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Abstract
Alias analysis is perhaps one of the most crucial and widely used
analyses, and has attracted tremendous research efforts over the
years. Yet, advanced alias analyses are extremely difficult to get
right, and the bugs in these analyses are most likely the reason
that they have not been adopted to production compilers. This pa-
per presents NEONGOBY, a system for effectively detecting errors
in alias analysis implementations, improving their correctness and
hopefully widening their adoption. NEONGOBY works by dynami-
cally observing pointer addresses during the execution of a test pro-
gram and then checking these addresses against an alias analysis for
errors. It is explicitly designed to (1) be agnostic to the alias analy-
sis it checks for maximum applicability and ease of use and (2) de-
tect alias analysis errors that manifest on real-world programs and
workloads. It reduces false positives and performance overhead us-
ing a practical selection of techniques. Evaluation on three popular
alias analyses and real-world programs Apache and MySQL shows
that NEONGOBY effectively finds 29 alias analysis bugs with only
2 false positives and reasonable overhead. To enable alias anal-
ysis builders to start using NEONGOBY today, we have released
it open-source at https://github.com/alias-checker,
along with our error detection results and proposed patches.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages

General Terms Algorithms, Design, Reliability, Experimentation

Keywords Error Detection, Alias Analysis, Dynamic Analysis

1. Introduction
Alias analysis answers queries such as “whether pointers p and q
may point to the same object.” It is perhaps one of the most crucial
and widely used analyses, and the foundation for many advanced
tools such as compiler optimizers [34], bounds checkers [14, 20,
32], and verifiers [13, 15, 16, 30, 37]. Unsurprisingly, a plethora
of research [8, 25, 27, 40] over the last several decades has been
devoted to improve the precision and speed of alias analysis, and
PLDI and POPL alone have accepted over 37 alias analysis papers
since 1998 [36]. (Most citation lists in this paragraph are seriously
incomplete for space.)

Unfortunately, despite our reliance on alias analysis and the
tremendous efforts to improve it, today’s production compilers still
use the most rudimentary and imprecise alias analyses. For in-
stance, the default alias analysis in LLVM for code generation,
basicaa, simply collapses all address-taken variables into one ab-
stract location; the default alias analysis in GCC is type-based and
marks all variables of compatible types aliases. These imprecise
analyses may cause compilers to generate inefficient code.

We believe the key reason hindering the adoption of advanced
alias analyses is that they are extremely difficult to get right. Ad-

vanced alias analyses tend to require complex implementations to
provide features such as flow sensitivity, context sensitivity, and
field sensitivity and to handle corner cases such as C unions, exter-
nal functions, function pointers, and wild void* and int casts. As
usual, complexity leads to bugs. Buggy alias results at the very least
cause research prototypes to yield misleading evaluation numbers.
For instance, our evaluation shows that LLVM’s anders-aa, im-
plementing an interprocedural Andersens’s algorithm, is actually
less precise than basicaa (§8.1.1) after we fixed 13 anders-aa
bugs. Worse, buggy alias results cause optimizers to generate in-
correct code, commonly believed to be among the worst possible
bugs to diagnose. Moreover, they compromise the safety of bounds
checkers and verifiers, yet this safety is crucial because these tools
often have high compilation, runtime, or manual overhead, and are
applied only when safety is paramount.

This paper presents NEONGOBY,1 a system for effectively de-
tecting errors in alias analysis implementations, improving their
correctness and hopefully vastly widening their adoption. We ex-
plicitly designed NEONGOBY to be agnostic to the alias analysis it
checks: the only requirement is a standard MayAlias(p,q) inter-
face that returns true if p and q may alias and false otherwise.2 This
minimum requirement ensures maximum applicability and ease of
use. To check an alias analysis with NEONGOBY, a user addition-
ally chooses a test program and workload at her will. For instance,
she can choose a large program such as Apache and MySQL and
a stressful workload that together exercise many diverse program
constructs, such as the corner cases listed in the previous paragraph.
This flexibility enables NEONGOBY to catch alias analysis bugs
that manifest on real-world programs and workloads.

Given the test program, NEONGOBY instruments the program’s
pointer definitions to track pointer addresses. The user then runs
the instrumented program on the workload, and NEONGOBY dy-
namically observes pointer addresses and checks them against the
alias analysis. It emits bug reports if the addresses contradict the
alias results, i.e., the pointers did alias during the test run based
on the dynamically observed addresses (henceforth referred to as
addresses) but the alias analysis states that the two pointers never
alias. We use DidAlias(p,q) to refer to NEONGOBY’s algorithm
for determining whether pointers p and q did alias. The invariant
NEONGOBY checks is thus DidAlias(p,q)→ MayAlias(p,q).
To ease discussion, we use DidAlias/MayAlias to refer to both
the corresponding algorithm and the set of pointer pairs on which
DidAlias/MayAlias returns true.

Although the idea of dynamically checking alias analysis enjoys
conceptual simplicity, implementing it faces a key challenge: how
to reduce false positives, a major factor limiting the usefulness and

1 We name our system after the neon goby fish which helps other fish by
cleaning external parasites off them.
2 NEONGOBY can be easily extended to check must-alias but few alias
analyses implement a more-than-shallow must-alias analysis.
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// no alias if field-sensitive
struct {char f1; char f2;} s;
p = &s−>f1;
q = &s−>f2;

// no alias if flow-sensitive
for(i=0; i<2; ++i)

p = ADDR[i];
q = ADDR[0]; // p’s address is ADDR[1]

// no alias if context-sensitive
void *foo(void *arg) {

void *p = malloc(. . .);
void *q = arg; // p is freshly allocated, so doesn’t alias q
return p;
}
foo(foo(NULL));

Figure 1: False positive examples caused by sensitivities.

adoption of error detection tools [9]. False positives arise from two
main sources:

First, a naı̈ve DidAlias algorithm may be less precise than the
alias analysis checked. Figure 1 shows three examples on which
an imprecise DidAlias may emit false positives. Specifically, if
an imprecise DidAlias considers pointers with one byte apart as
aliases (because they likely point to the same object), it may emit a
false positive for a field-sensitive alias analysis on the first example;
if it considers pointers ever assigned the same address as aliases, it
may emit a false positive for a flow-sensitive alias analysis on the
second example or for a context-sensitive alias analysis on the third
example. To reduce such false positives while remaining agnostic
to the alias analysis checked, NEONGOBY must provide a very
precise DidAlias.

Second, the same observed address of a pointer is not always
intended to refer to the same object, which occurs for two reasons.
Spatially, pointers may have invalid addresses (e.g., go off bound or
be assigned undefined values). For instance, an off-by-one pointer
for marking the end of an array may accidentally have the same
address as a pointer to the next object. Temporally, the same piece
of memory may be reused for different objects. For instance, two
heap memory allocations may return the same address if the first
allocation is freed before the second allocation. Thus, NEONGOBY
cannot simply claim that two pointers did alias if their addresses
are identical; instead, it may need to track whether a pointer is valid
and, if so, what object it points to. This problem appears familiar
to the problem bounds checkers solve, but it is actually very dif-
ferent: NEONGOBY assumes a test program is largely correct and
runs it to detect alias analysis errors, whereas bounds checkers are
for preventing buffer overflow attacks. Thus, it is an overkill for
NEONGOBY to borrow complex bounds-checking techniques such
as tracking base and bounds for each pointer.

