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Abstract
Despite their wide deployment, distributed systems remain
notoriously hard to reason about. Unexpected interleavings
of concurrent operations and failures may lead to undefined
behaviors and cause serious consequences. We present Mor-
pheus, the first concurrency testing tool leveraging partial
order sampling, a randomized testing method formally ana-
lyzed and empirically validated to provide strong probabilis-
tic guarantees of error-detection, for real-world distributed
systems. Morpheus introduces conflict analysis to further
improve randomized testing by predicting and focusing on
operations that affect the testing result. Inspired by the re-
cent shift in building distributed systems using higher-level
languages and frameworks, Morpheus targets Erlang. Eval-
uation on four popular distributed systems in Erlang in-
cluding RabbitMQ, a message broker service, and Mnesia, a
distributed database in the Erlang standard libraries, shows
that Morpheus is effective: It found previously unknown er-
rors in every system checked, 11 total, all of which are flaws
in their core protocols that may cause deadlocks, unexpected
crashes, or inconsistent states.

CCS Concepts • Software and its engineering → Soft-
ware testing and debugging; • Theory of computation
→ Distributed computing models.

Keywords distributed systems, randomized testing, con-
flict analysis, partial order sampling, partial-order reduction
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1 Introduction
Distributed systems are widely deployed and serve as a cor-
nerstone for modern applications, but their correctness re-
mains notoriously hard to reason about. A key reason is that,
these systems need to not only perform complex operations
of storage and computation, but also communicate with a
high degree of concurrency and asynchrony because com-
munication across the network can be slow and unreliable.
Moreover, they must explicitly handle many types of failures,
including partial ones, to ensure the correctness of the whole
system, rather than simply calling abort() to terminate
all components simultaneously. In critical scenarios, unex-
pected interleavings of operations and failures can lead the
system into undefined states with serious consequences.

To surface corner-case errors due to unexpected interleav-
ings, systematic testing, or model checking, aims to exhaus-
tively enumerate through all possible interleavings [22, 36,
38, 53–55]. This interleaving space, however, is exponential
to the number of the operations in an execution. For real-
world systems, the interleaving space can be astronomical,
far exceeding the limited testing budget, even with reduction
techniques such as partial-order reduction [7, 8, 11, 19, 21]
and interface reduction [23] that soundly reduce the inter-
leaving space. Moreover, for exhaustiveness, systematic test-
ing adjusts interleavings only slightly across trials. It is there-
fore prone to getting stuck in a homogeneous subspace, ex-
ploring mostly equivalent interleavings.
Instead of exhaustive enumeration, randomized testing

tackles the intractable interleaving space via sampling, greatly
increasing the diversity of the interleavings explored [13, 53].
The most straightforward sampling algorithm is random
walk: at each step, randomly pick an enabled operation to exe-
cute. Previous work showed that randomwalk outperformed
exhaustive search at finding errors in real-world concurrent
programs [48]. This phenomenon is best explained by ap-
plying the small-scope hypothesis [24, §5.1.3] to the domain
of concurrency error detection [28, 37]: errors in real-world
concurrent programs are non-adversarial and can often be
triggered when a small number of operations happen in spe-
cific orderings, which sampling has good probabilities to
achieve.
Random walk, however, can have poor guarantees of de-

tection for even simple errors. Consider Figure 1: The as-
sertion in thread A fails if and only if it runs after “x = 1”
in thread B, not before. Without prior knowledge of which
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Thread A Thread B
assert(x == 0); step(1);

...

...

step(m - 1);

x = 1;

Figure 1. An example illustrating random walk’s weak guar-
antee of error detection. Variable x is initially 0.

ordering fails the assertion, both orderings should be sam-
pled uniformly because the probabilistic guarantee of error-
detection is the minimum probability of sampling the two
orderings. Unfortunately, random walk may yield extremely
non-uniform sampling probabilities. In this example, to trig-
ger the error, random walk has to not schedule the assertion
for𝑚 times, yielding a probabilistic guarantee of only 1/2𝑚 .

