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Abstract
ML models are increasingly run locally on mobile devices

for low-latency inference and offline operation. However, it

is hard for ML operators to track on-device model accuracy,

which can degrade unpredictably (e.g., due to local data drift).

We design Nazar, the first end-to-end system for continu-

ously monitoring and adapting models on mobile devices

without requiring feedback from users. Our key observation

is that accuracy degradation is often due to a specific root

cause, which may affect a large group of devices. Once Nazar

detects a degradation affecting a large number of devices,

it automatically pinpoints the root causes and adapts the

model specifically to them. Evaluation on two computer vi-

sion datasets shows that Nazar consistently boosts accuracy

compared to existing approaches by up to 19.4%.

CCS Concepts: • Computing methodologies→ Anomaly

detection; Semi-supervised learning settings; • General
and reference→Design; • Software and its engineering
→ Software design engineering.
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1 Introduction
Companies such as Google, Meta, Apple and LinkedIn, are in-

creasingly running their ML models on users’ mobile devices,
so they can run inference locally at a low latency. Exam-

ples include text suggestion [9, 49], ranking posts, object

detection and tracking for virtual reality [66], speech recog-

nition [43] and targeted advertising [64]. As state-of-the-art

ML models are very large, they are typically trained in the

datacenters with fleets of GPUs [47, 66]. A team of ML op-
erators is usually responsible for retraining the models and

pushing new model versions to user mobile devices.

However, in large-scale settings, ML operators lack suffi-

cient visibility into the performance of the models running

on users devices [54]. Model accuracy across devices is highly

variable over time due to unexpected shifts in the input data

(termed data drift) or hardware issues in specific devices

(e.g., low-quality cameras, microphones) [10, 47]. Although

ML operators may fine-tune or retrain models to improve

accuracy, it is quite difficult today to detect data drift in the

first place or verify whether accuracy has been restored prop-

erly after fine-tuning [18, 47, 54–56]. The crux is that after

the models are deployed, ML operators have no “ground
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truth” on how accurate their models are because users do

not manually label data.

Many algorithms have been proposed to detect data drift

[21, 37, 61], and adapt to drift [34, 38, 50, 57, 67], but they

often operate with impractical assumptions (e.g., assume a

single source of drift, fully-labeled data, or require significant

computational resources), and have never been tested in an

end-to-end system.

We present Nazar, the first end-to-end system for continu-

ously monitoring and addressing data drift in large-scale ML

deployments on mobile devices. We design Nazar to operate

fully automatically without human involvement. It consists

of three main functions: (a) detect when data drift occurs

on individual mobile devices; (b) analyze the root cause of
the data drift on the cloud; and (c) adapt to the cause that

triggered the data drift, re-deploying new model versions

back to the devices, all without requiring any user input. To

enable its practicality for large-scale ML deployments, Nazar

only employs self-supervised methods, which we describe

below.

Detection. Nazar adopts a confidence threshold method

that detects data drift by comparing the model’s confidence

of the predictions against a threshold. This method provides

good accuracy and is computationally lightweight to run

locally on any mobile device.

Root cause analysis. A classical approach [2] for root

cause analysis is called frequent itemset mining, which finds

sets of attributes (in our case, root causes), that are tied with

specific data types (detected data drift). Frequent itemset

mining can identify root causes only if they are defined as

attributes. This technique is popular due to its effectiveness

in revealing underlying causes of drift when the data con-

tains a large set of attributes. However, this method tends to

generate numerous duplicates or overlapping sets, and there-

fore is often used in settings in which a human manually

inspects the results and acts upon them [1, 4].

Since manual inspection of each cause is untenable in

large-scale settings, we introduce novel set reduction and

counterfactual analysis algorithms, two heuristics that auto-

matically produce a small set of likely data drift root causes

by eliminating those that subsume each other or overlap.

By-cause adaptation. The vast majority of existing adap-

tation techniques assume labeled data, and even those that

do not, make completely impractical assumptions. They as-

sume a single source of data drift [63, 68], which leads to

poor accuracy when there are multiple sources of drift. In-

stead, we propose a novel by-causemodel adaptation method,

which selectively adapts the model only to the specific cause

of accuracy degradation.

The three Nazar components continuously reinforce each

other in an end-to-end loop. As our experiments show, Nazar’s

analysis accurately identifies the root causes of the evalu-

ated drifts, so that by-cause adaption is applied only to data

drifted for the same cause. Otherwise, a model adapted to

one cause is unlikely to have high accuracy on data that

drifted due to completely different causes. Once an adapted

model is deployed, Nazar’s detection will leverage the new

model’s confidence to detect new drifts and diagnose them

continuously. These components together enable Nazar to

effectively obtain a consistently and significantly higher ac-

curacy than existing approaches that adapt on all inputs,

without requiring any manual work.

We implement Nazar on Amazon AWS, and evaluate it

end-to-end on two datasets: cityscapes, a self-driving car

dataset composed of images taken from driving vehicles

in various European cities [11], and an ImageNet-derived

dataset that emulates a species classification app. We also

created several microbenchmark sub-datasets, including one

that incorporates traffic objects in rainy scenes [33]. Our

results show that Nazar boosts accuracy by an average of

14.9% and up to 19.4% on all data and an average of 31.2%

and up to 49.5% on drifted data compared to the baselines on

cityscapes. We will open-source our datasets and code upon

publication. Our main technical contributions are:

1. First end-to-end online system for model monitoring and

adaptation for mobile devices.

2. Fully-automated root cause diagnosis that uses set re-

duction and counterfactual analysis to narrow down the

root causes of model degradation.

3. New self-supervised adaptation technique that adapts by

root cause, boosting accuracy significantly over existing

approaches when deployed with Nazar’s effective root

cause analysis, without any human input.

2 Background and Related Work
Companies deploy models on user devices for faster infer-

ence and to support low connectivity settings. On-device

models support a wide range of use cases, including object

recognition [66], text auto-complete [9, 49] and ranking posts

and ads [64, 66].

Where to train the models? The models can be trained

either centrally in the cloud or in a distributed fashion across

the devices themselves (termed federated learning). While

the latter has seen increased interest in both academia [14,

19, 29, 30] and industry [9, 49, 64] because it does not require

uploading training data to the cloud and preserves privacy,

cloud is still industry’s predominant method because it sim-

plifies the training and evaluation process greatly and enjoys

the powerful datacenter AI compute capabilities (e.g., large

GPU clusters), even though it offers lower privacy guaran-

tees. We therefore design Nazar to focus on cloud training.

Nazar’s principles and ideas can also be applied to federated

learning.

Accuracy degradation caused by model compression.
Some deployment pipelines require models to be adapted to

747



Nazar: Monitoring and Adapting ML Models on Mobile Devices ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

run on resource-constrained devices [15, 59]. However, tech-

niques like model compression can introduce subtle changes

in the models, which may degrade their accuracy. These

discrepancies in accuracy across devices can impact the

applications’ quality of service [10, 47], and lead to secu-

rity vulnerabilities [17, 47]. For example, while quantization

can reduce the model size exponentially to fit on resource-

constrained devices, it can also lead to worse accuracy for

specific classes [10]. This accuracy degradation is hard to

anticipate in advance.

Data drift. Data drift is a classic problem which affects

models that operate on streaming data, where the distri-

bution of the newly-arriving data diverges from training

data’s distribution [13, 39, 65], i.e., 𝑝𝑡𝑒𝑠𝑡 (𝑥,𝑦) ≠ 𝑝𝑡𝑟𝑎𝑖𝑛 (𝑥,𝑦).
Specifically, there are two common types of drift [48]: (a)

covariate drift where 𝑝 (𝑥,𝑦) = 𝑝 (𝑥)𝑝 (𝑦 |𝑥) with 𝑝𝑡𝑒𝑠𝑡 (𝑥) ≠
𝑝𝑡𝑟𝑎𝑖𝑛 (𝑥) and 𝑝𝑡𝑒𝑠𝑡 (𝑦 |𝑥) = 𝑝𝑡𝑟𝑎𝑖𝑛 (𝑦 |𝑥), and (b) label drift

where 𝑝 (𝑥,𝑦) = 𝑝 (𝑦)𝑝 (𝑥 |𝑦) with 𝑝𝑡𝑒𝑠𝑡 (𝑦) ≠ 𝑝𝑡𝑟𝑎𝑖𝑛 (𝑦) and
𝑝𝑡𝑒𝑠𝑡 (𝑥 |𝑦) = 𝑝𝑡𝑟𝑎𝑖𝑛 (𝑥 |𝑦). These drifts can occur for many

reasons: temporal environmental changes or sensor-related

issues affecting the model input (e.g., weather, problems with

device microphone or camera lense), changes in the input

appearance itself (e.g., a self-driving model trained in the US

might not recognize street signs in India), and changes in

the label distribution (e.g., the number of cars exceeds the

number of pedestrians in the deployed environment). The

first two are examples of covariate drift and the last one is

an example of label drift. To deal with data drift, models are

frequently retrained with fresh data, even if some older data

is retained, so their training data better reflects the types of

inputs they will encounter during inference and thus retain

its accuracy [5, 42]. The data drift problem is exacerbated in

on-device deployments, because different devices may see

divergent data distributions but adapting per device is quite

costly. Therefore, an ideal solution should adapt for a set of

devices affected by the same drift cause.

Ekya [5] is a recent system that tackles a variant of this

problem, by jointly scheduling retraining and inference on

the same “edge” servers – servers with multiple GPUs sitting

at the network’s edge (e.g., in a content distribution network),

in contrast to the resource-constrained mobile devices on

which Nazar runs inferences. A second key difference is that

Ekya’s adaptation requires labels so it produces them by

running very large models on the edge servers, a luxury that

Nazar does not have.