A secondary challenge facing NEONGOBY is performance
overhead. NEONGOBY is designed to detect errors, so overhead
is typically not a big issue. However, NEONGOBY is also de-
signed to detect alias analysis errors that manifest on real-world
programs, and large overhead may disturb the executions of these
programs [29], such as triggering excessive timeouts. Moreover,
different users may have different resource budgets and coverage
goals when testing their alias analyses. Since users can best decide
what overhead is reasonable, NEONGOBY should provide them the
flexibility to make their own tradeoffs between bugs and overhead.

NEONGOBY addresses these challenges using three ideas. First,
it provides two checking modes, enabling a user to select the mode
best suited for her alias analysis, test program, and workload. In

the offline mode, NEONGOBY logs pointer definitions to disk when
running a test program, and checks the log after the test run fin-
ishes. Since checking does not slow down the test run, NEONGOBY
affords to check more thoroughly: it checks alias queries on point-
ers potentially in different functions, or interprocedural queries.
However, the logging overhead in the offline mode may be high, so
NEONGOBY offers another mode to reduce overhead. In the online
mode, NEONGOBY checks alias queries on pointers only in the
same function, or intraprocedural queries,3 with efficient inlined
assertions, but it may miss some bugs the offline mode catches.

Second, NEONGOBY further reduces performance overhead
without losing bugs using an optimization we call delta checking.
This optimization assumes a correct baseline alias analysis, such as
LLVM’s basicaa, often simple enough to have few bugs. NEON-
GOBY then checks only the pointer pairs that may alias according
to the baseline but not the checked alias analysis. By reducing the
pointer pairs to check, NEONGOBY reduces overhead.

Third, NEONGOBY employs a practical selection of techniques
to reduce false positives. For instance, NEONGOBY considers that
two addresses do not alias even if they are one byte apart, avoiding
false positives on a field-sensitive alias analysis. In addition, it
versions memory, so if a piece of memory is reused, the addresses
before and after the reuse get different versions.

We implemented NEONGOBY within the LLVM compiler [3]
and checked three popular LLVM alias analyses, including (1) the
aforementioned basicaa, LLVM’s default alias analysis; (2) the
aforementioned anders-aa, later used as the basis for two alias
analyses [27, 31]; (3) and ds-aa, a context-sensitive, field-sensitive
algorithm with full heap cloning [25], later used by [7, 11, 15, 39].
To check these analyses, we selected two real-world programs
MySQL and Apache and the workloads their developers use. NEON-
GOBY found 29 bugs in anders-aa and ds-aa, including 24 pre-
viously unknown bugs, with only 2 false positives and reasonable
overhead. We have reported five bugs to ds-aa developers, one
of which has been patched [5]. (Hopefully, ds-aa developers will
have more time working on the fixes after the PLDI deadline.)

This paper makes four main contributions: (1) our formulation
of an approach that dynamically checks general alias analysis with
the invariant DidAlias(p,q) → MayAlias(p,q); (2) NEON-
GOBY, a long overdue system toward improving advanced alias
analyses into production quality and widening their adoption; (3) a
practical selection of techniques to reduce false positives and over-
head; and (4) our evaluation results, including real bugs found in
two LLVM alias analyses and our proposed patches. Our key inspi-
ration is our anecdotal struggles with some existing alias analyses
in our research, so we hope that alias analysis builders can start ap-
plying NEONGOBY to improve their alias analyses into production-
quality analyses today. As such, we have released it open-source
at https://github.com/alias-checker, along with our
error detection results and proposed patches.

2. An Example and Overview
Figure 2 shows an example test program. It has three pointers: p
and q in function main, and r in bar. Among these pointers, only
q and r alias. Suppose buggyaa, a buggy alias analysis misses this
only alias pair and reports no alias for all pointers.

To check buggyaa with this test program using the offline mode
of NEONGOBY, a user first compiles the code into example.bc in
LLVM’s intermediate representation (IR), and runs the following
three commands:

% neongoby --offline --instrument example.bc
% ./example.inst
% neongoby --check example.bc example.log buggyaa

3 Intraprocedural queries can still be answered by interprocedural analyses.
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void bar(int *r) { *r = 1; } // r aliases q
int main() {

int *p = (int *)malloc(sizeof(int));
free(p);
int *q = (int *)malloc(sizeof(int)); // memory reuse
bar(q);
free(q);
return 0;
}

Figure 2: Example test program.

The first command instruments the program for checking: (1) it
transforms the program to avoid false positives caused by mem-
ory reuse, off-bound pointers, and undefined values and (2) it in-
serts a logging operation after each pointer definition or mem-
ory allocation to log information for offline checking. The second
command runs the instrumented program example.inst to gener-
ate a log of pointer definitions and memory allocations. The third
command checks this log against buggyaa for errors. It first com-
putes DidAlias for all three pairs of pointers, including pointers
not in the same function. It excludes pair p,q and pair p,r from
DidAlias even if the two malloc() calls return the same address
because the versions of the address are different. It includes pair
q,r in DidAlias because q and r share the same address and ver-
sion. NEONGOBY then checks DidAlias against buggyaa, emit-
ting an error report because MayAlias(q,r) returns false. To diag-
nose this error, the user can run NEONGOBY to dump log records
or slice the log for records explaining why q and r did alias.

To check buggyaa with this test program using the online mode
of NEONGOBY, a user runs the following commands:

% neongoby --online example.bc buggyaa
% ./example.ck

The first command iterates through each function in example.bc,
queries buggyaa on each pair of pointers in the function, and, if
MayAlias on the two pointers returns false, embeds an assertion
that the two pointers never alias at runtime. In this example, NEON-
GOBY embeds an assertion “assert(p!=q || p==NULL)” after
the second malloc(). The online mode prevents the two memory
allocations from returning the same address using a simple trick of
deferring memory deallocation. The second command runs the in-
strumented program example.ck to check whether this assertion
may be triggered, which never happens.

Each mode of NEONGOBY has pros and cons. The offline mode
checks more thoroughly, whereas the online mode checks only
intraprocedural queries, missing the bug in buggyaa. The offline
mode can reuse one log to check multiple alias analyses, amortizing
the cost of running the tests, whereas the online mode can check
only one alias analysis at a time. However, the offline mode has to
log information to disk because the log may grow larger than the
RAM for some real-world programs and workloads, and on-disk
logging can be costly. In contrast, the inlined assertions the online
mode embeds are much faster to check. By providing two modes
of operations, NEONGOBY enables a user to select the mode that
suits her purpose.

