
Neuroshard: Towards Automatic Multi-objective Sharding with
Deep Reinforcement Learning

Tamer Eldeeb
Columbia University

tamer.eldeeb@columbia.edu

Zhengneng Chen
Seamoney

zhengneng.chen@seamoney.com

Asaf Cidon
Columbia University

asaf.cidon@columbia.edu

Junfeng Yang
Columbia University

junfeng@cs.columbia.edu

ABSTRACT

Large databases whose data does not fit on a single server need to

shard their rows across multiple different database instances. Dis-

tributed transactions are significantly more expensive than local

transactions, so a popular approach is to collect a trace of past ac-

cesses to the database andmodel it as a graph (or a hypergraph), and

solve an NP-Hard partitioning problem with an objective of mini-

mizing the fanout, or the number of database instances that need to

participate in each query. Due to the large amount of data that needs

to be sharded, this problem cannot be solved optimally, and there-

fore, databases use heuristic partitioning algorithms, which can be

fairly effective in practice. However, fanout is only one objective

that affects performance. Other important objectives include load

balancing, which ensures that no single database instance becomes

too overloaded, or equalizing the write traffic for each database to

avoid lock contention and I/O amplification. Designing heuristics

for more than one objective is difficult and error-prone.

We present Neuroshard, the first system that learns shard assign-

ments directly from the workload, and optimizes for multiple shard-

ing objectives simultaneously. Neuroshard represents past queries

as a neural hypergraph, and uses Deep Reinforcement Learning

with Multi-Task learning to generate a learned partitioner that

is able to optimize for multiple objectives in parallel. We imple-

ment Neuroshard on a distributed database that uses MariaDB, and

got very promising initial results showing that this approach can

achieve our versatility and scalability goals, in contrast to baseline

approaches that optimize for only one objective which can work

well in one context but perform poorly in another.

ACM Reference Format:

Tamer Eldeeb, Zhengneng Chen, Asaf Cidon, and Junfeng Yang. 2022. Neu-

roshard: Towards Automatic Multi-objective Sharding with Deep Rein-

forcement Learning. In Exploiting Artificial Intelligence Techniques for Data

(aiDM’22), June 17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3533702.3534908

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

aiDM’22 , June 17, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9377-5/22/06. . . $15.00
https://doi.org/10.1145/3533702.3534908

1 INTRODUCTION

Horizontal sharding is a decades-old technique to scale production

databases.When a database’s load or storage capacity overwhelms a

single server, operators split the rows in the database and store them

in multiple servers. Notable examples of horizontal sharding are

Facebook’s social graph [31] and Google’s ad serving database [39].

The choice of assigning rows to servers affects many aspects of

a system’s performance, so operators often need to simultaneously

optimize for multiple, sometimes conflicting, objectives. One exam-

ple objective is to assign a roughly equal number of rows to each

server, balancing storage load. Another is to assign rows such that

the servers receive roughly the same number of queries, balancing

compute and network load. This problem is exacerbated by real-

world requirements, such as variable-sized objects, servers with

heterogeneous capacities, and queries with variable complexity.

Beyond load balancing, another class of objectives is to minimize

the fanout – the number of shards that a query touches – because

a distributed query is typically much more expensive than a single-

server query. However, fanout minimization requires clustering the

rows assessed together frequently into the same shard, which is at

odds with load balancing objectives if many rows in the cluster are

hot.

Given these intricate, combinatorial objectives, an ideal sharding

scheme should flexibly adapt and optimize for them simultaneously.

Unfortunately, existing sharding algorithms are designed primarily

for single objectives. For instance, commonly-used random, hash,

range and round-robin partitioning [15] are good at balancing load

but ignore fanout minimization completely. To minimize average

query fanout, recent work, including Schism [12], SWORD [36] and

SHP [22], collect a trace of past accesses to the database, model

it as a (hyper)graph that links the rows accessed together in a

query, and then compute the row-to-shard assignments by solv-

ing a partitioning problem. In general, graph partitioning is an

NP-Hard problem [3], so existing work uses solvers that utilize

hand-designed heuristics that require considerable expertise and

experimentation to produce good solutions for just the objective

of minimizing fanout. Given the diverse and competing objectives,

designing hand-crafted heuristics that work well for each objective

and their combinations is a painstaking task.

This paper presents Neuroshard, a sharding system that tackles

the decades-old horizontal scaling problem using a novel learned ap-

proach. Neuroshard can automatically optimize for multiple classic

(a) A set of requests (A-F) accessing 4 data-

base rows.

(b) Partition option 1: rows {1,2} and rows

{3,4} are each stored on a separate database.

While this partitioning requires only two

of the accesses (A,C) to involve more than

one database, it leads to a load imbalance.

(c) Partition option 2: rows {1,3} and rows

{2,4} are each stored on a separate database.

This partitioning bothminimizes the num-

ber of queries that require more than one

database, as well as balance the load.

Figure 1: Toy example of the sharding problem. In the example, we have 4 rows, which are accessed by 6 requests (marked

A-F). Each request either reads (r) or writes (w) one or two of the rows. Our goal is to partition the rows into two equal shards.

sharding objectives, such as fanout minimization and load balanc-

ing, by learning effective partitioning heuristics directly from the

input trace.

Similar to prior work [22, 36] Neuroshard works by collecting

a trace of past queries and representing it as a hypergraph, where

the rows are vertices and the queries are hyperedges, and then

partitions that hypergraph. This process is done regularly offline

at some frequency. The intuition is that computing a sharding

assignment that works well for past accesses will most likely serve

to improve the performance on future accesses as well. This offline

approach is orthogonal and complementary to online sharding

in systems [38, 43] in which the system actively moves rows to

improve the performance.

Neuroshard utilizes Deep Reinforcement Learning (RL) to pro-

duce a learned partitioner that is then used to partition the hyper-

graph of past queries. However, the challenge in directly applying

RL to our setting is that the query hypergraph may contain thou-

sands or even millions of queries (or hyperedges), which would

make the the state and action space of the RL quite large. Inspired by

prior work on graph partitioning [47], wemake the observation that

if at each stage of partitioning we only consider adding the “neigh-

boring” rows (or the rows that were accessed in the same query),

we can achieve good partitions, while also significantly limiting

the number of vertices we consider at each step of the algorithm.

This structure naturally lends itself to a reinforcement learning for-

mulation. Therefore, Neuroshard uses a trained RL agent to score

each one of the candidate hypergraph elements, where the reward

is a function of multiple sharding objectives. Neuroshard uses tech-

niques from Multi-Task learning to optimize for multiple objectives

in parallel.

We implement Neuroshard on a distributed database based on

MariaDB [1], and compare it to three heuristic baselines: Neighbor

Expansion [47], hMetis [23] and hash partitioning. We compare

the different algorithms on microbenchmarks and on the Epin-

ions [30] social network dataset. Our evaluation shows that while

Neuroshard does not always provide the best performance, it con-

sistently provides good performance, while the heuristic-based

schemes’ performance varies. For example, hMetis and Neighbor

Expansion perform well in workloads where fanout minimization

is a primary objective and the load is spread relatively evenly across

queries, but perform poorly in skewed workloads where load bal-

ancing is an important objective. In contrast, Neuroshard is able

to balance multiple objectives simultaneously (i.e., fanout and load

balancing) in both of these types of workloads.

