of a data-parallel program
also depends on many other important factors includ-
ing infrastructure configurations and job scheduling (see
Section 4 for discussion). We singled out the data par-
titioning problem because this is a critical factor that a
user can leverage to avoid bad performance. More im-
portantly, we have seen so many jobs failing due to data
partitioning problems. We believe any advances in data
partitioning would significantly improve the usability of
these systems.

2. Background, Examples, and Challenges

A data-parallel program expressed by MapReduce or
higher-level languages such as Pig or DryadLINQ is
compiled into an execution plan graph (EPG), which is
a directed acyclic graph with multiple stages [18]. For
each stage, at least one vertex is created to process each
input partition; thus multiple vertices can run in parallel
to process multiple input partitions.

Data partitioning therefore affects many aspects about
how a job is run in the cluster, including parallelism,
workload for each vertex, and network traffic among
vertices. Below, we present examples from real-world
DryadLINQ programs and discuss how data partitioning
affects their runtime. All the examples were run on a
240-machine cluster.

Example 1: Computation skew. This exam-
ple processes image files with a user-defined function
ProcessImage(img). The 20GB input data is evenly
partitioned into 100 partitions (Figure 2 (a)). However,
since some images are more expensive to process than
others, the computation is extremely unbalanced. On
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Figure 2. Example 1: data and computation time distribution.
Example 2: partition size distribution in multiple stages.
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Figure 3. Example 3: Cross-node traffic vs. process time.

average, it took 4 minutes to process one partition, but
3 partitions failed after running for 6 hours as they ex-
ceeded the 6-hour maximum lease time for the cluster.

Example 2: Multiple stages. This example counts
the unique IP addresses of a user-query log. The input
data consists of 100 partitions. The first stage selects the
IP address of a record using the Select operator, and the
second stage uses the Distinct operator to count dis-
tinct IP addresses. Figure 2 (b) shows that even though
the input to the Select stage is evenly distributed, the
input to the Distinct stage has significant skews that
are difficult to predict beforehand.

Example 3: Computation per partition vs.
cross-node traffic. This example takes (user, IP

address) pairs and constructs a user-user graph, where
two user nodes in the graph are connected by an edge if
they share an IP address [19]. The program contains two
stages. For each partition pi in the input, we first select
records of users that are likely to share IP addresses
with those in pi. We then join the original input and the
selected records to construct the graph. Figure 3 shows
that, by increasing the number of partitions, the amount
of computation per partition is decreased, but the total
network traffic increases. There exists an optimal num-
ber of data partitions for minimum job runtime.

2.1. Challenges

Finding an optimal data partitioning for a data-parallel
program is challenging. Solutions from parallel database
(DB) communities are not directly applicable due to the
differences in data and programming models. We list
some of the challenges below.
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Figure 4. System architecture.

Programming Model. Traditionally, DB systems use
a set of predefined operators such as Select or Join;
but they provide little support for user-defined functions
(UDF), and some systems do not support UDF at all (e.g.,
Vertica [3]). In contrast, data-parallel computing often
involves arbitrary user-defined functions, which makes it
harder to understand how the data is accessed, processed,
and transformed to the next computation stage.

Data Model. Compared with parallel DB systems,
our data model is also different in terms of how the data
is represented, accessed, and stored.
• Unstructured data. DB systems operates on
highly structured schema with built-in indices, whereas
data-parallel programs compute on unstructured data.
Quickly computing data statistics (e.g., key distribution)
without data indices is difficult.
• Dynamic datasets. DB systems are better suited at
querying static datasets because of the overhead of stor-
ing data and building indices. In contrast, data-parallel
computing often processes different and new datasets
(e.g., daily service logs). Frequent dataset changes re-
quire adapting data partitioning schemes accordingly.
• Large intermediate data. To minimize writing inter-
mediate data, parallel DB sends an optimized query plan
to all nodes at the beginning of the query [16]. In con-
trast, data-parallel computing uses disks as communi-
cation channels for fault tolerance. How to efficiently
analyze the “materialized” intermediate data is less well
studied in DB.

3. System Architecture
To optimize data partitioning, we advocate an ap-

proach that leverages techniques from many domains.
We present the architecture of the system we are build-
ing, our early results, and new research opportunities.