3. Offline Mode
This section describes how NEONGOBY operates in the offline
mode. Figure 3 shows the offline mode architecture. It has three
components: the instrumenter, logger, and offline detector. Given
a program in LLVM’s intermediate representation (IR), the instru-
menter transforms the program to avoid false positives and inserts
logging operations to collect runtime information. When a user
runs the instrumented program, the logger records pointer defini-

offline
detector

instrumenter

program

alias
analysis

bug
reports

pointer log

instrumented
program logger workload

Figure 3: Architecture of the offline mode.

tions and memory allocations to disk. Since the logger runs within
a test program, we explicitly designed it to be simple and state-
less, reducing runtime overhead and avoiding perturbing the exe-
cution of the test program. After the run finishes, the offline de-
tector checks the log against an alias analysis and emits error re-
ports. Since the logger is much simpler than the other components,
we focus on describing the instrumenter (§3.1) and offline detector
(§3.2), and give a brief discussion at the end of this section (§3.3).

3.1 Instrumenter

The instrumentor does five main transformations, the first to en-
sure that the logger and the offline detector can consistently refer
to the pointer variables in a program, the second to collect pointer
addresses, and the last three to reduce false positives caused by
memory reuse, off-bound pointers, and undefined values. We de-
scribe the five transformations below and highlight some of the dif-
ferences between NEONGOBY and bounds checkers.

Assigning IDs to pointers. The logger and offline detector run
in different phases, so they need a consistent way to refer to the
pointers in a program. To identify the pointers, the instrumentor
traverses the program’s control flow graph and assigns to the nth

visited static pointer variable a numeric ID of n. To keep IDs con-
sistent, the offline detector uses the same deterministic algorithm
(depth-first traversal in our implementation) to assign IDs to point-
ers. Bounds checkers need not assign IDs to pointers because they
cannot defer checking to offline.

Instrumenting pointer definitions. To catch errors caused by all
different types of pointers, NEONGOBY instruments all pointer
definitions which assign addresses to pointers. Function pointers
and global pointers are particularly crucial: they are widely used
in real-world programs such as MySQL and Apache, yet they are
often mishandled by alias analyses. Our experiments found 7 bugs
caused by mishandled function and global pointers (§8.1.1).

NEONGOBY logs the following four types of pointer defini-
tions: pointer assignment (p = addr), pointer load (p = *addr),
function argument passing, and global variable initialization.
NEONGOBY instruments a pointer assignment or load by inserting
“log ptr(ptr,addr)” right after the definition where ptr is p’s
statically assigned ID, addr is the address assigned, and log ptr
is a logging operation that, when executed, appends the ID and
the assigned address to the current on-disk log. NEONGOBY adds
calls to log ptr similarly for function arguments at function en-
tries and for global variables at the entry of the main function.
Bounds checkers must also track these pointer definitions to prop-
agate pointer base and bound information.



Instrumenting memory allocations. As discussed in §1, NEON-
GOBY cannot use only addresses to compute DidAlias because
the same address may point to different objects if memory is
reused. To enable the offline detector to handle memory reuse,
NEONGOBY instruments all memory allocations, including the al-
locations of heap, stack, and global variables. (Although global
memory cannot be reused, NEONGOBY also instruments it to
handle all memory allocations uniformly.) For each allocation,
it inserts log alloc(addr, size) to record the allocation ad-
dress and size. For stack variables, NEONGOBY inserts log alloc
at the function entry. For global variables, NEONGOBY inserts
log alloc at the entry of main. For heap variables, NEONGOBY
inserts log alloc after a call to one of the following functions:
1. C memory allocation functions: malloc, calloc, valloc,

realloc, and memalign;
2. C++ new (mangled names Znwj, Znwm, Znaj, and Znam);
3. Other library functions: strdup, strdup, and getline.

Users can easily add more heap allocation functions. (One tricky
point is that a memory allocation such as “p = malloc(...)” is
also a pointer definition, and NEONGOBY must insert log alloc
before log ptr for the offline detector to correctly handle memory
reuse (§3.2). Another point is that LLVM shares memory between
two constant strings for space if one is the suffix of the other; to
avoid these false aliases, NEONGOBY disables this optimization.)

To reduce logging overhead, NEONGOBY does not instrument
memory deallocations, such as free() calls, and relies on the of-
fline detector to lazily discover when memory is freed. Thus, a cor-
ner case such as “free(q); p = q;” may cause NEONGOBY to
emit a false positive on a flow-sensitive alias analysis that under-
stands free: although p and q have the same address, they techni-
cally point to nothing. However, such a case almost never occurs
in real programs. No false positives of this type occurred in our
experiments on real-world programs (§8.1.2). Bounds checkers in
contrast must handle memory deallocations if they want to catch
use-after-free errors.

Handling off-bound pointers. Pointers may be assigned off-
bound addresses that accidentally alias other pointers, causing false
positives. Fortunately, most programs use off-bound pointers only
to mark the ends of arrays, and these pointers are off by only one
byte. This type of off-bound pointer is also the only type allowed by
the ANSI C standard. To eliminate false positives caused by off-by-
one pointers, NEONGOBY transforms a program to add one extra
byte for each memory allocation, a technique borrowed from [24].
NEONGOBY currently does not handle other off-bound pointers
because they occur very rarely, and we experienced no false pos-
itives caused by these pointers in our experiments (§8.1.2). Bounds
checkers in contrast may have to handle these pointers because their
false positives are fatal and abort executions.

Handling undefined values. Variables may be uninitialized and
have undefined pointer values that accidentally look like addresses
of other pointers, These values may further propagate through as-
signments, such as assignments of a struct with an uninitialized
pointer field to another struct, causing NEONGOBY to log bogus
addresses and emit false positives. NEONGOBY handles undefined
pointer values by setting them to NULL because NULL aliases noth-
ing. It does so for (1) global variable initializations and (2) LLVM
SSA’s φ-instructions4 because these constructs frequently contain
undefined values. To reduce performance overhead, NEONGOBY
does not reset stack and heap variables’ undefined values which
rarely occur in assignments. Bounds checkers in contrast may have
to handle all undefined pointer values to avoid fatal false positives.

4 An LLVM φ-instruction uses an undefined value to indicate that the
variable is not initialized along an incoming edge to the basic block.

3.2 Offline Detector

Given a log of pointer definitions and memory allocations, NEON-
GOBY’s offline detector finds alias analysis errors in two steps.
First, it scans the log to compute the DidAlias results. Second, it
checks DidAlias against an alias analysis and emits error reports.

From a high level, NEONGOBY computes DidAlias results as
follows. It maintains two maps: a (conceptual) map V from an
address to a version number for handling memory reuse, and a
map P from a pointer’s unique ID to an address and version for
tracking where pointers point to. We use a location to refer to an
address-version pair. Given a log, NEONGOBY scans the records
sequentially from the beginning. Upon a memory allocation record,
NEONGOBY updates V to assign a new version number for the
addresses within the allocated range, so the same addresses get
different versions before and after this allocation. Upon a pointer
definition record l with pointer ptr and address addr, NEONGOBY
searches V for l.addr’s current version and updates P to make
l.ptr point to location 〈l.addr, V [l.addr]〉. It then searches P for
pointers that point to the same location; for each such pointer p, it
adds 〈l.ptr, p〉 and 〈p, l.ptr〉 to DidAlias. (Note that 〈l.ptr, l.ptr〉
is in DidAlias because a pointer aliases itself.)