Lack of visibility, monitoring, and automation. Sev-
eral systems increase visibility andmonitoring inML pipelines

focusing on pre-deployment validations. ML-EXray [47] en-

ables ML operators to insert logging instrumentation and

ML Ops
user of Nazar

Time Device ID Weather Location Drift
08:02:01 iphone_97 clear Rome 0
08:03:32 android_21 snow Beijing 1
08:05:28 android_42 rain Helsinki 0

Data drift log

Root cause 
analysis

Model 
adaptation

Drift detected
(by cause)

Adapt
(optional)

Nazar

Nazar is transparent
to apps’ users

Drift log data,
sample of inputs

Adapted 
models

Figure 1. Nazar’s design.

debugging assertions. It targets pre-processing issues, quan-

tization bugs, and suboptimal kernels. Another data valida-

tion system implemented at Meta [53] identifies possible at-

tributes that caused model performance drop, from the train-

ing input. In contrast, Nazar focuses on post-deployment

issues caused by data drift.

NannyML [41] diagnoses data drifts by associating accu-

racy degradation with detected drifts on the input. It assumes

a single cloud-based model and relies on observing all infer-

ence data, and is therefore unsuitable for large-scale mobile

deployments. It also lacks automated adaptation.

In summary, while there are existing systems that iden-

tify problems in model pre-deployment, and existing ad-hoc

detection and adaptation techniques, to the best of our knowl-

edge there is no automated end-to-end system formonitoring

and adapting models on mobile devices.

3 Design
3.1 Overview
We design Nazar (Figure 1) to be an end-to-end system that

can automatically monitor data drift, identify the main root

causes for the drift, and adapt models to them at scale, while

dynamically evolving with changing data distributions.

Modes of operation. The user of Nazar is the ML ops

team, whomaintains and retrains models. ML ops can choose

their level of interaction with Nazar: by default, Nazar runs

in an “autopilot” mode, where monitoring, analysis, and

adaptation are all done automatically. The ML ops team can

alsomanually interact with the system, receiving alerts when

data drift occurs, and manually deciding when to trigger the

adaptation and on which root causes to apply them.

On-device detection. Nazar is transparent to the users of

the apps that run the AI models. Nazar operates in the cloud,

and interacts with the on-device models through an API. The

apps contribute two types of information to Nazar. First, each

time the models conduct inference, they also subsequently

run a very lightweight drift detection algorithm (described

in §3.2). The result of this algorithm, along with additional
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metadata attributes about the device and model (e.g., the

device’s ID, current location, local time, and model version)

are sent to Nazar in the cloud. We call this metadata collected

from the devices a drift log entry. Second, along with this

metadata, the device samples a percentage of the actual input

data and send it to the cloud for model adaption.

Root cause analysis. The drift log entries are ingested
into a database in the cloud, called the drift log, which con-

tains only the drift detection results and metadata. Periodi-

cally, Nazar runs a root cause analysis algorithm (§3.3) that

runs (a) a series of database queries on the drift log to identify

potential causes – subsets of attribute values – of data drift,

and (b) set reduction and counterfactual analysis algorithms,

which reduce redundant causes and rank them to select the

most important ones for adaptation. If any cause is found,

Nazar initiates adaptation and optionally alerts the ML ops

team.

By-cause adaptation. Leveraging the sampled data asso-

ciated with the drifted entries, Nazar generates new by-cause
model adaptations that adapt to the specific root causes of the
drift (§3.4). These adaptations are pushed to the user devices

to serve new inferences. Since model updates can accumu-

late, Nazar consolidates the different versions to capture the

relevant root causes with a small number of model adapta-

tions. For inference, the device chooses which model version

to use for each input, by selecting the one with attributes

that best match the input metadata.

Evolving drift detection. In the process of detecting, an-

alyzing and adapting to drift, the concept of what is drift and

what is not evolves over time. After Nazar adapts on a certain

cause of drift and deploys the adapted model, the detection

and root cause analysis components automatically calibrate

to the new distribution. The three Nazar components thus

work seamlessly together to keep up with the continuously

drifting distributions.

Design principles. The main question in designing Nazar

is how to design its detection, root cause analysis and adapta-

tion mechanisms. Two primary principles guide our design:

1. As Nazar is transparent to app users, it requires self-
supervised methods that cannot rely on labeled data.

2. Nazar must support fully-automated operation, without

relying on the ML ops team instruction.

3.2 On-Device Data Drift Detection
We now describe Nazar’s data drift detector, which runs on

the mobile devices. The goal of the data drift detector is to

detect when data drift has occurred on a particular device in

a lightweight fashion, without requiring any user input.

3.2.1 Data Drift Detection Techniques. When design-

ing Nazar’s drift detection mechanism, we considered dif-

ferent data drift (also known as “out-of-distribution drift”)

algorithms from the ML literature. However, most of these

techniques were not designed for an on-device inference

setting. Table 1 summarizes the eight primary techniques we

evaluated. We introduce the classes of techniques, and de-

scribe our rationale for focusing on methods that are derived

from the model’s inference output.

Detecting based on model output. A major class of data

drift detection techniques assumes that data drift is corre-

lated with the model being “unsure” about the correct class to

output. Therefore, they apply various metrics on the model’s

logit vector (or un-normalized log probabilities). As a re-

fresher, in deep neural network models, the model outputs

an array that assigns a probability for each class. Typically

the highest scoring class is chosen as the predicted class.

The distribution of this vector can indicate how “certain” a

model is about its prediction. For example, the MSP thresh-
old [21] checks if the maximum softmax value of the logit

vector is below a certain threshold. If it is, the model is uncer-

tain about the final prediction, which is correlated with data

drift. Prior work also proposes other types of thresholds or

metrics, such as the entropy of the softmax values [61] and

other similar scores [37]. In our experiments, we found these

thresholds to perform almost identically to MSP. MSP has

the small advantage that it is normalized between 0 and 1,

making it a simpler knob to tune, and hence we adopt it. The

advantage of this class of algorithms is that they can simply

be applied to the model’s inference output with negligible

computational overhead (since the logit scores are computed

by the inference anyways), and do not require any outside

information.

Statistical test on a batch of outputs. Orthogonal to the
aforementioned methods that use a simple threshold for data

drift detection, statistical tests can be combined with any of

those scores (e.g., MSP and entropy) to determine whether

the inference data diverges from the training data distribu-

tion [61]. For example, Kolmogorov-Smirnov test (KS-test

in Table 1) compares the empirical cumulative distribution

functions (CDFs) of the two sets of scores and calculates

their maximum difference. Prior work [48] conducts empiri-

cal studies on using different combinations of statistic test

and finds that applying KS-test on softmax outputs yields

the best detection accuracy. Hence, this is the main statistical

test we evaluate.

External datasets. Another class of detectionmethods as-

sumes training-time access to a dataset that contains drifted

data samples. The intuition is that such a “drift dataset” will

help train a model whose logit outputs are more sensitive

to all drifts. Examples include Outlier-Exposer [22] (OE in

Table 1), Odin [35] and Mahalanobis Distance [31] (MD). We

deem these approaches impractical for our setting, because

our data is unlabeled, and we cannot assume that users will
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Threshold [21] KS-test [48] OE [22] Odin [35] MD [31] SSL [23] CSI [58] GOdin [25]

No secondary dataset ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

No secondary model ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

No backpropagation ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

No batching ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of different data drift detection algorithms from the ML literature. Nazar uses the threshold method,

which simply applies a threshold on the model’s softmax output, such as the max softmax score.

threshold (bs = 1)     2 4 8 16 32
Batch size (bs)

0.0

0.5

1.0

F1

0.72

0.44
0.63 0.72 0.73 0.70

Figure 2. Comparison of F1 scores using KS-test with differ-

ent batch sizes. For batch size is 1, we use threshold on MSP

with default value 0.9.

prepare drift datasets which is a meaningless concept for a

user.

Secondarymodel. Some techniques employ auxiliarymod-

els to detect data drift. SSL [23] and CSI [58] co-train an

auxiliary model for self-supervised tasks on a transformed

version of the dataset (e.g., they rotate images in the origi-

nal dataset and perform rotation angle classification). The

assumption is that if there was no drift, after training, both

models would have high confidence on the same input. We

rule out this class of methods, given that some mobile de-

vices are resource-constrained, and we cannot rely on them

to invoke an additional model purely for data drift detection.

Methods that require backpropagation. Generalized
Odin [25] (GOdin) is an expanded version of Odin that does

not require the use of a secondary dataset but requires adding

small adversarial perturbations to make the model more

confident when data is in distribution, and less confident

when data has drifted. However, to add these perturbations,

it requires an extra step of backpropagation after the softmax

values are read, i.e., the neural network needs to be traversed

in reverse, then followed by another step of inference on

the perturbed input. Unfortunately, this method triples the

inference time which makes it unsuitable for Nazar’s light-

weight detection design.

3.2.2 ChosenDetectionTechnique: Threshold onMSP.
After ruling out most of the techniques due to their lack of

fit with on-device inference, we finalize a shortlist of two

detection methods: the simple MSP threshold method that

operates on one model-outputted logit vector at a time, and

the KS-test statistical method, which operates on a batch of

MSP scores. To evaluate these methods we measure their F1
score to compare their effectiveness on an equal split of clean

and drifted images (described in §5.3) and a ResNet50 model

(see §5.2) is used to generate the logit vectors. The F1 score

is defined as:

𝐹1 = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 = 2 · 𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (1)

where a high score indicates that the detector has a good

balance between precision and recall. In other words, the

model is able to correctly identify true positives (the image

is “drifted”, i.e., it belongs to a different distribution than

the training set, and the detector thinks it is drifted) while

minimizing false positives (the image is not drifted and the

detector thinks it is drifted) and false negatives (the inverse).