Besides randomwalk, probabilistic concurrency testing [13]
(PCT) samples interleavings with a bounded number of pre-
emptions by changing thread priorities. PCT, however, uni-
formly samples different ways of preempting, despite that
some of them have the same partial-order of operations and
thus the same testing result. Such redundancy wastes the
limited preemptions and weakens the guarantees of PCT.
To effectively reduce the bias of sampling any possible

interleavings, Yuan et al. recently proposed partial order sam-
pling (POS) [57] on multi-threaded programs. POS is simple
yet effective: It assigns independently random priorities to
operations, and schedules one operation at a time accord-
ingly to the priorities. Compared with PCT, which changes
thread priorities for limited times, the random priorities
of operations in POS permute concurrent operations more
uniformly without the limit. Formal analysis and empirical
evaluation both showed that POS provides much stronger
probabilistic guarantees than random walk and PCT to sam-
ple any partial-order of a program.

Despite the promising results, naïve application of POS in
real-world distributed systems suffers from the sheer com-
plexity increase going from multi-threaded programs. As
aforementioned, real-world distributed systems often have
a high degree of concurrency and asynchrony to handle
failures and maintain consistent states in a distributed man-
ner. Moreover, they often adopt a layered design in which
low-level layers such as thread pooling, networking, and
RPC, and high-level layers such as state-machine replica-
tion all generate many similarly looking operations. The
massive amount of detailed operations prevent POS from
surfacing protocol-level errors. Furthermore, unlike deter-
ministic and exhaustive model checking, POS is history-less
and has limited information to reorder operations for testing.
The exploration unavoidably introduces bias in attempts to
reorder useless operations whose orderings does not affect
the testing result, since they cannot be identified dynamically

until the end of the execution. We observed such operations
the majority (more than 90%) in our tests, which greatly
degraded the error-finding performance of POS.
We present Morpheus, the first tool that leverages POS

to effectively find errors in real-world distributed systems.
Morpheus tackles the challenges of complexity with two
ideas. First, it introduces conflict analysis to summarize ex-
plored executions and predict what operations may conflict
in future executions. Since it needs to apply POS on only con-
flicting operations, conflict analysis effectively accelerates
error detection. Morpheus represents the history of explored
executions in a succinct form whose size is proportional to
the size of the program, incurring only minor bookkeeping.
This idea benefits not only POS, but randomized testing in
general.
Second, to focus on protocol-level errors, Morpheus tar-

gets higher-level languages and frameworks designed for
distributed systems. Modern programming languages and
frameworks increasingly provide first-class constructs to sim-
plify building concurrent systems, such as Go [5], Erlang [4],
Mace [25], and P# [17]. For instance, Erlang is well-known
for its simple yet expressive support of distributed program-
ming, such as messaging and fault-tolerance. It is widely
adopted in large-scale distributed services such as Amazon
SimpleDB [1] and the backend ofWhatsApp [6]. By targeting
higher-level languages and frameworks, Morpheus avoids
being buried within the massive number of operations from
low-level layers, and greatly boosts the chance of detecting
protocol-level errors.
We implemented Morpheus for distributed systems writ-

ten in Erlang. It leverages program rewriting to intercept
Erlang communication primitives and explore their order-
ings, requiring no modifications to systems under test. Mor-
pheus is written in Erlang, except 50 lines of modifications
to the Erlang native runtime. Morpheus properly isolates
itself from a tested system so that messages from Morpheus
and the tested system cannot interfere. This isolation also
enables Morpheus to run multiple virtual nodes on the same
physical node, further simplifying checking. Morpheus pro-
vides a virtual clock [53] to check timer behaviors and to
speed up testing. Whenever an error is found, Morpheus
stores a trace for deterministic replay of the error.
We evaluated Morpheus on four popular distributed sys-

tems in Erlang including RabbitMQ, amessage broker service,
and Mnesia, a first-party distributed database in the Erlang
standard libraries. Results show that Morpheus is effective: It
found previously unknown errors in every system, 11 total,
all of which are flaws in their core protocols, and will cause
deadlocks, unexpected crashes, or inconsistent states of the
systems. With POS and conflict analysis, Morpheus outper-
formed random walk and PCT with the overall advantage
of 280.77%. The conflict analysis effectively improved the
error-detection performance of Morpheus by up to 241.94%,
and by 64.82% in average.