As discussed in §1, NEONGOBY must be very precise when
computing DidAlias to avoid false positives. The algorithm de-
scribed above is field-sensitive because it considers that two point-
ers did alias only when their locations are identical, which re-
quires their addresses to be identical. It is flow-sensitive because
its pointer map P maintains only the current location of a pointer.
This technique also makes it largely context-sensitive because P al-
most always contains consistent pointer-to-location mappings from
the latest call of a function. In rare cases, P may contain mappings
from different calls of a function, causing false positives. Fixing
these false positives is easy: simply log function calls and returns.
However, based on our evaluation (§8.1.2), these false positives
hardly occurs, so we opted not to log function calls or returns to
reduce logging overhead.

Once NEONGOBY computes the DidAlias results, it checks
an alias analysis as follows. It iterates through each pointer pair
in DidAlias, and checks that the pair is also in MayAlias. It
emits an error report otherwise. Since the DidAlias results do not
depend on the alias analysis checked, NEONGOBY can reuse them
to check multiple alias analyses, amortizing the cost of logging and
computing DidAlias.

Our actual algorithm to detect errors offline, shown in Algo-
rithm 1, does two optimizations for space and speed. The first op-
timization implements the address-to-version map V with an in-
terval tree [10] whose key is an address range and value the ver-
sion number of the entire address range (lines 4 and 10). An in-
terval tree is much more space-efficient than a version number
per address. Upon a memory allocation record, NEONGOBY re-
moves V ’s existing address ranges that overlap with the allocated
range (because these ranges must have been freed), increments
a global version number, and inserts the new range and version
to V . Second, instead of scanning the pointer map P for point-
ers that point to the same location, NEONGOBY maintains a re-
verse map Q from a location back to pointers (lines 3, 13, and
18). With these optimizations, the space complexity of our algo-
rithm is O(|P | + |M | + |DidAlias|), and the time complexity is
O(|L|(log |M |+ log |P |+N log |DidAlias|)), where |M | is the
number of memory allocations in the log, and N is the maximum
size ofQ[location]. In our experiments,N never exceeds 400, |M |
is typically 1% of |L|, and the size of DidAlias is less than 106.

3.3 Discussion

Some of the problems NEONGOBY addresses, such as tracking
pointer definitions and handling memory reuse, off-bound point-



Algorithm 1: Offline detection algorithm
Input: program Prog , alias analysis A, and log L

1 OfflineDetection(Prog , A, L)
2 P [∀pointer ]← 〈null, 0〉 // pointer-to-location map
3 Q[∀location]← ∅ // location-to-pointers map
4 V [∀address]← 0 // address-to-version map
5 VG ← 0 // global version number
6 DidAlias ← ∅ // pointer pairs that did alias
7 foreach record l ∈ L do
8 if l is MemAllocRecord then
9 VG ← VG + 1

10 V [l.start · · · l.end ]← VG

11 else if l is PointerRecord then
12 if P [l.ptr ] 6= 〈null, 0〉 then
13 Q[P [l.ptr ]]← Q[P [l.ptr ]] \ l.ptr
14 P [l.ptr ]← 〈null, 0〉
15 if l.addr is not null then
16 let location , 〈l.addr , V [l.addr ]〉 in
17 P [l.ptr ]← location
18 Q[location]← Q[location] ∪ l.ptr
19 foreach pointer p ∈ Q[location] do
20 DidAlias ← DidAlias ∪ 〈l.ptr , p〉
21 DidAlias ← DidAlias ∪ 〈p, l.ptr〉
22 foreach pointer pair 〈p, q〉 ∈ DidAlias do
23 if not A.MayAlias(p, q) then // MayAlias uses Prog
24 ReportError(〈p, q〉)

Bounds NEONGOBY
online only Yes No
use alias analysis Maybe No
pointer definition Yes Yes
pointer metadata Yes No
pointer dereference Yes No
allocation Yes Yes
deallocation Yes No
off-bound-pointer Yes Only off-by-one
undefined value Yes Only global init & φ-instruction

Table 1: Different techniques in bounds checkers and NEONGOBY.

ers, and undefined values, overlap with what bounds checkers must
handle. However, NEONGOBY has very different assumptions and
goals than bounds checkers: it assumes a test program is largely
correct, and uses the program to detect errors in alias analyses,
whereas bounds checkers prevent buffer overflow attacks to a pro-
gram. False negatives in bounds checkers may lead to exploits, and
false positives wrongly abort executions. In contrast, the effects of
NEONGOBY’s false positives and negatives are much less serious.
Because of these differences, it is an overkill for NEONGOBY to
borrow complex bounds-checking techniques.

Table 1 summarizes the different techniques in typical bounds
checkers and NEONGOBY. Bounds checkers must check buffer
overflows online to stop exploits, whereas NEONGOBY can de-
fer costly detection completely offline. Bounds checkers may as-
sume a correct alias analysis (and other static analyses) and use
them to remove unnecessary checks, whereas NEONGOBY is in-
tended to detect errors in alias analyses. Bounds checkers need
to maintain pointer base and bound information with fat pointers,
maps, or trees [14, 24], which break backward compatibility or
have high overhead. In contrast, NEONGOBY maintains no pointer
metadata. Bounds checkers check pointer dereferences and track
memory deallocations to catch bugs, whereas NEONGOBY does

Algorithm 2: Online mode
Input: program Prog and alias analysis A

1 OnlineInstrumentation(Prog , A)
2 foreach function F ∈ Prog do
3 foreach pointer definition pair 〈p, q〉 ∈ F do
4 if p reaches q and not A.MayAlias(p, q) then
5 insert “assert(p 6= q or p is null)” after q
6 foreach external function call C freeing a heap object do
7 replace C with “call deferred free”

neither. Bounds checkers may need to accurately handle pointers
off by more than one bytes and undefined values in stack and heap
variables to avoid wrongly aborting executions, whereas NEON-
GOBY ignores these cases.

4. Online Mode
NEONGOBY’s offline mode checks interprocedural alias queries to
find more bugs, but its logging may be costly. Thus, NEONGOBY
provides an online mode to reduce performance overhead. This
section describes how NEONGOBY operates in the online mode.

The online mode focuses on checking intraprocedural queries
because they are often considered more crucial than interproce-
dural queries. For instance, compiler optimizations tend to issue
mostly intraprocedural queries. To check intraprocedural queries,
NEONGOBY embeds the alias analysis checks as regular program
assertions into a test program. NEONGOBY reports an alias analysis
bug if one of the assertions fails when a user runs the test program.
These assertions are much cheaper than costly on-disk logging at
runtime, as shown in our experiments (§8.3).