For the KS-test method, we test it with different batch sizes

and assign the detection result (i.e., a boolean value for drift

or non-drift) on the whole batch. For the threshold method,

we set its default value to 0.9 (we evaluate this choice in

§5.3).

Figure 2 displays the results, showing that when the batch

size is higher than 4, KS-test slightly outperforms the thresh-

old method, but is worse when the batch size is lower. How-

ever, batching results from device inference raises various

tricky questions: should one batch inference results from a

specific device over time? How long should we allow that

time window to be? How do we batch results when we do

not have sufficient samples from a single device to fit in one

batch?

Since the threshold method performs very similarly to KS-

test with large batches, and since using a batched detection

method raises these thorny issues, we choose the threshold

method with MSP as the default detection module in Nazar.

3.3 Root Cause Drift Analysis
As we will show later (§5), since the drift detection algorithm

operates without any user input or labeled data, and it is

simply a function of the model’s uncertainty, the detection

algorithm is somewhat noisy for each individual detection.

Therefore, we need a more accurate mechanism at a system

level to determine whether drift has actually occurred, and

why. This subsection explores the design of this mechanism,

which we call the root cause drift analysis.
In Nazar, for each inference, the device sends to the cloud

the data drift detection results, as well as metadata about the

device and its environment (e.g., weather and geolocation,

as depicted by the example in Table 2). Each entry is called

the drift log entry, and the entries are assembled in a single
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Time Device ID Weather Location Drift
06:02:01 android_42 clear-day Helsinki False

06:02:23 android_21 clear-day New York False

06:04:55 android_21 clear-day New York True

08:03:32 android_21 snow New York True

11:05:01 android_42 snow Helsinki True

Table 2. Example of drift log.

large database in the cloud, called the drift log. Hence, the
drift log is a live global view of data drift across all devices.

We walk through the algorithm using an example of two

devices (one in New York, one in Helsinki) running an appli-

cation for classifying animals in their natural settings. This

application produces a drift log (Table 2). Each device gen-

erates a few drift entries, which contain metadata on the

current location of the device and the weather it is operating

in. This metadata can be either gleaned by the device itself

(e.g., its location) or generated by Nazar in the cloud via

an external source (e.g., for weather metadata, Nazar looks

up the weather in a third-party weather API using the de-

vice’s location). In this example, the root cause of the drift is

the snowy weather, which transforms the image sufficiently

so that it diverges from the original training data – images

taken in clear days – of the model. The example includes a

false positive drift detection, i.e., the third entry in the log,

where the detection threshold algorithm marked the image

as “drifted” (due to low confidence logit scores), even though

the image was not.

Frequent itemset mining (FIM). To identify whether

drifts exist and discover its root causes in the face of po-

tential false positives and negatives, Nazar focuses only on

clusters of drifts that are statistically significant. One pos-

sible approach is to directly apply an ML-based clustering

algorithm on the entries flagged as drifts. We did not adopt

this approach because clustering algorithms often require

specifying howmany clusters to divide the data into (e.g., the

𝐾 parameter in K-means), and can be expensive, especially

at scale [52].

An alternative, classical data mining approach [2] is to

explore whether sets of attributes in the drift log entries,

e.g., {snow, New York} in Table 2, frequently appear with

the drift attribute. These attributes are termed in the data

mining literature as frequent itemsets, and there exist many

algorithms [3, 7, 8, 16, 44, 45] for frequent itemsets mining

(FIM).

In the first stage of root cause analysis, shown in Fig-

ure 3(a), Nazar implements an FIM mechanism that employs

the apriori algorithm [4], a common method for FIM. It first

identifies frequent individual attributes in the entry and then

uses them to generate larger sets of attributes associated with

the drift attribute. The algorithm calculates several metrics

starting from sets containing each single attribute, and then

Rank Metrics Attributes

Occ Sup RR Conf Weather Location Device ID

0 0.4 0.67 3 1 snow - -

1 0.2 0.3 2 1 snow - android_21

2 0.2 0.3 2 1 snow - android_42

3 0.2 0.3 2 1 snow New York -

4 0.2 0.3 2 1 snow Helsinki -

5 0.4 0.7 1.3 0.67 - - android_21

6 0.4 0.7 1.3 0.67 - New York -

7 0.4 0.7 1.3 0.67 - New York android_21

8 0.2 0.33 0.75 0.5 - - android_21

9 0.2 0.33 0.75 0.5 - - android_42

10 0.2 0.33 0.75 0.5 - Helsinki -

11 0.2 0.33 0.75 0.5 clear-day - android_21

12 0.2 0.33 0.75 0.5 - Helsinki android_42

13 0.2 0.33 0.75 0.5 clear-day New York -

14 0.2 0.33 0.75 0.5 - Helsinki -

15 0.2 0.33 0.33 0.33 clear-day - -

Table 3. Example of frequent itemset mining results where

Occurrence, Support, Risk Ratio and Confidence are abbrevi-

ated as Occ, Sup, RR and Conf.

the sets containing combinations of attributes which form

subsets of the single ones, e.g., entries with {snow, New York}

are a subset of entries with {snow}. (For clarity, henceforth

we refer to the entries with attribute values {v1, v2, ...} sim-

ply using {v1, v2, ...}.) The algorithm then filters the sets by

checking if statistics from the metrics pass certain thresholds

to consider a certain set as a cause of drift, since the drift

detection is noisy. Finally, it ranks which sets of attributes

are the leading causes of drift. The metrics and ranking for

the example log in Table 2 are shown in Table 3.

The occurrence of a set of attributes measures how often

it appears in the drift log. The support of a set of attributes
measures how often it is marked as “drift” as a proportion

of all log entries that are marked as drifted. E.g., {snow} has

a support of 0.67, because
2

3
of the drift entries have the at-

tribute “snow”. The confidence of an attribute set is how often

it is marked as drift as a proportion of all its appearances in

the table. Finally, the risk ratio of a set measures how much

likelier entries that are marked as drifted contain the set of

attributes versus not containing it. E.g., for {snow, Helsinki},

the risk ratio is 2, because the probability of an entry being

drift given it contains {snow, Helsinki} is 1 and the probabil-

ity of an entry being drift given it does not contain {snow,

Helsinki} is
1

2
.

By default, Nazar uses the risk ratio to rank the results,

because it measures the importance of a specific root cause.

Following prior work [1], Nazar sets themaximumnumber of

attributes that can belong to a single root cause to 3, and uses

values of 0.01, 0.01, 0.51 and 1.1 for minimum occurrence,

support, confidence and risk ratio respectively, by default.

Practical limitations of FIM. While FIM is a useful tech-

nique to rank root causes and set some thresholds on which
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   Final Plan
           
         (snow)
  (non-drifts)

Set Reduce

(snow):
 (snow, New York)   
 (snow, Helsinki)
(New York):

Counterfactual 
Analysis

(snow)
(snow, New York)
(snow, Helsinki)
(New York)

FIMDrift 
Log

(a) (b) (c)

Figure 3. Flow of root cause analysis.

root causes are important, systems that rely on it typically

assume that a human will then inspect the results and man-

ually choose the appropriate root causes [1]. In our example

in Table 3, the top seven rows are all possible root causes,

since they pass the four thresholds. However, it would not

be a good idea to simply adapt models to each one of these

root causes, since they are overlapping and even contain

subsets of each other (e.g., {snow, New York} is a subset of

{snow}). Therefore, Nazar needs a way to narrow down this

set of possible root causes so it can apply model adaptations

sparingly, covering as many relevant root causes as possible

without requiring operator instruction.

Set reduction. There are two types of possibly redundant
root causes that may have already been addressed in other

root causes, and thus can be reduced. The first type is the root
cause which is a subset of other root causes that have broader

coverage. For example, {snow, New York} is a subset of both

{snow} and {New York}, so if one of these two is selected

as root causes for model adaptations, there is no reason to

select their intersection,e.g., {snow, New York}. Nazar’s set

reduction algorithm merges the subset root cause into one

of its super-sets that has higher ranking, e.g., {snow, New

York} is merged into {snow} instead of {New York}, because

{snow} is ranked higher (rank 0). This stage is termed as set
reduction and is depicted in Figure 3(b).

Counterfactual analysis. The second cause of redun-

dancy is overlapping causes, when the entries with drift are

already “covered” by some other root causes. In our example,

2

3
entries from New York contain drift signals while

1

3
are

false positives. However, this subset of images is already

addressed by a higher-ranked root cause, e.g., {snow}. Nazar

filters out this type of root cause by applying counterfactual

analysis [32], which iteratively modifies the drift attribute

from the log entries associated with a higher-ranked root

cause to be “false” and tests whether the lower-ranked root

cause is still statistically significant by checking the four

metrics after these drift attributes have been modified. If it

is still statistically significant, Nazar adds this lower-ranked

root cause into the final result. Note that the first top-ranked

root cause is directly added to the final result. This itera-

tive process is shown in Figure 3(c) and it runs until all root

causes from the set reduction output are exhausted. Even-

tually, Nazar groups images associated with each filtered

root cause, e.g., images that have “snow” in their meta-data.

Note that Nazar also filters a set of images that are “clean”

when they are not associated with previously discovered

root causes. Algorithm 1 describes the root cause analysis

algorithm.