The rest of the paper is organized as follows: First we
present an overview of Morpheus (§2), and describe its im-
plementation (§3). Next we study all the errors Morpheus
found (§4) and evaluate its effectiveness (§5). Finally we dis-
cuss related work (§6) and conclude (§7).

2 Overview
We first describe the workflow of Morpheus (§2.1), then
explain our techniques for effectively finding errors in real-
world systems (§2.2 and §2.3), and finally discuss its limita-
tions (§2.4).

2.1 Morpheus Workflow
Testing with Morpheus requires minimal effort, almost the
same as testing with the standard facilities in Erlang. A high-
level workflow of Morpheus is shown in Figure 2. Normally,
a test case of a Erlang project is a function with a special
name, so that the Erlang testing framework can discover
and run it automatically. Morpheus takes the function as
the entry, repeatedly executes it for multiple trials to sample
interleavings and find errors. Each trial begins with a Mor-
pheus API call to execute the test function in a “sandbox”,
where Morpheus (1) isolates the test from external environ-
ment, (2) controls the execution of concurrent primitives,
and (3) explores one of their possible interleavings.
During testing, it is crucial to isolate Morpheus and the

tested system and avoid unexpected inference between them;
otherwise errors caught by Morpheus may become not re-
producible. Morpheus dynamically transforms modules, the
unit of code deployment in Erlang, used in the test to isolate
their namespace and references.
For execution control, Morpheus intercepts communica-

tion primitives in the test. Since Erlang uses the actor model,
where code runs in user-level processes (processes for short)
in Erlang virtual machines, and communicates through mes-
sages, Morpheus controls the messaging between the pro-
cesses of the test. All primitives intercepted are replaced with
our implementations, which (1) report the primitives to Mor-
pheus as schedulable operations, (2) wait for Morpheus to
resume the execution of the primitives, and (3) simulate the
captured primitives or call the actual Erlang implementation
of the primitives. Morpheus carefully handles primitives to
avoid introducing impossible behaviors.
With all schedulable operations gathered from the test,

Morpheus schedules one operation at a time with a random-
ized scheduler to explore an interleaving of the operations.
Morpheus leverages POS to detect errors with high probabil-
ities (§2.2). Each trial ends when the test function terminates
or an error occurs. Morpheus performs conflict analysis (§2.3)
on the explored trace to identify conflicting operations that
affected the testing result. With the analysis results, Mor-
pheus predicts conflicting operations in next testing trials,

morpheus:start(test_mod, test_func, [])

1. Starting the test with Morpheus

2. Dynamic transformation

test_mod:
test_func()

stdlib:
...

...

sandbox_test_mod:
test_func()

sandbox_stdlib:
...

...

3. Randomized exploration

Transformed test
Process 1 Process 2 ...

Partial order sampling (§2.2)

Conflict analysis (§2.3)

scheduling

predicted conflicting opsexplored interleavings

re
pe
at
ed

ex
pl
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n

Figure 2. The workflow of Morpheus.

and focuses on reordering them to improve the probabilistic
guarantees of randomized testing.
Finally, the testing result is reported to the developer, to-

gether with information for replaying the test with the same
exact interleaving. The test succeeds if the entry function re-
turns normally; The test fails if (1) the entry function exited
with a fault, (2) the test calls into the Morpheus reporting
API to report an error, (3) the test runs into a deadlock such
that all processes are blocking on receiving messages, or (4)
the virtual clock (§3) or the number of executed operations
exceeds their user-configurable limits. A developer may run
the test with Morpheus for many trials to explore different
interleavings and gain confidence.

2.2 Exploiting the Small Scope Hypothesis with POS
Previous study [28] showed that errors in real-world dis-
tributed systems have simple root causes, which sampling
can manifest with high probabilities. One must carefully
choose a sampling strategy, since its bias may add up and
significantly degrade the probabilistic guarantees of error-
detection even when the root causes are simple.