Algorithm 2 shows the algorithm to embed the checks. It iterates
through each pair of point definitions p and q of a function (line 3),
and inserts an assertion “assert(p!=q || p==NULL)” (line 5) if
MayAlias(p,q) returns false (line 4). One issue is that the inserted
assertion requires that both p and q are defined. NEONGOBY solves
this issue with a standard control flow reachability analysis (line
4), and inserts the assertion only if p’s definition reaches q. (If
pointer p is undefined along some incoming edges to q’s basic
block, NEONGOBY creates a new φ-instruction using LLVM’s SSA
transformation, not shown in Algorithm 2.)

To avoid false positives caused by memory reuse, off-bound
pointers, and undefined values, the online mode borrows the tech-
niques from the offline mode, with one refinement: it no longer
versions memory. The insight is that NEONGOBY checks only in-
traprocedural queries in the online mode, so it need handle only
heap memory reuse, which can be handled in a much simpler way.
Specifically, it defers heap memory deallocations so the allocations
almost always return different addresses. To do so, it replaces func-
tions that free heap memory, including C’s free and C++’s delete
(mangled names ZdlPv and ZdaPv), with a function that queues
the free request without actually freeing memory. When the queue
is full, NEONGOBY processes half of the queued requests, ensur-
ing that heap memory reuse occurs after at least n/2 free operations
where n is the queue capacity. By default, n is 20K, large enough
that no false positives of this type occurred in our experiments.

One additional advantage of the online mode is that the em-
bedded assertions explicitly inform us what to check, enabling
NEONGOBY to leverage symbolic execution tools such as KLEE
and WOODPECKER [12] to generate inputs that cause the assertions
to fail. We leave this for future work.

If a function has an extremely large number (denoted n) of
pointers that do not alias each other, the online mode need insert
O(n2) assertions, which may run slower than the O(n) logging
operations inserted by the offline mode. To avoid high overhead



caused by such pathological cases, NEONGOBY bounds the num-
ber of assertions it inserts to 106 for each function, and switches
to the offline mode for the function otherwise. In our experiments,
we did encounter one such case: a yacc-generated function called
MYSQLparse in MySQL needs much more than 106 assertions, so
NEONGOBY always checks this function offline (§8.2).

5. Delta Checking
NEONGOBY provides an optimization called delta checking to
speed up both online and offline modes without losing any error.
The insight is that not all pointer pairs are equally hard to handle
by an alias analysis, so NEONGOBY can focus on checking the
hard-to-handle pairs and skip the easy ones. To compute what pairs
are easy, NEONGOBY takes a user-specified baseline alias analysis
assumed to be simple enough to be correct. It then skips checking
all pointer pairs p and q on which the baseline’s MayAlias(p,q)
returns false. Intuitively, if an imprecise baseline alias analysis can
infer that two pointers do not alias, then most likely they never alias
in any execution, so DidAlias would return false and NEONGOBY
would not find any error on the pointers.

We envision two ways this optimization can be used. First, a
user specifies an alias analysis she trusts, such as basicaa which
computes very conservative alias results, then enjoys speedup with-
out losing errors when applying NEONGOBY to check an ad-
vanced alias analysis. Second, an alias analysis builder incremen-
tally checks each precision improvement she makes to her alias
analysis. For instance, if her alias analysis reports 10 pointer pairs
that each do not alias prior to the improvement and 50 pairs after,
she can use NEONGOBY to check this difference of 40 pairs each
indeed never alias on some test programs and workloads.

To implement delta checking for the offline mode, we simply
change line 23 in Algorithm 1 to

if B.MayAlias(p, q) and not A.MayAlias(p, q)

whereB is the baseline alias analysis. To implement delta checking
for the online mode, we simply change line 4 in Algorithm 2 to

if p reaches q and B.MayAlias(p, q) and not A.MayAlias(p, q)

Our results using basicaa as baseline show delta checking reduces
compilation time, offline detection time, and runtime overhead.

6. Implementation
We implemented NEONGOBY in LLVM. It works with version 3.0
and above. It consists of 5,403 lines of C++ code, with 909 for the
instrumenter, 168 for the logger, 875 for the offline detector, 642
for the online mode, and the remaining 2,809 for common utilities.

In the remaining of this section, we describe three additional
techniques within NEONGOBY: the first to further reduce overhead
(§6.1), the second to help users diagnose error reports (§6.2), and
the third to support multiprocess or multithreaded programs (§6.3).

6.1 Detecting Errors Using Dereferenced Pointers Only

Dereferenced pointers are presumably more crucial than the ones
not dereferenced, so are the alias results on dereferenced pointers.
Thus, NEONGOBY provides users an option to detect alias analysis
errors using only dereferenced pointers, including the pointers used
in load and store instructions and those passed to external functions
because NEONGOBY conservatively assumes that these functions
dereference their pointer arguments. Although NEONGOBY with
this option may lose some alias analysis errors, it enjoys two bene-
fits. First, the error reports are of higher quality because they are on
the more crucial pointers. Second, NEONGOBY runs faster when
checking fewer pointer pairs in both offline and online modes. We
evaluate this bugs v.s. overhead tradeoff in §8.3.

6.2 Simplifying Error Diagnosis
When NEONGOBY reports an error, it emits two pointers that did
alias yet are not marked as aliases by the checked alias analysis.
To diagnose such a report, it may be time consuming to manually
inspect all records in the log, so NEONGOBY provides a diagnosis
tool to slice the log into a small subset of records that explains why
two pointers did alias. The core idea is to trace data dependencies of
the two pointers back to a common parent pointer from which both
pointers are derived. NEONGOBY traces only direct data dependen-
cies on pointers. For instance, given “p = q + x” where p and q
are both pointers, NEONGOBY only traces p’s dependency on q,
not x. Similarly, given “p = *q,” NEONGOBY only traces p’s de-
pendency on the previous instruction that stores to the address of q,
and ignores p’s dependency on q. NEONGOBY stops tracing back
when it finds the common parent pointer or it cannot trace the de-
pendencies further due to (for example) external functions whose
source is not available to NEONGOBY. To use this tool on an er-
ror report, a user needs to (re)run NEONGOBY’s logger (§3) to log
more operations than pointer definitions and memory allocations,
including store instructions that store pointer values and call and
return instructions of functions that return pointers.

6.3 Supporting Multiprocess and Multithreaded Programs
As discussed in §1, NEONGOBY is explicitly designed to detect
alias analysis bugs that manifest on real-world programs such as
Apache and MySQL. These programs often use multiple threads and
processes for performance and ease of programming, so NEON-
GOBY must handle threads and processes. It needs to do so only in
the offline mode because the online mode checks intraprocedural
queries. Specifically, NEONGOBY shares one log over all threads
in a process, and protects the log using a mutex. It assigns one log to
each process. When a process forks, NEONGOBY creates a new log
for the child process. NEONGOBY can then check each log in iso-
lation. NEONGOBY assumes race freedom as most compilers do,
and data races in the worst case may cause some false positives.
Fortunately, data races occur so rarely that no false positives of this
type occurred in our experiments (§8.1.2).