Limitations. The primary limitation of our root cause

analysis is that the drift log attributes may not capture all

possible root causes of drifts. For example, certain devices

may have camera lenses from a particular manufacturer

causing image corruption, but the drift log might not contain

an attribute of the lens manufacturer for each device. In

such cases, Nazar may group devices by their models, their

location, or even by device ID, even though the “real” root

cause is the lens. It should still automatically produce by-

cause adaptations, which would capture these data drifts, but

theML operator teamwould have tomanually investigate the

issue in order to understand the real root cause. To combat

this issue, in large-scale settings, the list of attributes should

be as exhaustive as possible, to capture unforeseen causes of

drift.

Algorithm 1 Root cause analysis algorithms

𝐹𝐼𝑀 ( ) :
Output: Extracts frequent sets of attributes associated with drift.

𝑆𝑒𝑡_𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝐹𝐼𝑀_𝑡𝑎𝑏𝑙𝑒 ) :
Input: Sorted list of attribute sets.

Output: Mapping between the most coarse-grained attribute sets and their

subsets. Ties between coarse-grained sets are broken by ranking.

𝑃𝑎𝑠𝑠𝑒𝑠_𝐷𝑟𝑖 𝑓 𝑡_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑖𝑡𝑒𝑚𝑠 ) :
Input: Attribute set potentially causing drift.

Output: True if the set passes thresholds (occurrence, support, confidence,
and risk). False otherwise.

Drift Analysis:
1: 𝐹𝐼𝑀_𝑙𝑖𝑠𝑡 ← 𝐹𝐼𝑀 ( )
2: 𝑐𝑜𝑎𝑟𝑠𝑒_𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑠 ← 𝑆𝑒𝑡_𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝐹𝐼𝑀_𝑙𝑖𝑠𝑡 )
3: 𝑟𝑜𝑜𝑡_𝑐𝑎𝑢𝑠𝑒𝑠 ← [ ]
4: while 𝑐𝑜𝑎𝑟𝑠𝑒_𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑠 do
5: 𝑐𝑢𝑟𝑟_𝑐𝑜𝑎𝑟𝑠𝑒_𝑐𝑎𝑢𝑠𝑒 ← 𝑐𝑜𝑎𝑟𝑠𝑒_𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑠.𝑝𝑜𝑝 ( )
6: if 𝑃𝑎𝑠𝑠𝑒𝑠_𝐷𝑟𝑖 𝑓 𝑡_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑐𝑢𝑟𝑟_𝑐𝑜𝑎𝑟𝑠𝑒_𝑐𝑎𝑢𝑠𝑒 ) then
7: 𝑟𝑜𝑜𝑡_𝑐𝑎𝑢𝑠𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑢𝑟𝑟_𝑐𝑜𝑎𝑟𝑠𝑒_𝑐𝑎𝑢𝑠𝑒.𝑘𝑒𝑦)
8: 𝑀𝑎𝑟𝑘_𝑁𝑜_𝐷𝑟𝑖 𝑓 𝑡 (𝑐𝑢𝑟𝑟_𝑐𝑜𝑎𝑟𝑠𝑒_𝑐𝑎𝑢𝑠𝑒.𝑘𝑒𝑦)
9: else
10: for each 𝑠𝑢𝑏𝑠𝑒𝑡 in 𝑐𝑢𝑟𝑟_𝑐𝑜𝑎𝑟𝑠𝑒_𝑐𝑎𝑢𝑠𝑒.𝑣𝑎𝑙𝑢𝑒 do
11: if 𝑃𝑎𝑠𝑠𝑒𝑠_𝐷𝑟𝑖 𝑓 𝑡_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑠𝑢𝑏𝑠𝑒𝑡 ) then
12: 𝑟𝑜𝑜𝑡_𝑐𝑎𝑢𝑠𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠𝑢𝑏𝑠𝑒𝑡 )
13: return 𝑟𝑜𝑜𝑡_𝑐𝑎𝑢𝑠𝑒𝑠

3.4 By-Cause Adaptation
Most model adaptation techniques [34, 38, 50, 57, 67] and

end-to-end ML systems that incorporate adaptation (e.g.,

SageMaker [36], TFX [40]) require labeled data, which can-

not be assumed in our setting. We focus on self-supervised

methods for adapting models to data drift, motivate the idea

of adapting a model to a specific cause of drift, and intro-

duce how Nazar chooses different adapted model versions

for inference.
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Self-supervised adaptation. Nazar’s model adaptation

builds on prior works on self-supervised adaptation [63, 68].

The intuition is to select a self-supervised objective (e.g.,

minimize the entropy on the logits output by the model) that

captures some invariant of the data itself without requiring

any labels. Upon data drift, this objective is no longer optimal,

thereforewe can optimize themodel weights tominimize this

objective again, effectively adapting the model to the drift.

Specifically, Nazar minimizes the model prediction entropy

(TENT [63]):

𝐿(𝜃 ;𝑥) = −
∑︁
𝑐

𝑝𝜃 (𝑦𝑐 |𝑥) log𝑝𝜃 (𝑦𝑐 |𝑥) (2)

where 𝜃 denotes parameters of the model, 𝑦𝑐 is the model’s

predicted probability of class 𝑐 . Note that optimizing a single

prediction has a trivial solution: assign probability= 1 to

the most probable class. Nazar prevents this by jointly opti-

mizing batched predictions over parameters that are shared

across the batch. Moreover, since adapting a whole model

including all its layers significantly increases network con-

sumption and model storage costs because each adaptation

leads to a whole new version of the model weights. Nazar

adapts only the batch normalization (BN) layer [27] for ef-
ficiency. As an example, in ResNet50 the BN layer is 217×
smaller than the full model (0.4MB vs. 92MB). Note that ML

operators are free to employ other objectives. For instance,

another common objective is minimizing marginal entropy

(MEMO [68]), which is the entropy of the averaged output

logits over a set of randomly augmented copies, 𝑥1, ..., 𝑥𝐵 , of

a single image, e.g., by rotating and posterizing the image:

𝐿(𝜃 ;𝑥) = − 1
𝐵

𝐵∑︁
𝑖=1

∑︁
𝑐

𝑝𝜃 (𝑦𝑐 |𝑥𝑖 ) log𝑝𝜃 (𝑦𝑐 |𝑥𝑖 ) (3)

This method allows adaptation on a single input by intro-

ducing random augmentations but also incurs too frequent

adaptations even for one-off or falsely-detected drifts, which

is impractical in our setting. And thus we adopt it using

the setups similar to TENT, where it adapts only the batch

normalization layers of a model based on a small batch of

inputs.

Benefit of adapting by cause over adapting blindly.
Prior adaption methods unrealistically assume a single cause

behind the data drift and adapt on all collected inputs, but

in practice data drift can originate from different sources:

for example, a traveler may bring her device from location

to location over a short period of time, experiencing very

different input distributions each corresponding to a differ-

ent cause (location). We show in our experiments below

that adapting by cause improves model performance signifi-

cantly over adapting blindly on all inputs on both training

objectives. Moreover, to illustrate the need for accurate root

cause analysis, we show that a model adapted to one cause

of data drift has poor performance when applied to data that

Methods Average Accuracy (%)

No-adapt 38.7

By-cause (TENT) 61.5

By-cause (MEMO) 42.3

Adapt-all (TENT) 42.4

Adapt-all (MEMO) 30.3

Table 4. TENT and MEMO when adapting them by-cause,

and using a single model to adapt to all sources.

is drifted due to a different cause or non-drifted (i.e., clean)

data.

We adapt a pre-trained ResNet50 on a dataset that contains

16 types of data drifts, such as weather-based corruptions

and image blur (§5 describes the evaluation setup), and a

portion of clean data. We run adaptation in two settings: (a)

adapt and test a model for each cause of drift and clean data

(17 total models), termed by-cause, and (b) adapt one model

on a mix of all 16 sources of drifts and clean data, and test

them on the same test set as in (a), termed adapt-all. We also

evaluate non-adapted ResNet50 on the same test set.

The average test accuracy is shown in Table 4. Adapting

on data by-cause using both methods improves accuracy

over the original model, by 22.8% for TENT and 3.6% for

MEMO; whereas adapting on all the data degrades accuracy

with MEMO and leads to small gains with TENT. The reason

is that adapting models to multiple divergent distributions

without supervision can cause models to underfit and lead

to low performance. To further demonstrate this, we run

an experiment where we adapt a model by-cause (foggy

weather), and test it on images with other sources of drift.

The model obtains an average accuracy of only 16.4% when

run on images with other sources of drift, and an accuracy

of 66.7% on its own test set. Its accuracy on clean data is also

very low: 26.8%, while the model adapted on clean data has

an accuracy of 74.6% on the same clean test set.

Therefore, we conclude that Nazar has to adapt its models

sparingly and apply the adaptations carefully; it should apply

adapted models only when there is a true prevalent source

of data drift that affects some portion of user devices, and

ideally run the resulting adapted model on data that experi-

ences the same source of drift. These observations motivate

Nazar to adapt different models by distinct root cause, so

that the distribution of inference data will be as close as pos-

sible to the one of the training data. Ideally, each by-cause

adapted model should run inference on data that belongs

to the same distribution it was adapted on, while a contin-

uously adapted “clean” model should be run on clean data.