We make three primary contributions:

(1) Learned sharding. Neuroshard is the first system to use a

learned approach for directly assigning rows to shards.

(2) RL formulation.A novel RL framework for the hypergraph

partitioning problem (§4). Our design uses ideas from the

Neighbor Expansion [47] algorithm to restrict the state and

action spaces so that the RL agent only needs to learn how

to make good local decisions based on a small subset of the

hypergraph (the neighborhood). We formulate two popular

sharding objectives as RL rewards: fanoutminimization (§4.4)

and load balancing (§4.5)

(3) Multiple objectives.Ageneral approach formulti-objective

sharding using Multi-Task Learning (§6) that can automati-

cally incorporate new objectives as RL rewards.

2 MODELING THE SHARDING PROBLEM

The sharding problem can be formally modeled as a hypergraph

partitioning problem [12, 22, 36]. A hypergraph is a generalization

of a graph for which each edge (called hyperedge) can connect any

number of vertices rather than just two. In the case of database

sharding, a trace of recent past queries to the database that records

the rows accessed by each query can be thought of as a hypergraph,

with the rows as the vertices (e.g., rows 1-4 in our toy example in

figure 1) and the queries (e.g., queries A-F in our example), which

may involve more than 2 rows, as the hyperedges.

The goal of hypergraph partitioning is to divide the vertices of

a hypergraph into a number of equal size partitions, usually with

a goal such as minimizing the number of hyperedges that cross

partitions (fanout), or equalizing the sum of the degrees of the

vertices in a partition (load), which we formalize next.

2

Figure 2: Toy example represented as a bipartite graph.

2.1 Fanout minimization

We follow the notation of SHP [22] and describe the hypergraph

fanout minimization problem in the equivalent terms of bipartite

graphs, where the vertices are either requests and rows, and edges

are drawn between each request and the rows it is accessing. As a

reference, our toy example is depicted in a bipartite graph form in

Figure 2.

Let G = (Q ∪ R, E) be an undirected bipartite graph with disjoint

sets of query vertices, Q, and row vertices, R. The goal is to partition

R into k parts, i.e. find a collection of k disjoint subsets V1,...,Vk (also

called partitions) covering R that minimizes an objective function.

The output partitions should be balanced, that is,

|Vi | ≤ (1 + ϵ)
n

k

for all 1 ≤ i ≤ k and some ϵ ≥ 0, where n = |R|. Intuitively, this

captures the requirement that partitions should all be assigned a

similar number of vertices (or rows in our case). Given a partitioning

P = {V1,...,Vk} and a query vertex q ∈ Q, informally the fanout of q is

the number of distinct partitions that contain row vertices adjacent

to q. Formally, we can define

f anout(P ,q) = |{Vi : Vi ∩ N (q) � ∅}|

Where N(q) is the set of vertices adjacent to q in G. Note that we

have N(q) ⊆ R, since the graph is bipartite. We can now define the

quality of the partitioning P as the average query fanout:

f anout(P) =
1

|Q |

∑

q∈Q

f anout(P ,q)

The fanout minimization problem is, given a bipartite graph G,

an integer k > 1, and a real number ϵ ≥ 0, find a partitioning of G

into k partitions with the minimum average fanout.

2.2 Load Balancing

Another very common objective for sharding is load balancing. The

setting for the load balancing problem is similar to that of fanout

minimization. We are also given a hypergraph represented as a

bipartite graph G = (Q ∪ R, E), and the goal is still to partition R

into k partitions subject to the same constraints on the number of

vertices assigned to each partition. Additionally, each vertex r in R

has an associated valueWr, which we call the load weight. This is

meant to represent how much load is caused by processing queries

that access a particular row r. It is up to the application to specify

the load weight for each row; a natural scheme is to use the degree

of the vertex in r as its load weight (which Neuroshard uses by

default).

Given a partitioning P = {V1,...,Vk} and a partition i ≤ k we can

define the load of partition i as the sum of the load weight of all

vertices in Vi. Formally,

load(P , i) =
∑

r ∈Vi

Wr

One possible measure of load imbalance is the difference between

the most and least loaded partitions. Let pmax be the partition with

the highest value of load. Similarly, let pmin be the partition with

the lowest value. We can now define the quality of the partitioning

P as

Imbalance(P) = load(P ,pmax) − load(P ,pmin)

Hence, the load balancing problem is, given a graph bipartite G,

an integer k > 1, and a real number ϵ ≥ 0, find a partitioning of G

into k partitions with the minimum imbalance.

We make a simplifying modelling decision by assuming that

the weight load of a vertex is static and does not rely on the parti-

tioning P. In reality, this may not be entirely accurate because the

amount of work involved in a distributed query or transaction can

be significantly more than a local one. As a result, the amount of

load generated by an access to a row does depends on whether that

access is distributed or local which is affected by the partitioning.

3 OVERVIEW OF LEARNED SHARDING

RL is concerned with the development of agents that learn from di-

rect interaction with their environment. In an RL setting, an agent

starts out knowing nothing about the given task, and learns by

taking incremental actions, observing how these actions affect the

environment, and receiving a reward that depends on its perfor-

mance on the task. Despite not having any prior knowledge about

the task, RL training algorithms allow the agent to improve its

performance at it. This aligns very well with our goal of designing

a general and versatile sharding framework that is able to perform

well on various workloads and objectives, without needing to hand

design heuristics for each one. By casting the sharding problem

into an RL training problem, we only need to design the reward

signal, and then leverage RL to train the sharding agent.

3.1 Deep Reinforcement Learning Primer

Combining classical RLwithDeep Learning [17] techniques (dubbed

Deep Reinforcement Learning [34]) has been key to many recent

breakthroughs such as in game playing [40] and many applications

in computer systems [9, 27, 28]. We now give an overview of the

Deep RL concepts that we use in this paper, and in particular a

family of techniques called policy gradient methods [42]. For a

comprehensive treatment of the subject please refer to [41].

Setting. The usual setting of Reinforcement Learning is the discrete-

time Markov Decision Process (MDP), in which an agent is inter-

acting with an environment. At each time step t the agent observes

some environment state st, and performs an action at. As a result

of the action taken, the agent receives a reward rt and the environ-

ment state transitions to st+1. The state transitions and rewards are

3

stochastic and are assumed to have the Markov property; i.e. the

probability of receiving a reward rt and the probability of transi-

tioning to a state st+1 depend only on the state of the environment

st and the action taken by the agent at. The goal of the agent is to

maximize the expected cumulative discounted reward:

E
[∑

t

γ t rt
]

Where γ ∈ (0, 1] is a factor discounting future rewards. At each

step the agent takes a decision based on a policy π , which defined
as the conditional probability distribution of actions given states.

In other words, π (s, a) is the probability that action a is taken when
the state is s. For all but the most trivial of applications, the size of

the state space makes it infeasible to store the policy explicitly in a

tabular form. Hence, a common approach is to use function approxi-

mators to approximate π using a manageable number of parameters

θ . Deep Neural Networks have emerged as a popular choice for the
function approximator used to represent the parameterized policy

πθ .