7. Limitation

False positives. NEONGOBY assumes that test programs are
largely correct and may emit false positives on buggy test pro-
grams. For instance, NEONGOBY may emit false positives on
pointers off bound by many bytes (§3.1). Moreover, NEONGOBY
works within a compiler, so external functions may cause false pos-
itives. For instance, if an external function frees and reallocates
heap memory, NEONGOBY would miss this memory reuse.

False negatives. NEONGOBY is a dynamic tool, and detects only
alias analysis errors that manifest on the executions it checks.
Moreover, we explicitly designed NEONGOBY to be general to
check many alias analyses with low false positives, but this gen-
erality comes at a cost: NEONGOBY cannot easily find bugs that
violate a specific precision guarantee intended by an alias anal-
ysis. In our future work, we plan to specialize NEONGOBY’s
checking toward specific precision guarantees by varying the pre-
cision of its DidAlias. In addition, although NEONGOBY checks
that DidAlias(p,q) → MayAlias(p,q), it cannot dynamically
check that if MayAlias(p,q), then there exists an execution s.t.
DidAlias(p,q), for the following reasons: (1) MayAlias may
conservatively return true even if the two pointers never alias in any
execution; and (2) even if the pointers do alias in some execution,
the given program and workload may not trigger this execution.

8. Evaluation
We evaluated NEONGOBY on three popular LLVM alias analyses:



# AA File Description
1 ds-aa TopDownClosure.cpp:207 incomplete call graph traversal in the top-down analysis stage
2 ds-aa StdLibPass.cpp:703 matched formal argument n to actual argument n+ 1
3 ds-aa n/a symptom: missed aliases between actual parameters and the return value of an indirect call
4 ds-aa Local.cpp:833 mishandled variable length arguments
5 ds-aa Local.cpp:551 mishandled inttoptr and ptrtoint instructions
6 ds-aa StdLibPass.cpp did not handle errno; pointers returned from errno may alias
7 ds-aa StdLibPass.cpp did not handle getpwuid r and getpwnam r, whose argument and return value alias
8 ds-aa StdLibPass.cpp did not handle gmtime r-like functions whose return value and the 2nd argument alias
9 ds-aa StdLibPass.cpp did not handle realpath whose value and the 2nd argument alias
10 ds-aa StdLibPass.cpp did not handle getenv whose return value aliases for the same environmental variable
11 ds-aa StdLibPass.cpp did not handle tzname, an external global variable
12 ds-aa StdLibPass.cpp did not handle getservbyname whose return values may alias
13 ds-aa StdLibPass.cpp did not handle pthread getspecific and pthread setspecific; the value stored via

pthread setspecific aliases that loaded via pthread getspecific with the same key
14∗ ds-aa StdLibPass.cpp did not handle strtoll; the dereference of the 2nd argument may alias the 1st argument
15∗ ds-aa StdLibPass.cpp did not handle the ctype family of functions; the return value of ctype b loc-like function may alias
16∗ ds-aa StdLibPass.cpp did not handle freopen whose return value may alias stdin, stdout, or stderr
17 anders-aa Andersens.cpp:1882 HUValNum incorrectly marked a pointer as pointing to nothing.
18 anders-aa Andersens.cpp:2588 mishandled indirect call arguments; points-to edge to argument n may be attached to argument n± 1
19 anders-aa Andersens.cpp:2585 points-to nodes representing indirect calls are swapped, but argument info is not updated accordingly
20 anders-aa Andersens.cpp:764 queries on a function pointer and a function always return no alias, even though they do alias
21∗ anders-aa Andersens.cpp did not handle inttoptr and ptrtoint instrucitons
22∗ anders-aa Andersens.cpp did not handle extractvalue and insertvalue instructions
23 anders-aa Andersens.cpp:924 incorrect summary for freopen whose return value may alias the 3rd argument
24 anders-aa Andersens.cpp did not handle cxa atexit
25 anders-aa Andersens.cpp mishandled variable length arguments
26 anders-aa Andersens.cpp did not handle pthread create
27 anders-aa Andersens.cpp did not handle pthread getspecific and pthread setspecific
28 anders-aa Andersens.cpp did not handle strcpy, stpcpy and strcat whose return value aliases the 1st arguments
29 anders-aa Andersens.cpp did not handle getcwd and realpath

Table 2: Descriptions of the bugs found. Starred bugs were either already reported by others or mentioned in the comments of the code. File indicates the file
(and the line if there is a clear place to add the fix) containing the bug.

1. basicaa: LLVM’s default alias analysis, an intraprocedural,
flow-insensitive analysis that collapses all address-taken vari-
ables. We chose the version of basicaa in LLVM 3.1.

2. ds-aa: a context-sensitive, field-sensitive alias analysis with
full heap cloning [25], actively maintained by LLVM develop-
ers. ds-aa is used by [7, 11, 15]. We chose revision 160292
from ds-aa’s SVN repo [2].

3. anders-aa: an interprocedural Andersen’s alias analysis with
three constraint optimizations: hash-based value number-
ing [18], HU [18], and hybrid cycle detection [17]. We ported
the version of anders-aa in LLVM 2.6 to LLVM 3.1.5

Both anders-aa and ds-aa have much better quality than typi-
cal research-grade analyses; ds-aa in particular is used by many
researchers, regularly tested, and actively maintained.

Our test programs are MySQL and Apache, two widespread
server programs. Our workloads are benchmarks used by the
server developers themselves: SysBench [4] for MySQL, which ran-
domly selects, updates, deletes and inserts database records; and
ApacheBench [1] for Apache, which repeatedly downloads a web-
page. We compiled these programs and benchmarks with Clang 3.1
and -O3. Since MySQL and Apache are server programs, we quan-
tified NEONGOBY’s overhead on them by measuring throughput.

5 anders-aa was maintained up to LLVM 2.6, so we ported it to LLVM 3.1
with a patch that removes 67 lines and adds 115. This patch is included
in our release of NEONGOBY. It does not change anders-aa’s function-
ality; it merely fixes compatibility issues between LLVM 2.6 and 3.1:
it replaces debug output dout with dbgs; migrates anders-aa’s han-
dling of an allocation instruction because LLVM 3.1 replaces this instruc-
tion with other instructions; adds code to handle a new type of constant
(ConstantDataSequential); and changes the alias query interface to in-
clude sizes. For each bug found in our port, we verified that the bug also
exists in the original anders-aa.

Our evaluation machine is a 2.80 GHz Intel dual-CPU 12-core
machine with 64 GB memory running 64-bit Linux 3.2.0. We
made both SysBench and ApacheBench CPU bound by fitting the
database or web contents in memory; we ran both the client and
the server on the same machine to avoid masking NEONGOBY’s
overhead with network delay; we used four threads for the server
and client, and split the total eight threads on different cores to
avoid CPU contention.

The remainder of this section focuses on three questions:
§8.1: can NEONGOBY detect many bugs with low false positives?
§8.2: what is NEONGOBY’s overhead?
§8.3: what are the bugs v.s. overhead tradeoffs with different NEON-

GOBY techniques?

8.1 Bug Detection Results

This subsection shows the bugs (§8.1.1) and false positives (§8.1.2)
NEONGOBY found.