Since no ground truth exists, Nazar has to rely on its root

cause analysis to determine which devices are experiencing

data drift and from which source. In addition, we decide

to use TENT as the default method to adapt the models in

Nazar, since TENT largely outperforms MEMO in the both

strategies in our experiment.
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Consolidating model versions. Adapting by-cause gen-
erates multiple model versions. Though Nazar only updates

and deploys BN layers, We cannot allow the number of mod-

els to grow unbounded, especially on resource-constrained

devices. Nazar constrains the number of models that can

be stored on each user device, by periodically consolidating

them. To consolidate different versions, Nazar keeps a global

view of the model pool, in a least recently updated (LRU)

list, which contains the sets of models to be deployed. The

oldest models make room for the newer ones. Orthogonally

to the LRU algorithm, if a new model version belongs to the

exact same set of attributes as an existing one, the older one,

instead of the tail of the LRU, is evicted. In addition, if an

incoming model version has a root cause that is a superset

of an older model version, the older version gets evicted

(similar to the set reduction algorithm in §3.3).

Picking which version to use for inference. During
inference on the device, Nazar will use the most-recently

updated model that has the highest number of matching

attributes for inference, e.g., {rain, New York} has more at-

tributes matching than {rain} if the input image is associated

with {rain, New York}. It uses the risk ratio ranking of a root

cause, described in §3.3, to break ties between model ver-

sions. If no matching model is found, it uses its “clean” model

for inference. Note that model selection for inference is run

on the device without any involvement from the cloud.

4 Implementation
We now describe our prototype implementation of Nazar

on Amazon AWS. To support a large number of devices

and models, our implementation uses highly-scalable AWS

services. Such services exist on all major clouds, and our

implementation could be easily ported to other clouds.

Drift log. We run the drift log on Amazon Aurora [62],

a relational database that supports over 120,000 writes per

second and can be scaled to 128 tebibytes. The drift log is

stored as a table, where each row contains the metadata and

if the inference was detected as a data drift.

Root cause analysis and adaptations. The root cause
analysis is run periodically as an Amazon Lambda function,

which is triggered either automatically based on a config-

urable time window or manually by the ML operator. The

FIM algorithm is run as a set of SQL queries on the drift

log. The initial phase of the algorithm requires extracting

the attributes frequently associated with drift. This can be

implemented using a simple SQL Count aggregation, with

appropriate conditions. The function then calculates the FIM

metrics, which are used to filter and rank the root causes.

The function then runs the set reduction and counterfactual

analysis. Finally, each narrowed-down root cause is sent to

a GPU-equipped instance, which conducts the adaptation

by-cause.

(a) Wildlife animal example.

(b) Cityscapes example.

Figure 4. Examples of clean images and images with rain,

snow, and fog (corruption severity of 3) from two datasets.

5 Evaluation
This section answers the following questions:

Q1: How well does Nazar’s detection algorithm detect differ-

ent types of data drift, under both synthesized and real

weather conditions? (§5.3)

Q2: How effective is Nazar’s root cause analysis in identifying

the root cause of drift? (§5.4)

Q3: How does by-cause adaptation perform compared to

prior approaches with various drift sources? (§5.5)

Q4: Does the detector evolve with model adaptation? (§5.6)

Q5: What is the accuracy in end-to-end workloads? (§5.7)

Q6: How quickly does Nazar adapt to data drift and how well

does the root cause analysis scale? (§5.8)

We first describe our datasets (§5.1) and our experimental

setup (§5.2), and then answer the evaluation questions.

5.1 Datasets
We build two datasets for our evaluation, Cityscapes and

Animals, representing the typical Nazar applications. We

emulate both datasets from January 1, 2020 to April 21, 2020

and apply synthetic weather-based data drifts (rain, snow,

and fog) [20] based on historical weather information [28,

60] which exhibits diverse weather patterns. By default, we

evenly divide the time for both datasets by 8, and run Nazar

after each interval. The drifts are applied as different types

of random corruptions to the images and whose severity

level can be parameterized. For example, if an image from

Hamburg is tagged to have been generated on January 18th,

2020, and the historical weather for that day indicated there

was rain at some point during that day, by default, we apply

a drift function for rain (e.g., see Figure 4) on that image.

Cityscapes. Apotential application of Nazar is self-driving

cars, which conduct on-device object classification and im-

age segmentation [6]. Similar to prior work (Ekya [5]), we
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prepare an object detection dataset for a self-driving car

application, built on top of the cityscapes dataset, which

contains photos of traffic-related objects collected from driv-

ing cars from 50 cities in Europe [11] tagged with sequence

numbers indicating the temporal order of photo collections.

Following Ekya’s methodology, we preprocess cityscapes for

object classification, resulting in 27,604 images, and use 14%

of the dataset for the initial training, 6% for validation and

80% for streaming new inferences. We assume the dataset at

each location starts on January 1st, 2020 and ends on April

21st, 2020, and that the images are submitted for inference

in equal intervals across these dates.

Animals. In addition to cityscapes, the temporally-tagged

dataset, we also generate a parameterized synthetic dataset

that would allow us to methodologically configure our sys-

tem. We emulate a geo-distributed deployment of an ani-

mal identifier app, inspired by iNaturalist [26], where sub-

scribers from different locations take photos to identify an-

imal species. We build this dataset with a subset of Ima-

geNet [51], that contains 201 classes of wild life animals.

Each of these classes contains on average 793 images for

model training, 50 images for validation, and 500 images

for streaming. We did not use the original iNaturist [24] be-

cause both the data drift functions and adaptation methods

were designed and tested for ImageNet [20, 63, 68] and we

want to conduct a fair comparison between Nazar and prior

techniques.

We emulate 7 locations from different continents: New

York, Tibet, Beijing, New South Wales, United Kingdom and

Quebec, where each location contains a different distribution

of animal species and a configurable number of user devices

with a configurable arrival pattern of inference requests. We

set a default of 16 devices per location and an arrival Poisson

distribution with a mean of two images per day per device.

We assume users suffer from weather-related distribution

shifts, and apply the same methodology as the cityscapes

dataset.

Class skew. We introduce another source of data drift

in Animals dataset, class skew. We observe that a model’s

accuracy of images from different classes varies from 39.2%

to 98.2% as shown in Figure5b, despite similar the number of

training images in each class. Therefore, if a location exhibits

a higher proportion of images from lower-accuracy classes,

the model’s accuracy may suffer. To emulate this effect, we

employ a Zipf distribution to assign probabilities to classes in

each location, where a higher value of parameter 𝛼 means a

higher degree of skew. By default, we set 𝛼 to be 0 (uniform)

but also evaluate under a high skew (𝛼 = 1).

Real Rainy Images. Lastly, in order to test how the detec-

tion component works on real-world data drift, We compiled

a sub-dataset of images taken in rainy conditions, by ran-

domly selecting 19,466 images from the Cityscapes and the

RID (Rain in Driving with Objects Label) dataset [33], where

half of these images were sourced from the RID. We focused

exclusively on the five classes common to both datasets.

5.2 Evaluation Setup
AWS setup. Our AWS setup uses the following config-

urations. The drift log is run on Amazon Aurora with a

5.7.mysql_aurora.2.11.1 engine on a db.r6g.2xlarge instance.

The drift analysis is run as an AWS Lambda function with

256MB of memory. The adaptation is run on a p3.2xlarge

EC2 instance equipped with an NVIDIA Tesla V100 GPU.

Models. We use three image classification models in all

experiments, ResNet18, ResNet34 and ResNet50, which are

commonly-used model architectures for mobile devices [46].

Each model is trained from scratch until convergence. The

accuracy of each model on clean (non-drifted) validation

dataset with cityscapes is 83.6%, 83.9% and 83.7%, respec-

tively, while the accuracy of the base model on the animal

dataset is 72.1%, 75.4% and 76.1%.

Data drifts. Prior work on drifts applied 16 types of dif-

ferent data drifts on ImageNet [20]. In microbenchmarks in

§5.3, §5.5, and §5.6 we show how Nazar handles all 16 types

of drifts. Our end-to-end evaluation (§5.7) contains only the

three weather-related drifts (snow, rain, fog), as the distri-

bution of weather is dynamic and driven by real historical

weather records. 29% and 36% of days in the cityscape and an-

imal datasets, respectively, experience weather-related drifts.

All 16 drifts use a severity level of 3 (out of 5) by default.

Baselines. We compare Nazar with two other settings:

adapt-all, which is the baseline approach (e.g., employed

by Ekya and previous self-supervised adaptation methods),

where one model is continuously adapted on all input dur-

ing each adaptation window, and no-adapt, which is a pre-

trained model that is never adapted. Note that besides adapt-

all, we also conducted experiments on Nazar to adapt on only

the images whose drift attribute is “True,” but this method

always yields worse performance than adapt-all and thus we

do not present its results here.

5.3 Detection (Q1)
To show how well the MSP threshold detects drifts, we mea-

sure the F1 scores calculated with different MSP thresholds

on the logit outputs from Resnet50. We evenly applied 16

types of drifts on half of the streaming images in the ani-

mal dataset, as the positive set, and leave another half non-

drifted, as the negative set. We observe that the F1 score of

MSP detector steadily increases until it reaches 0.73 and then

decreases as shown in Figure5a. The detector’s sensitivity to

threshold changes is small around a threshold of 0.9, which

we adopt as a default value.
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Figure 5. 5a shows F1 scores of MSP detector are fairly stable on different threshold values. 5b shows average accuracy on

different animal classes is highly variable. 5c shows the accuracy decreases and detection rate increases when skew is high.

Analysis Methods/ Ground Truth Drifts None Rain Snow Fog Fog & Snow Fog & Rain Snow & Rain Snow, Rain & Fog

FIM 1 0.919 0.773 1 0.891 0.921 0.926 0.917

FIM with Set Reduction 1 0.919 0.773 1 0.891 0.921 0.934 0.919

FIM with Set Reduction and CF Analysis 1 1 0.874 1 1 1 1 1

Table 5. Evaluation of root cause analysis algorithms with Fowlkes-Mallows Score (1 is optimal).