Policy gradient methods. Like prior work [27], we utilize a class of

RL algorithms in Neuroshard learns by performing gradient descent

over the policy parameters. In Neuroshard we use the REINFORCE

[42] algorithm, which works by obtaining an estimate for the gra-

dient of the cumulative discounted reward empirically by sampling

(i.e., running the MDP by following the current policy πθ) then up-
dates the parameters using that estimate, according to the following

formula:

θ ← θ + α
∑

t

θ loдπθ (st ,at)vt

Where α is the learning rate and vt is the empirically computed

cumulative reward. Like prior work [27], we use a variant [37] of

the REINFORCE algorithm that subtracts a baseline value from

each return vt, which is useful to reduce the variance of gradient

estimates. We describe the training procedure in more detail in §5.2.

3.2 Sharding Problem Formulation for RL

We now need to formulate the sharding problem in RL terms. We

have three main design considerations. First, problems with an

incremental structure are good fits for RL because the agent can

learn to perform a specific action and get an incremental reward at

each step. Second, it is ideal if the agent needs to learn only how

to make good local decisions. If the agent requires much global

knowledge, training tends to be difficult and inference performance

overhead tends to be high. Worse, a model trained on a graph may

not generalize to a different graph. Third, it is desirable to reduce

the action search space such that the agent model can stay simple.

These design considerations lead us to solution structure based

on Neighbor Expansion (NE) [47], an algorithm for graph edge par-

titioning. The goal of the graph partitioning problem is to divide the

edges of a graph evenly into equal-size partitions while minimizing

the average number of partitions that are incident to a vertex (called

the replication factor). It is analogous to the fanout minimization

problem we defined previously on hypergraphs in §2.1. The NE al-

gorithm then exploits graph structure and can produce high-quality

partitions for the replication factor objective, and automatically

balances the number of edges partitions in each partition. It also

has the nice properties of being fast to run [47] and highly scalable

[19], making it an effective approach for graph edge partitioning.

We design a Hypergraph Neighbor Expansion (HNE) algorithm,

an adaptation of Neighbor Expansion to the hypergraph partition-

ing problem.

We show the pseudo code of HNE in Algorithm 1. The basic

idea is fairly simple; the algorithm proceeds by building partitions

sequentially. It maintains two hyperedge sets, the core set C, and

the set S which is the set of all hyperedges incident to the vertices

assigned to the current partition. We call a hyperedge q unassigned

if it has not yet been added to the core set C of any partition. At

every step (starting with a random seed hyperedge), one of the

hyperedges in S (that is not already a member of C) is selected as

a core hyperedge and added to the set C, then all its remaining

vertices are added to the partition. All of C’s unassigned neighbors

(two hyperedges are neighbors or adjacent if they are both incident

to at least one common vertex) are then added to the set S. This

is repeated until the partition is filled up. A hand-crafted greedy

heuristic determines which hyperedge to select at every step of the

process to add to C.

Algorithm 1 describes an algorithmic framework that meets our

design considerations. it has an incremental structure of assigning

candidate hyperedges gradually. The decision to assign a hyperedge

to a partition is local, depending on the neighboring relationship.

It is hyperedge-centric, meaning that each step selects a hyperedge

and then assigns all vertices on the hyperedge to a partion. This

coarsens the action space compared to a vertex-centric approach

that adds one vertex at a time. In an extremely skewed graph, a

hyperedge may connect to many vertices, posing a problem for this

treatment, but in practice, OLTP workloads which we target do not

typically have such skewed distributions.

C ← ∅;

S ← ∅;

while Partition is not full do

candidates← S \ C;

if candidates = ∅ then
Seed candidates with a random, unassigned

hyperedge;

end

Select the best candidate h based on scoring heuristic.;

Add h to C .;

Add all of h’s unassigned adjacent hyperedges to S .;
Add all of h’s unassigned vertices to partition, and remove
them from the hypergraph.;

end

Algorithm 1: Hypergraph Neighbor Expansion (HNE)

The scoring heuristic we use for HNE is also inspired by the

neighborhood heuristic in the original Neighbor Expansion algo-

rithm [47]. Let HN(q) be the set of unassigned neighbors of hyper-

edge q. The neighborhood heuristic we use is to select the candidate

hyperedge that has the minimum value of | HN(q) \ S |. This choice

is greedy in that it selects the hyperedge that results in the smallest

increase in fanout at this step.

4

To simplify the presentation of Algorithm 1 we omitted the

handling of the following corner case: If the partition fills up while

adding h’s vertices, we do not just add all of h’s vertices and violate

the balancing constraints. Instead, we initialize the procedure for

the next partition by making S = {h} instead of the empty set. We

also omit discussing how to handle vertices that do not have any

incident hyperedges as these can be handled straightforwardly in

various ways.

3.3 Neuroshard RL Algorithmic Framework

C ← ∅;

S ← ∅;

while Partition is not full do

candidates← S \ C;

while |candidates| < threshold do
Seed candidates with a random, unassigned

hyperedge;

end

candidate_probabilities← DNN(candidates,

partition_state);

Select a candidate hyperedge h based on probabilities;

Add h to C .;

Add all of h’s adjacent hyperedges to S .;

Add all of h’s unassigned incident vertices to the partition.;

end

Algorithm 2: Neuroshard RL algorithmic framework.

Instead of using a hand-crafted scoring heuristic, Neuroshard

adopts a trained agent, represented as a Neural Network, that as-

signs a probability to each hyperedge at each step of the algorithm.

This agent is trained using RL, with a reward being a function of

multiple objectives. As we show in §7.3, by using this approach

Neuroshard is able to train directly on larger traces than prior work

(e.g. [13]) and generalize to much larger hypergraphs. We highlight

one other minor, but significant, difference from NE/HNE in Neu-

roshard: If the size of the candidate set drops below a threshold,

the algorithm will seed with random unassigned hyperedges (if

available) to keep the size of candidates set at the threshold. This

is important, to avoid getting stuck with candidates that would be

good only for only a single objective (e.g., fanout minimization) but

hurt other objectives.

4 REINFORCEMENT LEARNING DESIGN

In this section, we describe the parts of training Neuroshard as

a single-objective Reinforcement Learning problem, namely the

environment, state, actions, and rewards.

4.1 Environment

In our RL setting, the environment is made up of 3 components:

The Hypergraph. This part of the environment is static and does

not change throughout a training episode. It includes the structure

of the hypergraph, i.e. the set of vertices and hyperedges, or the

mapping of requests to data rows. The hypergraph is also aug-

mented with important information, such as the degree of each

vertex and hyperedge, whether a hyperedge is a read-only or read-

write query, and the load weight of each vertex (in our experiments

we use the vertex degree as the load weight, but this can be up to

the application).

Partition state. This is information about the state of the parti-

tions. It is represented by the vector [Tv, Cv, Cl, P,Maxl,Minl].

These values are defined as follows: Tv is the target number of

vertices per partition. This is a hard constraint. Cv is the number of

vertices in the partition that’s currently being built. Cl is the load

weight of all the vertices in the current partition. P is the number

of partitions left to be built after finishing the current partition.