8.1.1 Bugs Found

NEONGOBY found total 29 bugs, 16 in ds-aa and 13 in
anders-aa. Of the 29 bugs, 24 are previously unknown, and one
ds-aa bug has been fixed by the developers [5]. Table 2 shows all
bugs. Of the 29 bugs, seven (1, 2, 3, 17, 18, 19, and 20) are logical
bugs; three (5, 21, and 22) mishandle LLVM instructions; the re-
maining nineteen mishandle external functions or global variables.

We pinpointed the root causes of all bugs in Table 2 to the source
except bug 3. Since anders-aa is relatively simple, we fixed all its
detected bugs. Bug 3 causes ds-aa to miss aliases between certain
indirect calls’ actual parameters and return values when they indeed
alias. We reproduced it with a 22-line C testcase, and sent the
testcase to ds-aa developers [6]. (Our testcase differs only by one
line from the running example in the paper describing ds-aa [25].)



basicaa anders-aa fixed anders-aa

Apache 10.9% 24.3% 10.5%
MySQL 3.7% 5.1% 2.7%

Table 3: Alias analysis precision. Percentages are no-alias ratios.

Next we elaborate on two most interesting bugs: bug 1 in ds-aa
and bug 17 in anders-aa, both cause the points-to graphs to miss
edges, and they require tricky fixes.

Bug 1 is caused by an incomplete call graph traversal in ds-aa.
ds-aa constructs its point-to graph in three stages: constructing a
local point-to graph for each function, a bottom-up analysis to clone
each callee’s point-to graph into the caller, and a top-down analysis
to merge each caller’s point-to graph into the callees. The bottom-
up stage computes an unsound call graph Gb, and the top-down
stage computes a sound graph Gt based on Gb by merging nodes
and adding missing edges. Suppose the top-down stage merges
node A and B of Gb into node C of Gt. When the top-down
stage traverses Gt, it needs to traverse both A and B within node
C. However, the code incorrectly traverses only one of them. We
reported this bug to ds-aa developers and they have fixed this bug.

Bug 17 is caused by an incomplete depth-first search (DFS) of
the constraint graph in anders-aa’s implementation of the HU al-
gorithm. anders-aa answers alias queries by collecting and solv-
ing load, store, assignment, and address-of constraints. It organizes
these constraints in a constraint graph. It runs HU to identify the
points-to sets of pointers and unify the pointers with the same
points-to sets. To do so, it runs a DFS over all nodes. It keeps a
visited flag per node (Node2Visited), and sets the flag to true
when it first reaches the node. As an optimization, when visiting
a node representing *p, if the points-to set of the node representing
p is already determined to be empty, anders-aa simply sets the
points-to set of *p to be empty. The bug lies in anders-aa’s logic
to determine when the points-to set of p is already determined: it
wrongly believes the set is determined when p’s visited flag is true,
even though it has not finished exploring p’s descendants or even
initialized p’s points-to set. We fixed this bug by adding a new flag
per node to indicate when DFS has finished exploring the node.

How bugs affect precision. As discussed in §1, alias analysis bugs
may cause tools to mistakenly believe that pointers do not alias
when they indeed do, invalidating research findings and compro-
mising safety. To illustrate, we measured how bugs affect alias anal-
ysis precision using LLVM’s AliasAnalysisEvaluator, which
statically queries an alias analysis with all intraprocedural pointer
pairs and computes statistics of the results. We define preci-
sion as the percentage of queries with no-alias results over all
queries. Table 3 shows the precision of basicaa, anders-aa,
and the anders-aa after we fixed all its detected bugs. Although
anders-aa appears more precise than basicaa on both MySQL and
Apache, the fixed anders-aa is actually less precise than the sup-
posedly very imprecise basicaa. This results illustrates that buggy
alias results can indeed invalidate evaluation numbers.

8.1.2 False Positives

To evaluate NEONGOBY’s false positive rate, we ran it in the most
thorough way: the offline mode without any optimization; this
configuration ensures that NEONGOBY finds the most number of
bugs and false positives. (§8.3 shows how the number of bugs or
false positives varies with different modes and optimizations.)

We classified NEONGOBY’s reports into true and false positives
as follows. For anders-aa, NEONGOBY emitted many reports.
Fortunately, one bug typically causes thousands of reports, so we
classified the reports as follows. We diagnosed one report, produced
a patch, re-ran NEONGOBY on the patched anders-aa to regen-
erate reports, classified the reports that disappeared as true posi-

ds-aa anders-aa
MySQL Apache MySQL Apache

True + 508 217 57,533 10,198
False + 2 0 0 0
Bugs 10∗ 7∗ 13 9

Table 4: True positives, false positives, and bugs. The last row shows the
number of bugs found from the true positive reports. The numbers of ds-aa
bugs may be significantly larger than those shown in the table (starred)
because we did not count a true positive report as a bug if we could not
pinpoint its root cause in the source or reproduce it with a simple testcase.

tives, and repeated. After about 10 iterations, NEONGOBY emit-
ted no more reports. For ds-aa, NEONGOBY emitted a relatively
small number of reports, so we manually inspected each report.
Some reports are fairly simple to diagnose, such as incorrect exter-
nal function summaries. For more complex ones, we created small
testcases to reproduce the problems or applied our diagnosis tool
(§6.2) to compute a slice of relevant log records to simplify diag-
nosis. We confirmed all ds-aa reports into true or false positives,
and pinpointed the root causes in ds-aa’s code for about half of the
reports. We could not pinpoint the other reports or reproduce them
with small testcases, so we conservatively excluded them from our
bug count. Thus, the actual number of ds-aa bugs found may be
significantly larger than what we report. We released our classifica-
tion results together with NEONGOBY.

Table 4 shows the results on ds-aa and anders-aa with our
test programs and workloads. (We did not include basicaa be-
cause NEONGOBY emitted no reports on it.) For ds-aa, NEON-
GOBY emitted 508 true positives on MySQL and 217 on Apache. For
anders-aa, NEONGOBY emitted 57,533 true positives on MySQL
and 10,198 on Apache. NEONGOBY emitted only two false pos-
itives, both of which occurred when checking ds-aa on MySQL.
These false positives are caused by the same specific code pattern
shown in Figure 4. ds-aa is context-sensitive, so it distinguishes
foo’s two calls and computes that p and q do not alias. However,
when running this code, NEONGOBY logs four pointer definitions:
p=ADDR0,q=ADDR1,p=ADDR1,q=ADDR0. Since NEONGOBY does
not log function calls or returns, its offline detection algorithm does
not know that the 2nd and 3rd definitions are from different calls,
and adds them to DidAlias. NEONGOBY could have logged calls
or returns to avoid these false positives, but the additional logging
overhead is not worthwhile given how rarely this specific pattern
occurs and that NEONGOBY emitted only two false positives on
ds-aa with real-world programs and workloads.