A real-world example with a simple root cause. Figure 3
shows a simplified version of a real-world error we found
in gen_leader, a leader election protocol implemented in
Erlang and used by gproc, a feature-rich process registry.



Server 1 (S1) Prober (P) Server 2 (S2)

register as s1
1

probe s2 for s1
2

probe s2
→ failed

3

register as s2
4

handshake with s1
5

handshake with s2
5

report fault of s2
6

view:
[s1, s2]

view:
[s1] inconsistent!

Figure 3. An inconsistent view error in gen_leader, a
leader election protocol implemented in Erlang. “→ . . .” de-
notes the result of its preceding operation.

· · · 𝑥 ops· · ·
E1. . .E𝑘 A · · ·𝑦 ops· · ·

B · · · 𝑧 ops· · ·

Figure 4. POS can sample the ordering of A→B depending
only on the priorities assigned to A, B, and E𝑖 , despite that
there are numerous other 𝑥 , 𝑦, and 𝑧 operations.

This error causes the system to get stuck and handle no
further requests. It is triggered by an untimely fault message
from Prober (P) to Server 1 (S1), which causes S1 and Server
2 (S2) to have different views of the alive servers even after
a successful handshake.

Ingen_leader, the leader election process of each node1
spawns a prober process to monitor other servers and han-
dles any fault message from them. In bootstrapping, however,
if the prober P of S1 monitors S2, by querying the process
registered as symbol s22, while S2 has not yet registered as
s2, P would report a fault message to S1. This fault message
may be delayed due to, e.g., OS scheduling. When later S2 is
up and handshakes with S1, both S1 and S2 enter the normal
operational phase. Later P is resumed and sends the delayed
fault message to S1, which will make S1 believe that S2 fails
after the handshake. Depending on which server is elected
as the leader, the delayed fault message may either make S1
remove S2 from its view of alive servers (if S1 is the leader), or
otherwise make S1 roll back to election phase. In either case,
further requests from gproc to gen_leader will not be
handled as S1 and S2 disagree on the cluster membership and

1In Erlang, nodes are Erlang virtual machines connected with networks.
2Each Erlang node maintains a registry mapping symbols to processes.

cannot recover. To detect this error, 4 must happen after the
1 , 2 , and 3 ; 6 must happen after 4 and 5 .

Redundancies in random walk. The major drawback of
random walk is the exponential bias to delay one operation
after other operations. In this example, random walk takes
at most (2/3)𝑘 probability to delay operation 6 for 𝑘 times,
the number of operations in 4 and 5 . Real-world errors
often require operations to delay such that random walk is
unlikely to manifest due to the exponential bias.

Redundancies in PCT. As briefly described in §1, PCT [13]
randomly selects a small number of operations to delay (pre-
empt) bymanipulating the priorities of processes right before
the selected operations. Compared with random walk, PCT
takes linear (to the number of operations) probability to de-
lay a operation in contrast to the exponential probability. The
major drawback of PCT is that it selects the operations to
delay among all operations in a test. Without precise knowl-
edge of an error, however, a test often includes redundant
operations irrelevant to the error, which “distracts” PCT from
delaying the desired operations, and degrades its guarantees.
In this example, PCT needs to (1) initially assign the priority
of S2 lower than priorities of S1 and P, and (2) select 6 among
all operations to delay. The original test of Figure 3, however,
contains operations for system initialization before 1 , and
further operations after 6 for handling the actual gproc
requests in the test. As a result, PCT has to guess the exact
operation 6 to delay among more than 6000 operations (as
in Table 4) to find the error.