Maxl is the highest load of a complete partition so far. Similarly,

Minl is the minimum load of a complete partition. BothMaxl and

Minl are initialized to the target total load weight per partition (i.e.

the sum of the load weight of all vertices divided by the number of

partitions) at the beginning of the episode. Once a partition is com-

plete, the new value of Maxl is computed by maxing the previous

value with the new partition’s load. The value of Minl is updated

in a similar fashion. This choice of initial value and how to update

is significant; as we’ll discuss in §4.5.

Assignment state. This is state associated with each vertex and

hyperedge indicating their partition assignment status. Specifically,

each element can be in one of three states: Unassigned, Assigned, or

Assigned to current partition. For hyperedges, being assigned to a

partition i means having been added to the core set C of i (note that,

due to the corner case described at the end of §3.2, a hyperedge

q can actually be assigned to more than 1 core set, but this does

not require any special handling). Additionally, each hyperedge is

also associated with a bit indicating whether it is in the set S of the

current partition or not. For each hyperedge q ∈ S, we also maintain

its HNE heuristic score, i.e. | HN(q) \ S |.

4.2 Observable State

Technically, the agent has access to all of the environment state.

However, it only makes use of a small portion to decide on the

action to take, namely the neighborhood of the candidates set, as

well as the partition state. Theoretically, this makes the problem

harder since the agent’s inability to take into account the full state

results in a partially-observed MDP [35], but like prior work [27],

we find that the approach works well in practice nevertheless. For

efficiency, the agent is also passed the candidates set explicitly even

though it can technically compute it from the environment state.

4.3 Actions

At every step the agent selects one hyperedge from the candidates

set. Hence, its action space at every step is the same as the set

of candidates. Once the agent makes a selection, the state of the

environment transitions as described in Algorithm 1.

4.3.1 Restricting the Size of the Candidates Set. As noted by prior

work [32], applying neighbor expansion to hypergraph partitioning

can run into the challenge where the candidates set grows very

large very quickly. A very large candidate set makes training very

expensive in terms of memory and computational requirements

5

for each episode, as well as much harder in terms of the ability

of the agent to learn useful rules as it would need to run more

episodes to sample more trajectories. This is more common in

hypergraphs that represent social networks since these can have

extremely large hyperedges which are not very common in the

OLTP workloads we target. Nevertheless, we found it helpful to

limit the size of the candidates set considered by the agent at each

step to an upper bound Candmax. This is a trade-off since that

this adds a hyperparameter to the model that needs tuning for

best performance. We find that randomly selecting a subset of the

candidate hyperedges of size Candmax at each stepworks well in our

evaluation, but other more disciplined strategies such as described

by prior work [32] are also possible.

4.4 Fanout Reward

To guide the agent towards producing good solutions for the fanout

objective, we design the reward signal as follows: Suppose the agent

chose hyperedge qt as its action in time-step t. It receives a reward

r t =
−1

|Q |
|HN (qt) \ S |

Recall from §3.2 that HN(q) is the set of unassigned hyperedges that

are adjacent to hyperedge q. Furthermore, we say that a hyperedge

q is incident to a partition i iff Vi ∩ N(q) � ∅. In other words, q is

incident to partition i if any of the row vertices accessed by q are

assigned to i. Note that the numerator of rt is the (negative of the)

number of hyperedges that became incident to the partition as a

result of the agent’s action at, i.e., the number of queries that are

incident to the partition at time t+1 but were not already incident

to the partition at time t. Hence, rt is the incremental change in the

fanout objective as a result of at. In other words, we have

f anout(P) = −
∑

t

rt

.

RL training works to maximize the sum of expected rewards,

which is the same as minimizing its negative. Hence, our reward

signal design causes training to minimize fanout(P).

4.4.1 Distinguishing Between Reads and Writes. It is usually the

case that distributed writes are significantly more expensive than

reads. This is easy to account for in Neuroshard by adjusting the

reward signal to weigh the reward differently based on whether ht
represents a read-only or a read-write query.

4.5 Load-balancing Reward

Suppose the agent chose a hyperedge qt as its action in time-step

t. This causes a set of unassigned row vertices adjacent to qt to be

assigned to the partition. We call this set of newly assigned row

vertices At. LetWAt be the sum of the load weights for each vertex

in At, that is,

WAt =
∑

v ∈At

Wv

Recall from §4.1 that Maxl is the highest load of a complete

partition so far, i.e., up to time-step t. Likewise,Minl is the lowest

load of a complete partition so far. Let loadt be the load of the

current partition at the start of time-step t. Note that loadt+1 = loadt
+ WAt.

The agent will receive a reward rt that is made of two different

components. We start by defining the components:

• rmaxt, defined as:max (0,WAt −max (0, loadt −Maxl)). Note
that if loadt+1 ≤ Maxl this sets rmaxt to 0. Otherwise, the

rmaxt is set to the incremental increase over Maxl caused by

action at.

• rmint. The value of rmint is always 0 if action at does not

cause the current partition to fill up and start a new partition.

Otherwise, it is defined as: |max (0,Minl − (loadt +WAt))|.
In other words, if the newly-finished partition has at least

the same load as Minl, rmint is set to zero. Otherwise, it is

set to the difference in load.

Recall from §4.1 that both Maxl and Minl are initialized to the

same value Targetl at the beginning of the training episode. Also

recall from §2.2 that, given a complete partitioning P, pmax and

pmin are themost and least loaded partitions, respectively. Consider

the way we defined rmaxt. Every time the agent’s action causes the

current partition’s load to increase over the prior value of Maxl, we

set rmaxt to the difference. Hence, we have∑

t

rmaxt = load(P ,pmax) −Tarдetl

Similarly, we can show that
∑

t

rmint = Tarдetl − load(P ,pmin)

We can now define the reward rt that the agent receives:

rt = −(rmaxt + rmint)

This has the following property:

∑

t

rt = −(
∑

t

rmaxt+
∑

t

rmint) = −(load(P ,pmax)−load(P ,pmin))

.

Giving ∑

t

rt = −Imbalance(P)

We now briefly discuss the choice of using Targetl as the initial

value for both Maxl and Minl. Initially, we chose not to define these

values while processing the first partition, then use the load of

the first partition to initialize the values starting from the second

partition. However, we quickly realized that giving the agent the

target load at the start is very helpful and makes attributing rewards

to actions significantly easier. This way, the agent gets penalties

(i.e. the negative-valued rewards) only and as soon as its choices

start causing deviation from the ideal value.

5 NEURAL NETWORK AGENT

In this section, we describe the internal design of the agent includ-

ing how it represents the policy as a neural network, and finish

by describing the training procedure. We leverage a powerful tech-

nique called Graph Neural Network to capture key features of the

underlying hypergraph, which enables a simple, three-layer policy

network that yields effective sharding results (see §7).