Further illustrating this point, in Figure 5c, we vary the

class skew by increasing 𝛼 from 0 to 2, i.e., we vary the distri-

bution we sample from different classes, where under high

skews we are much likelier to sample specific animal classes

than others. The result shows that the detector rate signif-

icantly increases from 0.35 to 0.72 and the total accuracy

degrades from 78.7% to 43.8% under high class skew.

Detection under real weather conditions. We also

tested the detection of real images taken under rain. Our

ResNet50 model’s accuracy is decreased from 85.2% to 76.7%

when switching from the Cityscapes data to the RID data, in-

dicating significant data drift. Notably, our detector achieved

a peak F1 score of 0.67 at a threshold of 0.95, with a precision

of 0.55 and a recall of 0.88. Although the detector’s results

are noisier, it remains useful for detecting drift due to rain.

We anticipate improved detector performance if the model

is trained on additional clean images from the camera that

produced the RID dataset, which could help calibrate it to

better handle “non-drift” scenarios.

These results together shows that the MSP threshold is a

good indicator of different sources of drifts.

5.4 Root Cause Analysis (Q2)
We evaluate Nazar’s root cause analysis using the Fowlkes-

Mallows Score (FMS) [12], which measures the similarity

between two sets of clustering results. In our case, the two

sets are ground truth root causes of drift, and ones that are

identified by our root cause analysis. The FMS score is:

𝐹𝑀𝑆 =

√︂
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 ·
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (4)

where TP (true positive) is the number of pairs of data

points clustered together in both sets, FP (false positive) is

the number of pairs clustered together in the second set but

not in the first, and FN (false negative) is the inverse of FP.

The score ranges from 0 to 1, with higher values indicating

more similarity between the clusters.We use 8 drift scenarios,

depicted in Table 5, whose ground truth root causes of drifts

are different combinations of three weather corruptions on

the animal dataset for 14 days starting on January 1st, 2020,

on ResNet50. For instance, if the ground truth root causes

are “fog” and “snow”, we apply only these two types of drifts

on the dates that have foggy and snowy weather for each

location but ignore “rain” drift on the rainy days.

The combination of FIM, set reduction, and counterfactual

analysis always yields the highest score under each scenario.

In fact, it is optimal under all scenarios except “snow”.

5.5 Adaptation (Q3)
To evaluate whether by-cause adaptation performs better

than the naive approach, i.e., adapting on all coming images,

we evenly split the images in the animal dataset in 17 par-

titions, 16 of which are transformed with different drifts,

and one is left clean, and run them on ResNet50. To isolate

the performance of the adaptation mechanism, we assume

perfect knowledge of the underlying root cause of the data

drift, and that we adapt only to images with that root cause

(i.e., we assume Nazar’s detector and root cause analysis are

perfect). We treat the clean data as its own data source, and

run an adaptation model for it as well. We test the adaptation

in two settings: (a) when the severity levels of drift, between

the images that the model are adapted on and the held-out

test images, are both 3 by default, and (b) when the held-

out images have a different corruption distribution, i.e., the
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(b) Detection rate of the detector (𝑆𝑎𝑑𝑎𝑝𝑡 ≠ 𝑆𝑡𝑒𝑠𝑡 )

Figure 6. Detection rate comparison before and after adaptation. 6a plots the detection rate when the corruption severity

levels are identical, while 6b plots it when the corruption severity levels are different, comparing images that the models are

adapted on and the test images.
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(a) Accuracy of adaptation methods (𝑆𝑎𝑑𝑎𝑝𝑡 = 𝑆𝑡𝑒𝑠𝑡 ).
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(b) Accuracy of adaptation methods (𝑆𝑎𝑑𝑎𝑝𝑡 ≠ 𝑆𝑡𝑒𝑠𝑡 ).

Figure 7. Performance comparison of adaptation methods on different drift causes and clean data. 7a plots the accuracy when

the corruption severity levels are identical, while 7b plots it when the corruption severity levels are different, comparing

images that the models are adapted on and the test images.

severity level for each drifted image is drawn from a nor-

mal distribution with mean=3 and std=1, with rounding and

clipping so the result will be an integer from 0 to 5, where 0

means no corruption.

Figure 7a and 7b breaks down the average accuracy by

drift type. By-cause adaptation significantly and consistently

outperforms the adapt-all. In addition, it provides a signif-

icant improvement compared to the baseline non-adapted

model, while adapt-all sometimes degrades the accuracy of

the non-adapted model. For setting (a), the total average ac-

curacy increase of by-cause adaptation in this experiment

is very significant: it achieves a 61.5% accuracy, compared

to only 42.4% for adapt-all and 38.7% for the non-adapted

model. For setting (b), by-cause adaptation achieves a 54.3%

accuracy, compared to only 42.0% for adapt-all and 39.6% for

the non-adapted model, which shows its robustness under

this more challenging scenario.

We conclude that by-cause adaptation shows promise in

overcoming the limitations of traditional supervised adap-

tation approaches, paving the way for more scalable and

efficient adaptation in real-world applications.

5.6 Evolving Drift Detection (Q4)
We test how the by-cause adaptation influences the drift de-

tector. Using the same experimental setup as §5.5, Figure 6a

and 6b displays the detection rate for each one of the drift

types before and after adaptation. The post-adaptation de-

tection rate is measured for the adapted model that matches

the drift type of the input image. We make three observa-

tions from the results. First, before adaptation, the detector

is rather accurate in catching most drift sources but exhibits

some noise. Second, when it uses the appropriately-adapted

model, it is less likely to detect the data as drift and exhibits

the same detection probability for drifted data and clean

data. Therefore, Nazar is not expected to frequently detect

root causes after it has adapted to them. Third, when the

adaptation is less successful due to the drift, i.e., severity

levels in this experiment, between the data which the model

is adapted on and the new arriving data, the detection rates

will remain high. This helps Nazar to continuously detect

root causes that it failed to adapt to.
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Figure 8. Experiments on cityscapes dataset. 8a and 8b show the average accuracy with three strategies. 8d shows the trace of accumulated accuracy per time

window. 8c shows the number of model versions on user devices without set reduction and counterfactual analysis. Accuracy numbers in the figures are

rounded to integers due to space constraint.
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Figure 9. Results of experiments on Animals dataset. 9a and 9b show the average accuracy with different drift severities. 9c shows the average accuracy with

class skew of 𝛼=1. 9d shows the scalability of Nazar’s root analysis. Accuracy numbers in the figures are rounded to integers due to space constraint.

5.7 End-to-End Workloads (Q5)
We now evaluate Nazar end-to-end on our streaming work-

loads. We first evaluate the general performance on the

cityscapes dataset and then test them on the more syn-

thetic animals dataset under more severe drift conditions,

i.e., higher severity for weather drifts and class skew.

Average accuracy. We measure the average accuracy on

all data averaged across the last 7 time windows on the

cityscapes dataset in Figure 8a. For all model architectures,

Nazar yields the highest average accuracies and the smallest

standard deviations. The improvements in average accuracy

compared with adapt-all are very significant: 10.1–19.4%.

We also measure the average accuracy of only the drifted

data averaged across three types of data drift in Figure 8b,

which shows even more significant accuracy improvements

compared to adapt-all (49.5% on ResNet18 and 37.6% on

ResNet34), which is because smaller models have a weaker

ability to generalize on a mixed source of distributions.

Figure 8d shows the cumulative average accuracy over

time for all data and for drifted ones. The cumulative accu-

racy of Nazar continuously improves over time with each

adaptation, while the one for adapt-all increases for one adap-

tation window, as the drift level is mild even in the no-adapt

case, and then decreases in the following 3 adaptation win-

dows, after which they slightly increase. This demonstrates

the utility of adapt by-cause, which provides much more

stable accuracy over time, both for clean and drifted data.

Benefit of set reduction and counterfactual analysis.
To find out if the set reduction and counterfactual analysis

are effective in the end-to-end setting, we only run the FIM

algorithm for root cause analysis, and find the average accu-

racy drops 1.3–9.7%. Meanwhile, the number of stored BN

versions (recall we only adapt the BN layers, so each BN

version represents a different adapted model) is much higher

than Nazar, due to the redundant root causes. We show the

numbers of BN versions with ResNet18 that are stored on

user devices during each time window for FIM and Nazar in

Figure 8c. The number of BN versions with Nazar is steady

at 3 from the second time window. Note in this experiment

we do not cap the number of model versions for Nazar.

Adaptation frequency. We evaluate whether the number

of adaptation cycles affects overall performance. We split the

end-to-end workloads into 4 intervals instead of 8 and found

the results stay consistent. The average accuracy across the

three models improved by 1.2-3.8%.

Drift severity. We vary the severity of the corruptions on

the animal dataset (Figure 9a and 9b), where a higher severity

represents a higher level of drift, and severity is denoted by

“S”. When severity is higher, all three methods degrade on

both accuracy metrics but Nazar still outperforms among

them. Nazar’s improvements compared to adapt-all is larger

when the severity is higher (3.8–10.4% better).

Class skew. We evaluate the effect of class skew on Nazar

with ResNet50, by setting the Zipfian parameter 𝛼 = 1. The

results are presented in Figure 9c. Nazar fails to outperform

adapt-all on average accuracy when severity is set to 3 on

the animal dataset, because Nazar doesn’t recognize class

skew and thus can’t adjust models for species with lower
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accuracies.Nazar also has a narrower view of diverse image

features than adapt-all, when the variability of classes in each

location is largely constrained by class skew, and thus tends

to overfit the model during adaptation. When we increase

the variety of images during each adaptation by splitting the

workload into 4 intervals instead of 8, Nazar outperforms

both baselines and improves the average accuracy of 0.9%

compared with adapt-all. In addition, when the severity is

higher, Nazar yields better average accuracy even when the

number of time windows is 8, also shown in Figure 9c, which

offsets the impact from class skew.