Finding errors in redundant tests with POS. Morpheus
leverages the recent work of POS [57] to handle the redun-
dancies in real-world tests. POS is simple: it assigns indepen-
dently random priorities to operations, and always schedules
the pending operation with the highest priority. Similar to
PCT, POS also has the linear probability to delay an oper-
ation in contrast to the exponential probability of random
walk. The key benefit we discovered about POS over PCT
is that the ordering of a subset of operations in a test only
depends on priorities assigned to the operations in this sub-
set. Thus POS is a good match for finding errors with simple
root causes, even in tests with a lot of irrelevant operations.
Conceptually, consider the example in Figure 4. A prefix of
𝑥 operations sets up concurrent processes executing opera-
tions A and B, where A is preceded by E1, . . . ,E𝑘 . If an error
is caused by the ordering of A→B, its scope would include
operations E𝑖 as well, because the scheduler must schedule
E𝑖 before B in order to schedule A before B, but the scheduler
can schedule the other 𝑥 + 𝑦 + 𝑧 operations arbitrarily with-
out missing the error. To manifest the error, POS requires
the random priority of B to only be lower than the random
priorities of A and E1, . . . ,E𝑘 , which happens with the proba-
bility of 1/(2+𝑘), even with the presence of numerous other
operations. Back to the real error of Figure 3. Despite the



operations of initialization and further user requests, POS
would need only the priority of 4 lower than those of 1 , 2 ,
and 3 ; and the priority of 6 lower than those of 4 and 5 .
A novel discovery in Morpheus is that, although the ad-

vanced version of the two previously proposed POS algo-
rithms [57] performs 2∼3× better on multi-threaded pro-
grams, the basic version is actually (slightly) better in our
evaluation.We believe the reasons are two-folds: the errors in
our evaluation do not trigger the worst case of the basic POS.
Moreover, the advanced POS suffers from the coarse-grained
dependency tracking in Morpheus due to the complexity of
message semantics in actor model compared with memory
accesses. As pointed out in the original paper, in extreme
cases, false dependencies could make advanced POS degen-
erate to random walk. Morpheus thus uses the basic POS as
its default strategy.

2.3 Optimizing POS with Conflict Analysis
Although POS performs well to find errors in a small sub-
set of operations, it still suffers from sampling redundant
orderings of non-conflicting operations. In Erlang, two op-
erations conflict if they are concurrent, and they send mes-
sages to the same process or access its state. In contrast,
non-conflicting operations never conflict with others, and
ordering non-conflicting operations with other operations
does not change the testing outcome. Specifically in Figure 3,
the operation labeled 2 is non-conflicting. When POS ex-
plores the example, it assigns 2 a random priority, and delays
2 until 2 becomes the highest-priority pending operation.
Such delaying lowers POS’s performance of finding errors:
No error would require delaying non-conflicting operations,
but some errors can be missed because of such delays - the
error in Figure 3 would be missed if 2 is delayed after 4 .
As shown in §5.3, we observed non-conflicting operations
as the majority of operations in our test cases, an order of
magnitude more than conflicting operations.
This shortcoming reflects a fundamental limitation of

history-less randomized testing algorithms: whenever such
an algorithm needs to schedule an operation, it has no idea
what operations may occur in the future, therefore it has
to assume that all operation can conflict with some future
operations, and sample their orderings accordingly.
In contrast, partial-order reduction algorithms designed

for systematic testing do not suffer from this problem. After
the current trial of testing, these algorithms examine the
operations executed and detect which conflicting operations
could have been executed in a different ordering. They back-
track to reorder only such operations (in the optimal case).
However, modern partial-order reduction approaches (e.g.
[7, 19]) require the testing to be depth-first to backtrack an
interleaving prefix only after exploring all interleavings with
the prefix. Such requirement directly conflicts with random-
ized testing, therefore they cannot be applied to POS.

Conflict analysis in Morpheus represents a novel design
point in the randomized testing algorithm space. Compared
with completely history-less randomized algorithms and de-
terministic algorithms with the full history of prior trials,
Morpheus keeps a concise summary of explored executions
and use it to predict in future explorations. To do that, Mor-
pheus maps operations into compact signatures, such that
operations with the same signature are likely to coincide on
whether they are conflicting or not, and maintains a history
table for each signature whether any operation with this
signature has ever conflicted in previous explorations.
To maintain the history table, Morpheus detects conflict-