6

A B C D E F

1 2 3 4 Embedding
(GraphSAGE)

Scoring
(Dense) Softmax

Partition State

Candidates

Observable State (st)

qt (st, qt)

Figure 3: Policy neural network architecture

5.1 Agent Design

The agent’s main function is to choose a hyperedge from the candi-

date set at every time step t. Let st be the observable state at time

t (as described in §4.2), and candidatest be the set of candidate

hyperedges. Conceptually, the agent goes through three steps: First,

it computes an embedding vector representation for each hyper-

edge q ∈ candidatest. Second, it uses these embedding vectors to

compute a score for each hyperedge q. Finally, these scores are con-

verted to probabilities and a hyperedge qt is selected based on these

probabilities. A deep neural network representing a parameterized

policy πθ (s, q) is used to accomplish all these steps. As depicted in
Figure 3, its architecture consists of three components, which we

now describe.

Embedding Layer. Graph Neural Networks [49] (GNNs) are the

standard tool used to create embedding vectors for graph elements

such as vertices or edges. The goal is to encode the high-dimensional

information about a vertexâĂŹs graph neighborhood into a dense

vector embedding that is suitable as input to downstream layers

[18]. Given our bipartite graph representation of the hypergraph,

we are able to leverage graph neural network architectures to gen-

erate an embedding vector representation for each hyperedge q in

candidatest. We use GraphSAGE [18], a popular GNN architecture

in Neuroshard as the embedding layer. We set the hyper-parameter

K to 2, which means the computed embedding vectors for a vertex

contain information from its 2-hop neighborhood. This means each

embedding vector for a hyperedge q encodes information about

its adjacent hyperedges, not just the row vertices it accesses. We

found that using the LSTM aggregator in GraphSAGE works well

in our evaluation. Finally, GraphSAGE requires each vertex in the

graph to be initialized with a feature vector. We use the static and

dynamic components of the environment (§4.1) to create the initial

feature vector for each vertex in the bipartite graph. To simplify the

implementation, we use the same feature representation for both

query and row vertices.

Scoring Layer. This layer takes as input the embedding vector

produced by the embedding layer, as well as the partition state

vector (§4.1) and produces a single real number representing a

"score" for the input hyepredge q. We use a dense fully-connected

neural network (with 2 hidden layers) for the scoring layer for its

simplicity and efficiency. Note that our network evaluates each

hyperedge separately to produce a score without taking the other

hyperedges in the candidates set as input. The intuition behind this

design decision is that the vectors produced by the embedding layer

already encode information about adjacent hyperedges (which are

often going to be candidates themselves). Nevertheless, a more

sophisticated architecture able look at all the candidate hyperedges

simultaneously (such as LSTM [21] or Transformer [45]) might

perform better for other more complex workloads, which we leave

for future work.

Softmax Layer. We use a standard Softmax [17] function to map

the scores to probabilities.

An action is then sampled based on the probabilities computed

for each candidate. The neural network representing πθ (s, q) is
trained end-to-end using the training procedure we describe in the

following section.

5.2 Training Procedure

We use a fairly standard training procedure, similar to prior work

[27]. The training proceeds in iterations until convergence (which

can be set as a fixed number of iterations, or until partitioning

quality reaches a user-defined threshold). Each iteration consists of

running N episodes. An episode consists of completely partitioning

the hypergraph using Algorithm 2 with the current value of θ , and
recording the state, action and reward for each time step in the

episode. After completing all episodes, we use this information to

apply the modified REINFORCE equation to compute the gradient

(as explained in §3.1), and take one step in its direction at the

end of the iteration. The pseudocode for the training procedure is

presented in 3. Note that for simplicity, we assume all episodes take

the same number of time-steps L.

for each iteration do

Δθ ← 0;

for episode i := 1 ... N do
Fully partition the hypergraph and record

{si1,a
i
1, r

i
1, ...s

i
L
,ai

L
, r i
L
};

for t := 1 ... L do

// Compute cumulative reward from t

// onwards

vit ←
∑L
s=t r

i
s

end

end

for t := 1 ... L do

bt ←
1
N

∑N
i=1v

i
t // Compute baseline

for i := 1 to N do

Δθ ← Δθ + α
θ loдπθ (s
i
t ,a

i
t)(v

i
t − bt)

end

end

θ ← θ + Δθ
end

Algorithm 3: Training Procedure

Training is an expensive process, but it only needs to be done

offline and with less frequency than the resharding process. Theo-

retically, the agent can be trained only once and never be updated

7

after that, but retraining regularly has the benefit of being able to

adapt to workload changes over time. Neuroshard is primarily de-

signed to be trained on a single workload so that it can discover and

exploit workload specific properties, but another possibility is to

train on traces collected from different workloads simultaneously,

with the purpose of creating a robust, general-purpose sharding

agent and avoid overfitting. We think this could be an interesting

direction to explore, but we leave that for future work.

6 LEARNINGWITH MULTIPLE OBJECTIVES

In the previous sections we showed how to model each of the fanout

minimization and the load balancing problems as an RL problem

individually.While this is potentially useful on its own, a key feature

of Neuroshard is the ability to optimize for both simultaneously. In

this section we describe how we accomplish this, as well as how we

augmented Neuroshard with general support for multi-objective

training so that additional objectives can be added as long as a

suitable reward signals can be defined for them.

Architecture. We use the same policy network (Figure 3) when

training with multiple objectives. This requires the embedding layer

to extract useful features relevant for optimizing all objectives. We

considered more complex schemes using multiple embedding layers

but we found that this adds complexity to training, in terms of

implementation and speed, without much benefit in our evaluation.

Rewards. We startedwith the following straightforward approach:

Define the reward rt as the sum of the individual objective rewards,

i.e., at each time-step t, we add the rewards of fan-out minimization

and load balancing together. This did not work well in practice

for various reasons. First, the units of the reward components are

very different, which makes it easy for one of the objectives to com-

pletely dominate the training. We attempted to normalize the units

of the rewards (e.g., by using a weighted sum of reward compo-

nents instead of just giving each component an equal weight), but

were also not very successful: It was brittle, requires manual tuning

and experimentation for each workload and would be very hard

to generalize. We also found that certain hyper-parameters (e.g.,

the learning rate) that work well for one task may not work well

for the other. Nevertheless, we gained a valuable insight from this

approach: By making the overall reward a linear combination of the

individual component rewards, the overall objective function, or

loss function in machine learning parlance, is a linear combination

of the individual component loss functions, i.e.,

L =
∑

i

wiLi

This allows casting the multi-objective Neuroshard training as

a multi-task learning problem, and leverage existing techniques

for that problem. Multi-Task learning techniques are popular in

computer vision, but to the best of our knowledge this is the first

time this is applied to a multi-objective combinatorial optimization

problem like hypergraph partitioning. We use GradNorm [10] in

Neuroshard. It is designed for problems where the overall loss is

a linear combination of the individual task loss. GradNorm works

to dynamically tune the gradient magnitudes so that gradients

for different tasks are placed on a common scale and dynamically

adjust gradient norms to ensure that the training for different tasks

Figure 4: micro-benchmark throughput with 4 shards

progresses at similar rates, instead of using a hyperparameter to

combine the objectives that remains fixed across training iterations.

To apply GradNorm in Neuroshard we make the following choices:

• W. This is the subset of network weights to apply GradNorm

to. In our case since all weights are shared among both tasks

we just set W to all the weights in the policy network.