5.8 Runtime and Scalability (Q6)
Runtime. Once a sufficient number of entries contain

data drift, Nazar should be able to generate adaptations in a

reasonably timely manner to respond to the drift. We mea-

sure the latency of Nazar from the invocation of the root

cause analysis function, through the model adaptations and

up until the adapted models are written in S3, and repeat the

experiment four times. The average end-to-end latency is 50

minutes. The average root cause analysis runtime is only 46

seconds, while the rest of the time is consumed by the model

adaptation. Note that this time can be shortened by adding

additional or larger adaptation instances.

Scalability. Nazar’s three components are designed to be

highly scalable. The drift log relies on a scalable database

(Aurora), and model adaptation can be easily parallelized on

a large number of instances. The only component that could

potentially become a scalability bottleneck is the root cause

analysis function, since a single function needs to operate

on a relatively large number of Aurora rows via a series

of SQL queries. Figure 9d presents the runtime of the root

cause analysis running on a single instance, as a function of

the drift log size. We can see the relationship between the

runtime and the number of rows in the drift log is completely

linear. The reason is that the FIM algorithm is linear [4] and

the number of candidate sets of attributes is greatly reduced

for counterfactual analysis after the set reduction.

6 Conclusions
Nazar is the first end-to-end monitoring and adaptation sys-

tem for mobile ML deployments. Nazar chains on-device

drift detection with root cause analysis and by-cause adapta-

tion run in the cloud, which provides high accuracy, without

user input. Interesting avenues for future work are adapt-

ing Nazar to distributed federated learning, and developing

techniques for improved user privacy.

Acknowledgments
We thank the anonymous reviewers for their insightful feed-

back which substantially improved our paper. Our work was

supported in part by awards fromGoogle, Amazon, andMeta;

and by NSF awards CNS-2106530, CNS-2143868.

References
[1] Firas Abuzaid, Peter Kraft, Sahaana Suri, Edward Gan, Eric Xu, Atul

Shenoy, Asvin Ananthanarayan, John Sheu, Erik Meijer, Xi Wu, Jeff

Naughton, Peter Bailis, and Matei Zaharia. 2018. DIFF: A Relational

Interface for Large-Scale Data Explanation. Proc. VLDB Endow. 12, 4
(dec 2018), 419–432. https://doi.org/10.14778/3297753.3297761

[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Min-

ing Association Rules between Sets of Items in Large Databases. In

Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data (Washington, D.C., USA) (SIGMOD ’93). As-
sociation for Computing Machinery, New York, NY, USA, 207–216.

https://doi.org/10.1145/170035.170072
[3] RakeshAgrawal, HeikkiMannila, Ramakrishnan Srikant, Hannu Toivo-

nen, A Inkeri Verkamo, et al. 1996. Fast discovery of association rules.

Advances in knowledge discovery and data mining 12, 1 (1996), 307–328.
[4] Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast algorithms

for mining association rules. In Proc. 20th int. conf. very large data
bases, VLDB, Vol. 1215. Santiago, Chile, 487–499.

[5] Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan, Junchen

Jiang, Yuanchao Shu, Nikolaos Karianakis, Kevin Hsieh, Paramvir Bahl,

and Ion Stoica. 2022. Ekya: Continuous Learning of Video Analyt-

ics Models on Edge Compute Servers. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22). USENIX As-

sociation, Renton, WA, 119–135. https://www.usenix.org/conference/
nsdi22/presentation/bhardwaj

[6] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard

Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Mon-

fort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba.

2016. End to End Learning for Self-Driving Cars. CoRR abs/1604.07316

(2016). arXiv:1604.07316 http://arxiv.org/abs/1604.07316
[7] Christian Borgelt. 2003. Efficient implementations of apriori and eclat.

In FIMI’03: Proceedings of the IEEE ICDM workshop on frequent itemset
mining implementations. Citeseer, 90.

[8] Christian Borgelt. 2005. An Implementation of the FP-growth Algo-

rithm. In Proceedings of the 1st international workshop on open source
data mining: frequent pattern mining implementations. 1–5.

[9] Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Françoise Beaufays.

2019. Federated learning of out-of-vocabulary words. arXiv preprint
arXiv:1903.10635 (2019).

[10] Eyal Cidon, Evgenya Pergament, Zain Asgar, Asaf Cidon, and Sachin

Katti. 2021. Characterizing and Taming Model Instability Across Edge

Devices. Proceedings of Machine Learning and Systems 3 (2021).
[11] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,

Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and

Bernt Schiele. 2016. The Cityscapes Dataset for Semantic Urban Scene

Understanding. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[12] Edward B Fowlkes and Colin L Mallows. 1983. A method for compar-

ing two hierarchical clusterings. Journal of the American statistical
association 78, 383 (1983), 553–569.

[13] Robert M French. 1999. Catastrophic forgetting in connectionist net-

works. Trends in cognitive sciences 3, 4 (1999), 128–135.
[14] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran.

2020. An efficient framework for clustered federated learning. Ad-
vances in Neural Information Processing Systems 33 (2020), 19586–

19597.

[15] Peizhen Guo, Bo Hu, and Wenjun Hu. 2021. Mistify: Automating DNN

Model Porting for On-Device Inference at the Edge.. In NSDI. 705–719.
[16] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns

without candidate generation. ACM sigmod record 29, 2 (2000), 1–12.

[17] Wei Hao, Aahil Awatramani, Jiayang Hu, Chengzhi Mao, Pin-Chun

Chen, Eyal Cidon, Asaf Cidon, and Junfeng Yang. 2022. A Tale of Two

759

https://doi.org/10.14778/3297753.3297761
https://doi.org/10.1145/170035.170072
https://www.usenix.org/conference/nsdi22/presentation/bhardwaj
https://www.usenix.org/conference/nsdi22/presentation/bhardwaj
https://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316


Nazar: Monitoring and Adapting ML Models on Mobile Devices ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Models: Constructing Evasive Attacks on Edge Models. Proceedings of
Machine Learning and Systems 4 (2022), 414–429.

[18] Wei Hao, Daniel Mendoza, Rafael Mendes, Deepak Narayanan, Amar

Phanishayee, Asaf Cidon, and Junfeng Yang. 2024. MGit: A Model

Versioning and Management System. In Proceedings of the 41st In-
ternational Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 235), Ruslan Salakhutdinov, Zico Kolter, Kather-

ine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix

Berkenkamp (Eds.). PMLR, 17597–17615. https://proceedings.mlr.
press/v235/hao24c.html

[19] Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi Wang, Xi-

aoyang Wang, Praneeth Vepakomma, Abhishek Singh, Hang Qiu, Li

Shen, Peilin Zhao, Yan Kang, Yang Liu, Ramesh Raskar, Qiang Yang,

Murali Annavaram, and Salman Avestimehr. 2020. FedML: A Research

Library and Benchmark for Federated Machine Learning. Advances in
Neural Information Processing Systems (2020).

[20] Dan Hendrycks and Thomas Dietterich. 2019. Benchmarking Neural

Network Robustness to Common Corruptions and Perturbations. Pro-
ceedings of the International Conference on Learning Representations
(2019).

[21] Dan Hendrycks and Kevin Gimpel. 2017. A Baseline for Detecting

Misclassified and Out-of-Distribution Examples in Neural Networks.

In International Conference on Learning Representations.
[22] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. 2019. Deep

Anomaly Detection with Outlier Exposure. Proceedings of the Interna-
tional Conference on Learning Representations (2019).

[23] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song.

2019. Using self-supervised learning can improve model robustness

and uncertainty. Advances in neural information processing systems 32
(2019).

[24] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun,

Alex Shepard, Hartwig Adam, Pietro Perona, and Serge Belongie. 2018.

The iNaturalist Species Classification and Detection Dataset. In CVPR.
https://arxiv.org/abs/1707.06642

[25] Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. 2020. Gener-

alized odin: Detecting out-of-distribution image without learning from

out-of-distribution data. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 10951–10960.

[26] iNaturalist. 2023. iNaturalist. https://www.inaturalist.org/.

[27] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accel-

erating deep network training by reducing internal covariate shift. In

International conference on machine learning. pmlr, 448–456.

[28] kaggle,2020 2020. Historical Daily Weather Data 2020.

https://www.kaggle.com/datasets/vishalvjoseph/weather-dataset-
for-covid19-predictions. Accessed: Apr 12, 2021.

[29] Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu,

Harsha Madhyastha, and Mosharaf Chowdhury. 2022. Fedscale: Bench-

marking model and system performance of federated learning at scale.

In International Conference on Machine Learning. PMLR, 11814–11827.

[30] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowd-

hury. 2021. Oort: Efficient Federated Learning via Guided Partic-

ipant Selection. In 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21). USENIX Association, 19–35.

https://www.usenix.org/conference/osdi21/presentation/lai
[31] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. 2018. A simple

unified framework for detecting out-of-distribution samples and ad-

versarial attacks. Advances in neural information processing systems 31
(2018).

[32] David Lewis. 2013. Counterfactuals. John Wiley & Sons.

[33] Siyuan Li, Iago Breno Araujo, Wenqi Ren, Zhangyang Wang, Eric K.

Tokuda, Roberto Hirata Junior, Roberto Cesar-Junior, Jiawan Zhang,

Xiaojie Guo, and Xiaochun Cao. 2019. Single Image Deraining: A

Comprehensive Benchmark Analysis. IEEE Conference on Computer
Vision and Pattern Recognition (2019).