ing operations in the explored execution after each test trial.
Morpheus detects conflicts by constructing the happens-
before relation of the executed operationswith vector clocks [35],
and checking whether two operations accessing the same
process have concurrent vector clocks. For any conflicts
found, Morpheus records the signatures of the conflicting
operations into the table. In next trials, whenever Morpheus
sees a new pending operation, it queries this table and imme-
diately schedules the operation if no prior operations with
the same signature ever conflicted.
An open design trade-off is the scheme of operation sig-

natures. Intuitively, a signature scheme with more details
would have better precision (i.e. less false positives) in the
prediction. Such scheme, however, would have larger over-
head in time and space for bookkeeping. On the other hand,
one could simply use the static code locations of the oper-
ations as the signature scheme, which may not help POS
much due to its bad precision. Currently, Morpheus maps
each operation into the signature of {P, PC}, where P is
the process id of the operation and PC is its static location of
code. In our evaluation, such scheme improved the precision
from the naïve signature of static locations by up to 219.67%
and improved the error-finding performance by up to 65.62%.
Investigating more schemes for the trade-off of precision
and overhead is left as future work.
Besides false positives, conflict analysis could also have

false negatives, where an operation is conflicting with fu-
ture operations but Morpheus predicts otherwise. Such false
negatives may add slight bias for the current trial, but it
does not affect the probabilistic guarantees much because,
after the current trial, Morpheus will update the history ta-
ble to record that conflict involving this operation. In our
experiments, we rarely saw false negatives after Morpheus
populated the history table in a hundred of trials.

2.4 Limitations
Morpheus focuses on concurrency testing and does not ac-
tively inject failures. Instead, Morpheus relies on test cases
to manifest node failures, and explores any interleavings
of the failures with normal system operations. In Erlang, it
is straightforward to simulate node failures using standard



Original receive Extracted pattern function
receive

{reply, R}
when R =/= error ->

R
end

PatFun =
fun (Msg) ->

case Msg of
{reply, R}

when R =/= error ->
true;

_Other ->
false

end
end

Figure 5. receive pattern and its transformed matching
function. The branch of the receive is taken only if the
process receives a message of a tuple with two elements,
where the first element is symbol reply, and the second
the element (assigned to R) is not symbol error.

APIs, such as erlang:disconnect_node. We can lever-
age bounded and randomized approaches [9, 12, 26, 33, 53]
to inject failures and find interesting errors. Morpheus does
not support low-level failures such as network packet losses.

Morpheus shares similar limitations with prior systematic
or randomized testing tools. It relies on test cases to provide
inputs to the tested system and high-level invariants to check
in addition to fail-stop errors and infinite loops. It supports
limited ways of interacting with non-Erlang code (§3).

3 Implementation
We implemented Morpheus in ∼8500 lines of code in Erlang
and a patch of ∼50 lines to the Erlang virtual machine in C.
We here describe some of its implementation details.

Instrumentation and isolation. Asmentioned in §2.1,Mor-
pheus transforms any modules used in the test to (1) collect
available operations, and (2) reliably control their interleav-
ing without interference. Morpheus transforms a module by
traversing its low-level syntax tree (of CoreErlang [14]) from
the module binary, available in debugging information. Mor-
pheus traverses the syntax tree for each function definition,
redirects all calls of concurrency primitives to Morpheus han-
dlers, where their functionalities are thoroughly simulated
for both isolation and controlling.
To gather all schedulable operations, Morpheus needs to

know when a primitive is available to execute, most primi-
tives in Erlang are non-blocking and always schedulable. The
only exception is receiving messages, which blocks until any
message meets specified patterns. Morpheus encapsulates
the pattern-matching into a predicate [15, 16] that returns
true if any pattern is matched, as shown in Figure 5. Mor-
pheusmaintains virtual inboxes to keep all pendingmessages
in order, and uses the predicate to find the first matched mes-
sages in the inbox. If no message meets the predicate, the
handler reports as blocking, and waits until new messages
arrive or it times out.

To reliably control the interleaving, Morpheus always
waits for all processes in the test to give back control before
scheduling any operation. Sometimes an operation may have
concurrent side-effects. Morpheus enforces a deterministic
ordering for such side-effects.