• α . This is the "asymmetry" hyper-parameter. It is tunable and
might benefit from hyper-parameter search, but intuitively

the value of α should be high when the tasks are dissimilar

to each other which is generally the case in our setting.

7 PRELIMINARY EVALUATION

We use a shared-nothing distributed database where each node

is a small Google Cloud VM of type n1-standard-1 (1 vCPU, 3.75

GB memory) running a MariaDB [1] instance. The instances are

not sharding-aware, we just load the subset of rows assigned to

each instance at the beginning of each run. The clients running the

queries know the mapping of rows to shards, and they route the

queries to each node as appropriate, using the standard XA API

[6] to co-ordinate the transaction if the query is distributed. To

calculate throughput, we first run a workload for 1 minute warm

up, then measure the average queries per second (QPS) for a period

of 5 minutes after that.

7.1 Baselines

For the rest of the section we compare the performance of Neu-

roshard’s sharding with the following baseline approaches:

• hMetis [23]. A popular heuristic-based hypergraph parti-

tioner. We use the standard flags by using the shmetis ex-

ecutable. For fairness, we set the value of balance flag (UB-

factor) to the tightest possible. This is a baseline that is opti-

mized for the fanout objective. Note that while hMetis sup-

ports specifying vertex weights, using this option would not

guarantee that each partition has roughly the same number

of vertices which does not satisfy our problem statement.

• HNE. We also use Algorithm 1 as a fanout optimizing base-

line.

8

• Random. This scheme chooses a shard uniformly at random

for each row. It is an idealization of hash partitioning, and is

optimized for load balancing.

7.2 Multi-objective Microbenchmark

To study the versatility of Neuroshard and the importance of opti-

mizing for multiple objectives simultaneously, we created a simple

but illustrative synthetic workload.

The database consists of 400 rows, where each row belongs to

exactly one of the following sets:

• Parent Rows. 4 rows

• Child Rows. These are 96 rows in total. Each parent row is

associated with 24 child rows.

• The rest. 300 rows that get accessed independently

The workload is made up of the following (read-only) queries:

• 1% of the queries read a subset of 2 or more of the parent

rows.

• 49% read one parent row, and 0 or 1 of its child rows.

• 50% are point queries that read one of the 300 other rows.

Our goal in this experiment is to shard the database into four

shards. Note that if we only cared about fanout minimization, then

the perfect solution would be to put all of the Parent and Child

rows in a single shard, and distribute the rest equally across the

3 remaining shards. This, however, would mean that 50% of the

queries go to a single shard, creating a large load imbalance.

We shard the database into four shards. We generate a trace of

5000 queries and use it for training. We then generate another trace

made of 5000 queries that follow the same distribution, and shard it

using different algorithms, then measure the QPS by generating a

workload that follows the same distribution. The results are shown

in Figure 4.

Analysis. HNE and hMetis compute the sharding that mini-

mizes fanout perfectly by putting all of the Parent and Child rows

in a single shard. This results in a large load imbalance as we men-

tioned previously, causing them to have the worst throughput on

this microbenchmark. We find that Neuroshard usually computes a

sharding that assigns the parent rows to two shards; two rows each.

It almost perfectly co-locates the child rows with their parents, lead-

ing to close to zero distributed queries. This better load-balancing

of parent rows is the reason why the QPS using Neuroshard is

significantly better than HNE or hMetis. Using random hash parti-

tioning on this workload actually has a lot of variance in terms of

the overall number of rows assigned to each shard, as well as the

distribution of parent/child rows among the shards. To reduce the

noise we started by assigning one parent row to each shard then

applying random partitioning to the rest of the rows. The resulting

sharding scheme has the best load balancing in this workload which

leads to it having the best QPS despite having a significant share

of distributed queries; since this is a read-only workload, the cost

of distribution is not quite high. Even though Neuroshard’s QPS

is not the highest in this workload, these results demonstrate the

robustness of Neuroshard compared to single-objective methods.

Figure 5: Epinions workload throughput with 5 shards

7.3 Epinions

To evaluate Neuroshard’s scalability and ability to handle real-

world datasets, we use a workload based on Epinions [30], a real-

world social network dataset that is a popular choice for evaluating

sharding schemes because its many-to-many relationships make it

hard to shard [12]. The database is composed of two tables: reviews

and trust. Each row in the reviews table has the schema <user, item,

rating> and represents a review of an item by a user. Each row in

the trust table has the schema <user_a, user_b> and records the fact

that user_a trusts reviews by user_b. We shard the reviews table by

the trusting user column (i.e., user_a), and we shard the items table

by the item column. We shard the database on 5 MariaDB servers.

Workload. There is no available trace of queries from the epin-

ions website, so we designed a workload based on the websiteâĂŹs

most popular functionality: users that view an item and want to

retrieve a list of reviews for that item by the users they trust.

Thus, each application-level query is represented by a pair <user,

item>. Our workload generator can generate these application-level

queries based on different distributions. We chose one such distri-

bution in this section for illustration (we got similar results with

other distributions): Items are sorted by popularity (i.e., number of

reviews), and the top 20% of items are considered hot, while the rest

is considered cold. The workload generator generates a query as

follows: First it selects an item i, with i being hot with probability

80% and cold with probability 20%. Then, a user u is selected uni-

formly at random from the set of users trusted by iâĂŹs reviewers.

Recall that we implement query routing in the client. If both the i

and u are colocated on the same server only one query needs to be

sent by the client. Otherwise, the client needs to send queries to

two servers. Hence, sharding has a big impact on throughput (up

to 50% reduction in SQL queries), and potentially also latency.

Generating training and test traces. We generate two traces by

the workload generator. The first is a training trace that is made up

of 4000 queries, and is used to train Neuroshard. We then generate

a partitioning trace of 100,000 queries. This is used by Neuroshard

and the other baseline techniques to partition the database. We

9

then measure the overall system QPS given by each technique by

sending queries based on the workload. The results are in Figure 5.

Analysis. Partitioning quality with respect to fanout minimiza-

tion is the dominant factor in this workload, which is why it is

unsurprising that single-objective hMetis and HNE have the best

performance, while Random which completely ignores fanout min-

imization does the worst. Neuroshard appears to suffer a bit due

to its attempts at jointly optimizing for load balancing, but its per-

formance is still comparable to HNE. This shows that Neuroshard

is robust to changes in the workload unlike single-objective ap-

proaches such as Random. Furthermore, we used a small trace for

Neuroshard training, and yet it was still able to learn heuristics

that were effective on the much larger test trace. This is very im-

portant, as it would be unfeasible to use very long traces to train

Neuroshard; not only would that be computationally very expen-

sive, but excessively long time horizons are known to diminish the

effectiveness of RL algorithms [41, 46].

8 RELATEDWORK

Hypergraph partitioning. As an NP-Hard problem with many

practical applications, many popular heuristic solvers for hyper-

graph partitioning have been developed such as hMetis[23] and

Zoltan [14]. More recent work such as SHP [22] and HYPE [32] has

focused on scalability and the ability to partition large hypergraphs.