[34] Zhizhong Li and Derek Hoiem. 2017. Learning without forgetting.

IEEE transactions on pattern analysis and machine intelligence 40, 12
(2017), 2935–2947.

[35] Shiyu Liang, Yixuan Li, and R. Srikant. 2018. Enhancing The Reliability

of Out-of-distribution Image Detection in Neural Networks. In 6th
International Conference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=H1VGkIxRZ

[36] Edo Liberty, Zohar Karnin, Bing Xiang, Laurence Rouesnel, Baris

Coskun, Ramesh Nallapati, Julio Delgado, Amir Sadoughi, Yury As-

tashonok, Piali Das, et al. 2020. Elastic machine learning algorithms

in amazon sagemaker. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data. 731–737.

[37] Weitang Liu, XiaoyunWang, John Owens, and Yixuan Li. 2020. Energy-

based out-of-distribution detection. Advances in neural information
processing systems 33 (2020), 21464–21475.

[38] Davide Maltoni and Vincenzo Lomonaco. 2019. Continuous learning in

single-incremental-task scenarios. Neural Networks 116 (2019), 56–73.
[39] Michael McCloskey and Neal J Cohen. 1989. Catastrophic interfer-

ence in connectionist networks: The sequential learning problem. In

Psychology of learning and motivation. Vol. 24. Elsevier, 109–165.
[40] Akshay NareshModi, Chiu Yuen Koo, Chuan Yu Foo, ClemensMewald,

DenisM. Baylor, Eric Breck, Heng-Tze Cheng, JarekWilkiewicz, Levent

Koc, Lukasz Lew, Martin A. Zinkevich, Martin Wicke, Mustafa Ispir,

Neoklis Polyzotis, Noah Fiedel, Salem Elie Haykal, Steven Whang,

Sudip Roy, Sukriti Ramesh, Vihan Jain, Xin Zhang, and Zakaria Haque.

2017. TFX: A TensorFlow-Based Production-Scale Machine Learning

Platform. In KDD 2017.
[41] NannyML 2023. NannyML (release 0.9.1). https://github.com/

NannyML/nannyml. NannyML, Belgium, OHL..

[42] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and

Stefan Wermter. 2019. Continual lifelong learning with neural net-

works: A review. Neural networks 113 (2019), 54–71.
[43] Matthias Paulik, Matt Seigel, Henry Mason, Dominic Telaar, Joris

Kluivers, Rogier van Dalen, ChiWai Lau, Luke Carlson, Filip Granqvist,

Chris Vandevelde, et al. 2021. Federated evaluation and tuning for on-

device personalization: System design & applications. arXiv preprint
arXiv:2102.08503 (2021).

[44] Jian Pei, Jiawei Han, Runying Mao, et al. 2000. CLOSET: An efficient

algorithm for mining frequent closed itemsets.. In ACM SIGMOD work-
shop on research issues in data mining and knowledge discovery, Vol. 4.
21–30.

[45] Jian Pei, Jiawei Han, B. Mortazavi-Asl, H. Pinto, Qiming Chen, U. Dayal,

and Mei-Chun Hsu. 2001. PrefixSpan,: mining sequential patterns

efficiently by prefix-projected pattern growth. In Proceedings 17th
International Conference on Data Engineering. 215–224. https://doi.
org/10.1109/ICDE.2001.914830

[46] PyTorch. 2023. PyTorch Android Examples. https://github.com/
pytorch/android-demo-app. Accessed: May 3, 2023.

[47] Hang Qiu, Ioanna Vavelidou, Jian Li, Evgenya Pergament, PeteWarden,

Sandeep Chinchali, Zain Asgar, and Sachin Katti. 2022. ML-EXray:

Visibility into ML deployment on the edge. Proceedings of Machine
Learning and Systems 4 (2022), 337–351.

[48] Stephan Rabanser, Stephan Günnemann, and Zachary Lipton. 2019.

Failing loudly: An empirical study of methods for detecting dataset

shift. Advances in Neural Information Processing Systems 32 (2019).
[49] Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise

Beaufays. 2019. Federated learning for emoji prediction in a mobile

keyboard. arXiv preprint arXiv:1906.04329 (2019).
[50] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and

Christoph H Lampert. 2017. icarl: Incremental classifier and repre-

sentation learning. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. 2001–2010.

[51] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,

760

https://proceedings.mlr.press/v235/hao24c.html
https://proceedings.mlr.press/v235/hao24c.html
https://arxiv.org/abs/1707.06642
https://www.kaggle.com/datasets/vishalvjoseph/weather-dataset-for-covid19-predictions
https://www.kaggle.com/datasets/vishalvjoseph/weather-dataset-for-covid19-predictions
https://www.usenix.org/conference/osdi21/presentation/lai
https://openreview.net/forum?id=H1VGkIxRZ
https://github.com/NannyML/nannyml
https://github.com/NannyML/nannyml
https://doi.org/10.1109/ICDE.2001.914830
https://doi.org/10.1109/ICDE.2001.914830
https://github.com/pytorch/android-demo-app
https://github.com/pytorch/android-demo-app


ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Wei Hao et al.

Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet

Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV) 115, 3 (2015), 211–252. https://doi.org/10.1007/
s11263-015-0816-y

[52] David Sculley. 2010. Web-scale K-means clustering. In Proceedings of
the 19th international conference on World wide web. 1177–1178.

[53] Shreya Shankar, Labib Fawaz, Karl Gyllstrom, and Aditya G

Parameswaran. 2023. Moving Fast With Broken Data. arXiv preprint
arXiv:2303.06094 (2023).

[54] Shreya Shankar, Rolando Garcia, Joseph M. Hellerstein, and Aditya G.

Parameswaran. 2024. Operationalizing Machine Learning: An In-

terview Study. In The 27th ACM Conference on Computer-Supported
Cooperative Work and Social Computing.

[55] Shreya Shankar, Bernease Herman, and Aditya Parameswaran. 2022.

Rethinking Streaming Machine Learning Evaluation. ICLR (2022).

[56] Shreya Shankar and Aditya G. Parameswaran. 2022. Towards Observ-

ability for Production Machine Learning Pipelines. Proc. VLDB Endow.
15, 13 (sep 2022), 4015–4022. https://doi.org/10.14778/3565838.3565853

[57] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. 2017. In-

cremental learning of object detectors without catastrophic forgetting.

In Proceedings of the IEEE international conference on computer vision.
3400–3409.

[58] Jihoon Tack, SangwooMo, Jongheon Jeong, and Jinwoo Shin. 2020. Csi:

Novelty detection via contrastive learning on distributionally shifted

instances. Advances in neural information processing systems 33 (2020),
11839–11852.

[59] TensorFlow. 2023. TensorFlow Lite. https://www.tensorflow.org/lite.
[60] Weather Underground. 2023. Weather Underground. https://www.

wunderground.com/. Accessed: Mar 8, 2023.

[61] Arnaud Van Looveren, Janis Klaise, Giovanni Vacanti, Oliver Cobb,

Ashley Scillitoe, and Robert Samoilescu. 2019. Alibi Detect: Algorithms

for outlier, adversarial and drift detection. https://github.com/SeldonIO/
alibi-detect

[62] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmade-

sam, Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Mau-

rice, Tengiz Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora:

Design considerations for high throughput cloud-native relational

databases. In Proceedings of the 2017 ACM International Conference on
Management of Data. 1041–1052.

[63] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and

Trevor Darrell. 2021. Tent: Fully Test-Time Adaptation by Entropy

Minimization. In International Conference on Learning Representations.
https://openreview.net/forum?id=uXl3bZLkr3c

[64] Ewen Wang, Boyi Chen, Mosharaf Chowdhury, Ajay Kannan, and

Franco Liang. 2023. Flint: A platform for federated learning integration.

Proceedings of Machine Learning and Systems 5 (2023), 21–34.
[65] Gerhard Widmer and Miroslav Kubat. 1996. Learning in the presence

of concept drift and hidden contexts. Machine learning 23 (1996),

69–101.

[66] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choud-

hury, Marat Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill

Jia, et al. 2019. Machine learning at Facebook: Understanding inference

at the edge. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 331–344.

[67] Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu, and Manmohan Chan-

draker. 2019. Feature Transfer Learning for Face Recognition With

Under-Represented Data. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2019), 5697–5706. https:
//api.semanticscholar.org/CorpusID:102490877

[68] Marvin Zhang, Sergey Levine, and Chelsea Finn. 2022. Memo: Test

time robustness via adaptation and augmentation. Advances in neural
information processing systems 35 (2022), 38629–38642.

761

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.14778/3565838.3565853
https://www.tensorflow.org/lite
https://www.wunderground.com/
https://www.wunderground.com/
https://github.com/SeldonIO/alibi-detect
https://github.com/SeldonIO/alibi-detect
https://openreview.net/forum?id=uXl3bZLkr3c
https://api.semanticscholar.org/CorpusID:102490877
https://api.semanticscholar.org/CorpusID:102490877

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Design
	3.1 Overview
	3.2 On-Device Data Drift Detection
	3.3 Root Cause Drift Analysis
	3.4 By-Cause Adaptation

	4 Implementation
	5 Evaluation
	5.1 Datasets
	5.2 Evaluation Setup
	5.3 Detection (Q1)
	5.4 Root Cause Analysis (Q2)
	5.5 Adaptation (Q3)
	5.6 Evolving Drift Detection (Q4)
	5.7 End-to-End Workloads (Q5)
	5.8 Runtime and Scalability (Q6)

	6 Conclusions
	Acknowledgments
	References