The last row of Table 4 shows the number of bugs found.
NEONGOBY found at least 10 ds-aa bugs with MySQL and 7 with
Apache. Interestingly, these two sets of bugs only overlap by one
bug, illustrating NEONGOBY’s benefit of using real-world pro-
grams with diverse programming constructs as testing programs.
NEONGOBY found 13 anders-aa bugs with MySQL and 9 with
Apache, and the Apache bugs are a subset of the MySQL ones.

8.2 Overhead
To quantify NEONGOBY’s overhead, we ran it in the most opti-
mized way: the online mode with all optimizations. (§8.3 shows
how the overhead varies with different modes and optimizations.)
Table 5 shows the results on basicaa, anders-aa, the fixed

void foo(int *p, int *q) {
. . . // p and q do not alias
}
foo(ADDR0, ADDR1);
foo(ADDR1, ADDR0);

Figure 4: A simplified example causing NEONGOBY to emit a false positive.



MySQL Apache
basicaa anders-aa fixed anders-aa ds-aa basicaa anders-aa fixed anders-aa ds-aa

Compile 130.65 421.59 738.43 1714.02 19.21 41.73 22.46 39.37
AA 8.53 213.35 656.83 1493.30 0.53 3.93 7.01 1.90
Insert 65.30 89.60 47.72 113.26 10.35 18.88 10.49 19.07
Codegen 56.82 118.64 33.88 107.46 8.33 18.92 4.96 18.40

TPUT 59.47% 33.32% 75.16% 34.78% 68.05% 41.58% 81.95% 45.62%
Detect 48.02 244.08 679.47 1536.63 n/a n/a n/a n/a

Table 5: NEONGOBY’s overhead. Compile shows the total compilation time including the time to query the checked alias analysis (AA), insert alias checks
(Insert), and generate the executable from the transformed bitcode (Codegen). TPUT shows the relative throughput with NEONGOBY over without. Detect
shows the offline detection time for function MYSQLparse; NEONGOBY checks it offline because this yacc-generated function has too many pointers (§4).
All times are in seconds.

anders-aa, and ds-aa. The compilation time of Apache for ev-
ery checked alias analysis is within 50s. The compilation time of
MySQL is relatively longer mostly because anders-aa and ds-aa
are slower on MySQL. The throughput highly depends on the pre-
cision of the alias analysis. For instance, the throughput for ds-aa
is smaller than that for basicaa, because ds-aa is more precise.
Interestingly, the bugs in anders-aa made it appear very “pre-
cise,” so its throughput is also small. However, after we fixed all
its bugs, its throughput almost doubled. NEONGOBY checks func-
tion MYSQLparse offline (§4), so we also measured this time. Since
NEONGOBY logged only operations from MYSQLparse, the log
was very small, and most of the offline detection time was spent
on querying the checked alias analysis.

8.3 Bugs and Overhead Tradeoffs
NEONGOBY provides both the offline and online modes and
several optimizations to enable users to flexibly trade bugs for
low overhead. This subsection evaluates these tradeoffs using
anders-aa because we have understood and fixed all its bugs. We
chose Apache as the test program. Table 6 shows the results.

Offline v.s. online. Columns base show that the online mode
trades compilation time and a few bugs for significantly increased
throughput and reduced detection time. With less than 230s compli-
cation time, the online mode improves the throughput of Apache by
about three times, and eliminates the offline detection time of about
1400s. It emits 62% fewer true positives (all reports are true posi-
tives), but misses only one bug. A bug often triggers many reports,
so NEONGOBY can still catch a bug as long as some of its reports
are emitted.

Delta checking. This optimization improves performance for both
the offline and online modes without losing bugs (§5). We chose
basicaa as the baseline. Columns delta show that delta checking
reduces the detection time by 12.29% in the offline mode; it reduces
compilation time by 16.46% and increases the throughput by 4.19%
in the online mode. The improvements would be even larger if a
user incrementally checks her refinements to her alias analysis.

offline online
base delta delta+deref base delta delta+deref

Compile 3.82 3.82 2.92 226.97 189.62 41.73
TPUT 4.83% 4.83% 11.56% 15.52% 16.17% 41.58%
Detect 1373.6 1204.8 579.08 n/a n/a n/a
True + 10198 10198 2784 3861 3861 2068
Bugs 9 9 8 8 8 6

Table 6: Bugs and overhead tradeoffs. The base columns represent the
baseline of the offline and online modes; delta with delta checking (§5);
delta+deref with both delta checking and using dereferenced pointers only
(§6.1). The row titles match Table 4 and Table 5. There is no False + row
because NEONGOBY emitted no false positives on anders-aa. To collect
all (true positive) reports in the online mode, we changed the online mode
to emit a report upon an error instead of aborting the current execution.

Detecting errors using dereferenced pointers only. This opti-
mization improves the performance of both modes, but may lose
bugs (§6.1). Columns delta+deref show that this optimization re-
duces the compilation time by 77.99% for the online mode; it
increases the throughput for both offline and online modes by
139.46% and 157.14% respectively; it reduces the offline detection
time by 51.94%; and it misses 1 out of 9 bugs in the offline mode,
and 2 out of 8 in the online mode.

9. Related Work
Previous sections have discussed how NEONGOBY is related to
bounds checkers (or general memory safety tools); this section
discusses other related work.

Alias analysis. A plethora of work has been devoted to creat-
ing faster, more precise alias analyses [8, 25, 27, 40]. This pre-
vious work is complimentary to ours because our goal is to ef-
fectively detect errors in alias analysis implementations. There
have been several studies on alias analyses, though their focus is
on precision and overhead, not correctness. Specifically, LLVM’s
AliasAnalysisEvaluator collects statistics about an alias anal-
ysis, such as how many pointer pairs do not alias and how many
may alias. Hind and Pioli [21] implemented six context-insensitive
alias analysis algorithms and compared their precision and time and
memory consumption on 24 programs up to 30 K lines of code.
Jablin et al. [23] compared the performance of their system using
different alias analyses, and found that the combination of research
grade alias analyses [19, 25, 27] sometimes performs worse than
the production-quality alias analysis in LLVM.

Software error detection. A plethora of work has also been de-
voted to software error detection or verification (e.g., [9, 13, 22, 28,
33, 41, 42, 44]). Most of these systems target general programs,
whereas NEONGOBY targets alias analyses. These analyses take
programs as inputs, do complex computations, and compute ab-
stract results with difficult-to-specify guarantees. Thus, prior sys-
tems are not directly applicable to detect alias analysis errors. Test-
ing [35, 43] and verifying compilers [26, 38] has also been an im-
portant topic for programming language researchers, though, to the
best of our knowledge, we are not aware of any prior system for
effectively detecting alias analysis errors.

10. Conclusion
We have presented NEONGOBY, a system for effectively finding
alias analysis bugs. NEONGOBY dynamically observes pointer ad-
dresses and emits errors if the addresses contradict an alias anal-
ysis. Our key inspiration of this work is our anecdotal struggles
with some existing alias analyses, so we hope that NEONGOBY can
help improve advanced alias analyses into production-quality anal-
yses and vastly widen their adoption. As such, we have released
it open-source at https://github.com/alias-checker,
along with our error detection results and proposed patches.

https://github.com/alias-checker
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