All these tools only optimize for fanout minimization (or the closely

related cut-size). HYPE is also a generalization of Neighbor Ex-

pansion [47] but takes a vertex-centric approach compared to the

hyperedge centric approach that we take. We adopt some of the

performance optimizations they suggested such as limiting the size

of the candidate set in our implementation.

Sharding as (hyper)graphpartitioning. Schism [12] pioneered

modelling database sharding and replication as a graph partition-

ing problem. SWORD [36] builds up on this approach but uses

coarser granularity and applies hypergraph partitioning instead.

They use heuristic solvers like Metis [24] and hMetis [23] which

optimize for a single objective, unlike Neuroshard, but they also

model replication which Neuroshard currently does not.

Online sharding. Clay [38], E-Store [43] are online heuristic

sharding algorithms that actively monitor the system to identify

hot tuples, and then potentially migrate them (along with other

jointly accessed row to a different server). However, these systems

make some assumptions about the workload: Clay primarily target

in-memory workloads with a high skew in load, E-Store assumes

all tables form a tree-schema based on foreign key relationships. In

contrast, Neuroshard aims to be broadly applicable to a variety of

workloads and environments. It would be interesting to investigate

how a similar RL approach can improve online sharding, which we

leave for future work.

Automated database tuning. There is a long and rich history

of research [8] that aims to automatically tune various aspects of a

database configuration to improve performance on a givenworkload,

such as by selecting indexes to speed-up access, recommending a

physical layout or generally select values for various configuration

knobs available in the DBMS. More recently, machine learning [44]

and specifically, deep RL (e.g., [25, 48]) techniques have been applied

to this problem.

Deep learning for combinatorial optimization. A large re-

cent body of work (e.g. [2, 4, 5, 26]) has explored using deep learning

for solving NP-Hard combinatorial problems in general, and on

graph problems in particular. Dai et. al. [13] proposed a general

framework for solving optimization problems over graphs using

RL. Their approach uses deep-Q-learning and requires learning a

representation for the entire graph, as opposed to the policy meth-

ods we use that needs only to learn a localized policy. To the best

of our knowledge, we are the first to explore using deep RL for

multi-objective hypergraph partitioning.

Deep RL for systems. Deep RL has been applied successfully

to a wide range of problems from video streaming [28] and network

traffic scheduing [9, 11] to compute resource management [27]

and even physical device placement [33]. We were inspired by

DeepRM [27] and Decima [29], which apply Deep RL to the resource

management and job scheduling domains. Both use policy methods,

and Decima also uses GNNs to produce state representation. Unlike

Neuroshard, the graphs in Decima’s state are comparatively small,

and while Decima and DeepRM support different objectives, users

would have to select just one to use in training. Both systems do

not optimize for multiple objectives simultaneously.

Deep RL for Partitioning. Recent work (e.g., [7, 16, 20, 50])

has explored using Deep RL methods for partitioning. GridForma-

tion [16] proposes an online partitioning approach using Deep-Q-

learning, which is applied to vertical partitioning in [7]. In contrast,

Neuroshard is an offline approach for horizontal sharding. Hilprecht

et. al. [20] use deep-Q-learning to build a general-purpose partition-

ing advisor that can recommend a table partitioning scheme for a

new workload. It targets analytical workloads in which each table

can be partitioned on one or more columns, while Neuroshard’s

focus is OLTP workloads and supports fine-grained row to shard

assignments. The state and action spaces in this setting are much

smaller than in Neuroshard, but evaluating agent’s solutions and

computing the rewards is much more computationally challenging.

9 CONCLUSIONS

Neuroshard is the first system that uses a learned approach for

directly learning horizontal sharding assignments. It models past

accesses to rows as a hypergraph, and then applies deep RL to gen-

erate an efficient partitioner that works by incrementally scoring a

relatively small set of candidates derived from the rows accessed

together as part of the same queries. It uses GradNorm, a multi-task

learning technique, to automatically tune the gradients of multi-

ple different task losses, so that it can balance between multiple

different objectives simultaneously.

This work takes the first steps in realizing a learned sharding

system, but leaves several open problems for future work. First,

we plan to incorporate more complex objectives and constraints,

including different machine capacities and network topologies. Sec-

ond, for large and complex production traces, we expect that we will

need to devise sampling techniques to keep the episode length from

being too large, while allowing Neuroshard to learn effective local

heuristics. Third, while building one partition at a time is simple

and efficient, we suspect extending Neuroshard to build more than

one simultaneously would allow it exploit power of two choices

more effectively. Finally, we do not address how to transition to a

10

new partitioning scheme when one is computed, nor do we attempt

to minimize data movement when computing a new partitioning.

These are important practical considerations, which we leave for

future work.

ACKNOWLEDGMENTS

We thank Kexin Pei and Chengzhi Mao for many useful discus-

sions on Deep Learning and introducing us to GradNorm. We also

thank Haonan Wang for assisting with experimental evaluation.

This project was supported in part by NSF CNS 2106530 and CNS

1564055; ARO award W911NF-21-1-0078; ONR N00014-17-1-2788;

DiDi Faculty Research Award; J.P. Morgan Faculty Research Award;

and Accenture Research Award.

REFERENCES
[1] 2021. MariaDB Server: The open source relational database. https://mariadb.org/.
[2] Kenshin Abe, Zijian Xu, Issei Sato, andMasashi Sugiyama. 2019. Solving NP-Hard

Problems on Graphs by Reinforcement Learning without Domain Knowledge.
arXiv preprint arXiv:1905.11623 (2019).

[3] Konstantin Andreev and Harald Racke. 2006. Balanced graph partitioning. Theory
of Computing Systems 39, 6 (2006), 929–939.

[4] Thomas D Barrett, William R Clements, Jakob N Foerster, and AI Lvovsky. 2019.
Exploratory Combinatorial Optimization with Reinforcement Learning. arXiv
preprint arXiv:1909.04063 (2019).

[5] Irwan Bello, Hieu Pham, Quoc Le, Mohammad Norouzi, and Samy Bengio. 2017.
Neural Combinatorial Optimization with Reinforcement Learning. In ICLR (Work-
shop).

[6] Philip A. Bernstein and Eric Newcomer. 2009. Principles of transaction processing.
Morgan Kaufmann. 330–x336 pages.

[7] Gabriel Campero Durand, Rufat Piriyev, Marcus Pinnecke, David Broneske, Bal-
asubramanian Gurumurthy, and Gunter Saake. 2019. Automated Vertical Par-
titioning with Deep Reinforcement Learning. In New Trends in Databases and
Information Systems. 126–134.

[8] Surajit Chaudhuri and Vivek Narasayya. 2007. Self-Tuning Database Systems: A
Decade of Progress. In Proceedings of the 33rd International Conference on Very
Large Data Bases (VLDB ’07). 3âĂŞ14.

[9] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. 2018. Auto: Scaling deep
reinforcement learning for datacenter-scale automatic traffic optimization. In
Proceedings of the 2018 conference of the ACM special interest group on data com-
munication. 191–205.

[10] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. 2018.
GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Mul-
titask Networks. In Proceedings of the 35th International Conference on Machine
Learning (Proceedings of Machine Learning Research), Vol. 80. 794–803.