3.1. System overview

Figure 4 shows the system architecture. The system
first compiles a given data-parallel program into a job
execution plan graph (EPG) with initial data partitions
(e.g., supplied by the user). The Code Analysis module
takes this EPG and the code for each vertex in EPG as
input to derive (1) the computational complexity of each
vertex program and (2) important data features. This step

is important as it not only provides information about
the relationship between input data size vs.computational
and I/O cost, but also guides the data analysis process,
e.g., providing hints to strategically sample data and to
estimate data statistics. For example, in Example 1 (Fig-
ure 1), it would be desirable to understand what image
features (e.g., texture richness, resolution) determine the
computational cost. Such information can then be used
to identify image records that are expensive to process
and distribute them more evenly.

The Data Analysis module linearly scans the data to
generate compact data representations. We consider the
following data representations:

• a representative sample set for input data;
• data summarizations including the number of input

records, data size, etc;
• an approximate histogram of frequent data records;
• the approximate number of distinct keys.

The first two items provide general statistics that are use-
ful for all operators. The histogram of frequent items [7]
is important for estimating skews. The number of dis-
tinct keys [4] is useful for estimating the output size for
a MapReduce job.

The Cost Modeling/Estimation module uses the code
and data analysis results to estimate the runtime cost
of each vertex including CPU time, output data size,
and network traffic. We consider two approaches. The
first is a white-box approach that analytically estimates
the costs using code analysis results. The second is a
black-box approach that empirically estimates the costs
by running the job on the sample data and then perform-
ing regression analysis on the measured job performance
for each vertex. We can further combine these two ap-
proaches to improve the estimation accuracy. Once we
estimate the cost of each vertex in an EPG, we can iden-
tify the critical path (using techniques such as dynamic
programming) for estimating the cost of the entire job.

Finally, given the estimated cost of the input EPG, the
Cost Optimization module searches for an improved data
partitioning plan and generates a new EPG accordingly.
The updated EPG can be looped back into the Cost Esti-
mation module for another around of optimization. Us-
ing small sample sets allows us to efficiently iterative this
process until it converges. The output is the final opti-
mized EPG for execution.
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Figure 5. Example of generating an optimized data partitioning
scheme represented by the partition graph including two hash
functions and a 3-entry ID to ID mapping table.

The entire optimization process can be applied to all
stages offline before computation starts. We may also
couple the optimization process with the computation to
dynamically partition data online. One solution is to in-
troduce an optimization phase to existing programming
models. The data analysis process can thus be piggy-
backed when the system writes immediate data to disks
so that it adds little overhead to the overall computation.

3.2. Optimizing Execution Plan Graph

We propose a flexible and expressive partitioner for
the iterative cost estimation and optimization process.
This partitioner derives an optimal partitioning scheme
stage by stage for the EPG. It uses a hierarchical parti-
tioning graph, where large partitions are recursively split
and small partitions are merged, so that the final parti-
tions are balanced in cost. By balancing the cost at each
stage, we essentially minimize the total cost along the
critical path and thus the overall cost of the job.

Figure 5 shows an example of generating a partition-
ing graph. The two root nodes represent two partitions of
the sampled input data. The Cost Optimization module
inserts an additional partition stage into the current EPG
to greedily search for an optimized partitioning scheme.
First, the two inputs are split into 8 initial partitions by
any existing partitioner (e.g., a hash partitioner h1(k)
mod 8), and the EPG is updated accordingly. (One can
try a different number of initial partitions.) The Cost Es-
timation module then identifies the critical path up to the
current stage in the updated EPG, which includes the ver-
tex associated with Partition 5. To reduce cost, it splits
Partition 5 into two partitions by another partitioner (e.g.,
hash partitioner h2(k) mod 2). Meanwhile, Partition 0,
2, and 4 all have small costs and are merged in order to
reduce I/O, the overhead of launching vertices, and thus
the potential overall cost.

This process of cost estimation and optimization by
recursive data merging and splitting is iterated until it
converges. Each iteration is a greedy step towards min-
imizing the overall cost. The EPG is then updated with
the final partitioning scheme (represented by the parti-

Benchmark Computation
Clicklog1 Distinct
Clicklog2 GroupBy + user-defined Reducer
Clicklog3 GroupBy
WordTopDocs GroupBy + Count Reducer
SkyServer Scientific computation
UDMap Preprocessing followed by OrderBy
PageRank Pagerank computation

Table 1. Benchmark program description.
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Stage Figure 6. Relative errors of estimated output sizes. Multiple
stages in one program are labeled by the same program name.

tioning graph, two hash functions, and one 3-entry map-
ping table), and the optimization process continues for
the next stage in the EPG. Note that once the partitioning
scheme is derived, a data record from the input can be di-
rectly assigned to the appropriate data partition, without
the intermediate data splitting or merging.