[11] Sandeep Chinchali, Pan Hu, Tianshu Chu, Manu Sharma, Manu Bansal, Rakesh
Misra, Marco Pavone, and Sachin Katti. 2018. Cellular network traffic scheduling
with deep reinforcement learning. In Thirty-second AAAI conference on artificial
intelligence.

[12] Carlo Curino, Evan Philip Charles Jones, Yang Zhang, and Samuel RMadden. 2010.
Schism: a workload-driven approach to database replication and partitioning.
(2010).

[13] Hanjun Dai, Elias Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017. Learn-
ing combinatorial optimization algorithms over graphs. In Advances in Neural
Information Processing Systems. 6348–6358.

[14] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courte-
nay Vaughan. 2002. Zoltan data management services for parallel dynamic
applications. Computing in Science & Engineering 4, 2 (2002), 90–96.

[15] David J DeWitt, Shahram Ghandeharizadeh, Donovan A Schneider, Allan Bricker,
Hui-I Hsiao, and Rick Rasmussen. 1990. The Gamma database machine project.
(1990).

[16] Gabriel Campero Durand, Marcus Pinnecke, Rufat Piriyev, Mahmoud Mohsen,
David Broneske, Gunter Saake, Maya S. Sekeran, Fabián Rodriguez, and Laxmi
Balami. 2018. GridFormation: Towards Self-Driven Online Data Partitioning
Using Reinforcement Learning. In Proceedings of the First International Workshop
on Exploiting Artificial Intelligence Techniques for Data Management (aiDM’18).

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[18] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[19] Masatoshi Hanai, Toyotaro Suzumura, Wen Jun Tan, Elvis Liu, Georgios Theodor-
opoulos, and Wentong Cai. 2019. Distributed Edge Partitioning for Trillion-Edge

Graphs. Proc. VLDB Endow. (Sept. 2019), 2379âĂŞ2392.
[20] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. 2020. Learning a Parti-

tioning Advisor for Cloud Databases. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’20). 143âĂŞ157.

[21] Sepp Hochreiter and JÃĳrgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation (1997).

[22] Igor Kabiljo, Brian Karrer, Mayank Pundir, Sergey Pupyrev, Alon Shalita, Alessan-
dro Presta, and Yaroslav Akhremtsev. 2017. Social hash partitioner: a scalable
distributed hypergraph partitioner. arXiv preprint arXiv:1707.06665 (2017).

[23] George Karypis. 1998. hMETIS 1.5: A hypergraph partitioning package. Technical
Report (1998).

[24] George Karypis and Vipin Kumar. 1997. METIS: A software package for parti-
tioning unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. (1997).

[25] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A Query-Aware
Database Tuning System with Deep Reinforcement Learning. Proc. VLDB Endow.
(Aug. 2019), 2118âĂŞ2130.

[26] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. 2018. Combinatorial optimization
with graph convolutional networks and guided tree search. In Advances in Neural
Information Processing Systems. 539–548.

[27] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016.
Resource management with deep reinforcement learning. In Proceedings of the
15th ACM workshop on hot topics in networks. 50–56.

[28] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive
video streaming with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. 197–210.

[29] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. 2019. Learning scheduling algorithms for data pro-
cessing clusters. In Proceedings of the ACM Special Interest Group on Data Com-
munication. 270–288.

[30] Paolo Massa and Paolo Avesani. 2005. Controversial users demand local trust
metrics: an experimental study on epinions.com community. AAAIâĂŹ05 (2005).

[31] Yoshinori Matsunobu, Siying Dong, and Herman Lee. 2020. MyRocks: LSM-tree
database storage engine serving Facebook’s social graph. Proceedings of the VLDB
Endowment 13, 12 (2020), 3217–3230.

[32] Christian Mayer, Ruben Mayer, Sukanya Bhowmik, Lukas Epple, and Kurt Rother-
mel. 2018. Hype: Massive hypergraph partitioning with neighborhood expansion.
In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 458–467.

[33] AzaliaMirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng
Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. 2017.
Device placement optimization with reinforcement learning. In International
Conference on Machine Learning. PMLR, 2430–2439.

[34] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518 (2015),
529–533.

[35] George E. Monahan. 1982. State of the art - a survey of partially observable
markov decision processes: theory, models, and algorithms. Management Science
(1982).

[36] Abdul Quamar, K. Ashwin Kumar, and Amol Deshpande. 2013. SWORD: Scalable
Workload-Aware Data Placement for Transactional Workloads. In Proceedings
of the 16th International Conference on Extending Database Technology (Genoa,
Italy) (EDBT ’13). 430âĂŞ441.

[37] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. Trust Region Policy Optimization. In Proceedings of the 32nd International
Conference on Machine Learning (Proceedings of Machine Learning Research),
Vol. 37. 1889–1897.

[38] Marco Serafini, Rebecca Taft, Aaron J Elmore, Andrew Pavlo, Ashraf Aboulnaga,
and Michael Stonebraker. 2016. Clay: fine-grained adaptive partitioning for
general database schemas. Proceedings of the VLDB Endowment 10, 4 (2016),
445–456.

[39] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric
Rollins, Mircea Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner, John
Cieslewicz, Ian Rae, Traian Stancescu, and Himani Apte. 2013. F1: A Distributed
SQL Database That Scales. Proc. VLDB Endow. 6, 11 (Aug. 2013), 1068âĂŞ1079.
https://doi.org/10.14778/2536222.2536232

[40] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. 2016. Mastering the Game of Go with Deep
Neural Networks and Tree Search. Nature 529, 7587 (Jan. 2016), 484–489.

[41] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning. MIT
Press.

11

[42] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999.
Policy Gradient Methods for Reinforcement Learning with Function Approxi-
mation. In Proceedings of the 12th International Conference on Neural Information
Processing Systems. 1057âĂŞ1063.

[43] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-store: Fine-
grained elastic partitioning for distributed transaction processing systems. Pro-
ceedings of the VLDB Endowment 8, 3 (2014), 245–256.

[44] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-Scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data (SIGMOD ’17). 1009âĂŞ1024.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Uszkoreit Jakob, Llion Jones,
Aidan N. Gomez, ÅĄukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in neural information processing systems.

[46] Haonan Wang, Hao He, Mohammad Alizadeh, and Hongzi Mao. 2019. Learning
Caching Policies with Subsampling. In NeurIPS Machine Learning for Systems

Workshop.
[47] Chenzi Zhang, Fan Wei, Qin Liu, Zhihao Gavin Tang, and Zhenguo Li. 2017.

Graph edge partitioning via neighborhood heuristic. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
605–614.

[48] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
End-to-EndAutomatic CloudDatabase Tuning SystemUsingDeep Reinforcement
Learning. In Proceedings of the 2019 International Conference on Management of
Data (SIGMOD ’19). 415âĂŞ432.

[49] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81.

[50] Jia Zou, Amitabh Das, Pratik Barhate, Arun Iyengar, Binhang Yuan, Dimitrije
Jankov, and Chris Jermaine. 2021. Lachesis: Automated Partitioning for UDF-
Centric Analytics. Proc. VLDB Endow. 14, 8 (2021), 1262–1275.

12