3.3. Preliminary Cost-Estimation Results

To sanity check our framework, we implemented a
simple Data Analysis module with uniform sampling,
and a Cost Modeling/Estimation module using the black-
box approach (see Section 3.1) to estimate output data
size and CPU runtime. These two modules together es-
timate the runtime performance of a given job, which
would allow us to apply the optimization algorithm de-
scribed in Section 3.2.

Figure 6 shows the relative errors in estimating the
output data sizes (sampling rate = 0.001) for seven
benchmark programs listed in Table 1, which contains
24 stages in total. Each bar in Figure 6 represents the
estimated error for one stage. The majority of these 24
stages have relatively small estimation errors (< 10%).
We found stages involving the GroupBy operator had
large estimation errors because uniform sampling could
not generate representative samples for GroupBy. For
these programs, data analysis should be guided by pro-
gram semantics. An efficient streaming algorithm [4] for
counting distinct keys is more suitable in this case.

3.4. Research Opportunities

The design and implementation of each module we
discussed also provide many new research opportunities.
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Programming-language (PL) analysis: The Code
Analysis module can leverage automatic static and dy-
namic PL analysis techniques (e.g., [10, 11]) to under-
stand both the data model and the semantics of a program
in terms of its processing flow, computational complex-
ity, and relevant data features. We can also let users man-
ually specify attributes of UDFs to provide hints for PL
analysis. Alternatively, we can predefine a set of call-
back APIs that users can implement with domain knowl-
edge to explicitly specify important data attributes (e.g.,
image features) or to define the way to measure compu-
tational complexity based on input.

Data analysis: The task of the Data Analysis mod-
ule is to efficiently derive a compact data representa-
tion for cost modeling and estimation. While there ex-
ists many efficient (streaming) algorithms for this pur-
pose (e.g., [4, 6, 7]), we also encounter new challenges.
First, most existing algorithms are designed to run on a
single processor. We need to extend them to a distributed
setting. Second, determining what data records are repre-
sentative depends on the program semantics and we need
to strategically sample them accordingly (e.g., leverag-
ing importance sampling techniques [17]). Finally, in
multi-stage computation, a representative input sample
(or summary) for the first stage may not generate repre-
sentative outputs to use in later stages (e.g., Example 3
in Figure 1). How to generate data representations for
multiple stages is a challenging task.

Optimization: Optimization techniques can used to
model cost objectives and help search for improved data
partitioning schemes (e.g., [5]). There are two major
challenges here. The first is to define a cost model that
is expressive and flexible enough to include heteroge-
nous types of costs. For example, a user submitting
a job to Amazon EC2 may wish to minimize the total
price paid, while programmers who have access to in-
house data centers may want to minimize their job la-
tency. The second challenge is to identify tradeoffs and
to provide a spectrum of options for applications with
multiple, and possibly conflicting cost objectives (e.g.,
job running time vs. price budget). While we can opti-
mize for each individual cost dimension, it may be more
difficult to identify the relationships across multiple cost
dimensions to achieve a user-desired solution.

Systems: The entire framework for optimizing data
partitioning is itself a distributed system. We need sys-
tem components to measure and predict resource con-
sumptions (e.g., CPU utilization, memory usage, disk
I/O, and communication traffic). Despite existing tech-
niques (e.g., [14]), accurately deriving costs may also re-
quire detailed information about the infrastructure setup.
For example, the amount of network traffic highly de-
pends on the switch configuration and processing node
locations (e.g., on a same rack or across different racks).

4. Discussion
While finding an ideal partitioning scheme is hard, it

is made worse by the network traffic introduced by repar-
titioning data for more efficient program executions. An
interesting tradeoff thus exists between repartitioning a
dataset versus running a job on existing partitions.

In addition to a program and its dataset, there are sev-
eral other factors that affect the run time of a data-parallel
program, for example, job scheduling policies and ma-
chine configurations. In many cases, optimizing data par-
titioning can lead to improved job scheduling decisions
and resource utilization. For example, if a machine runs
slower than the others, we can store a smaller partition to
balance the runtime across machines. More importantly,
optimizing data partitioning avoids failures and bad per-
formance from a program’s perspective and is thus a crit-
ical step for preparing data inputs.
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