To isolate the test, Morpheus dynamically translates names
referred in the test to avoid interference with Morpheus.
Modules used in tests are dynamically transformed and
loadedwith newnameswith special prefixes (e.g. “sandbox_”).
External references, e.g. files, are left uncontrolled for sim-
plicity, as they usually can be configured in tests to avoid
interference. If stricter isolation is required, a developer may
use a container or virtual machine to execute the test.

Timing semantics. Real-world systems inevitably depend
on real-time conditions to function correctly, and it is im-
portant to handle them in a desired way, otherwise we may
spin with false errors impossible in practice. Currently Mor-
pheus simulates the ideal semantic of timing by maintaining
a virtual clock. All operations run infinitely fast and cost no
virtual time, and time-outs happen in the strict order of the
their deadlines. All deadlines of time-outs are maintained
in a sorted queue. At any state, a timing operation is dis-
abled unless its deadline is met. When there is no operation
available but pending deadlines, Morpheus fast-forwards the
virtual clock to the nearest deadline (similar to [53]), and
triggers the time-outs whose deadlines are met.

To detect liveness errors where a system takes forever to
finish the test, Morpheus limits the time of deadlines: Mor-
pheus will not trigger any deadline after the limit. Thus any
execution requiring more time than the limit will be reported
as a deadlock. A few liveness errors lead to infinite loops
without time-outs, for example, two processes keep send-
ing/receiving messages with each other without handling
test requests. Morpheus limits the number of operations to
execute to detect such infinite loops. We believe that the tim-
ing semantics in Morpheus is a balanced trade-off between
the program intention, testing effectiveness, and efficiency.

Simulating a distributed environment. Many tests of dis-
tributed systems require a distributed environment of mul-
tiple nodes. Instead of running physically distributed tests
withMorpheus, error-prone and potentially having unwanted
overhead, Morpheus simulates virtual nodes in a single phys-
ical node. Thanks to the unified process communication
in Erlang, no extra transformation is needed for putting
virtually remote processes in the same physical node. Mor-
pheus needs to, however, properly translate remote name
references. Doing so in pure Erlang is non-trivial due to the
language restrictions — we instead modified the Erlang VM
minimally.

For simplicity, Morpheus only simulates a fully connected
cluster of nodes. As mentioned in §2.4, Morpheus does not
actively inject network failures. A developer can inject a



Table 1. Summary of the distributed systems tested and
errors founded by Morpheus

Name Description KLOC Errors
locks Lock manager 4.1 2
gproc Process registry 7.3 3
gen_leader Leader election 1.7
mnesia DBMS 27.3 2
rabbitmq Message broker 60.7 4
ra Replicated log 8.6
Total 109.7 11

node failure in a test by shutting down all processes in the
node, easy and covering all of our testing needs.

Non-Erlang code. Erlang systems commonly involve non-
Erlang code for the sake of performance (e.g. cryptographic
computation). Morpheus identifies all interactions with non-
Erlang code during module transformation and runtime, and
carefully handles them without introducing impossible exe-
cutions. After each interaction with non-Erlang code, Mor-
pheus waits for a small amount of time (50ms by default) to
let the interaction stabilize. Morpheus assumes that external
interactions are non-blocking, stateless, and deterministic.
Morpheus ignores the conflicts involving non-Erlang code.

4 Errors Found
We applied Morpheus to four distributed systems in Erlang,
and found 11 previously unknown errors. The target systems
and errors found are summarized in Table 1. We targeted
these systems because of their popularity and well-defined
APIs. Most of the tests are written by us, since most of the
original tests are non-concurrent or stress tests (except for
gproc, where we used their test scenarios).
Creating tests for these systems were simple: we quickly

studied their APIs by looking at their documents and origi-
nal tests, identified intuitively error-prone scenarios, such
as adding replicas to a node while concurrently shutting
down the node, and implemented those scenarios using a
few API invocations. We created the tests without know-
ing the system internals or the errors. Each of these test
scenarios contains 15-30 lines of code.

Among all the 11 errors we found, three are confirmed by
developers and all of them are reproduced afterward without
Morpheus. We now describe the errors.

4.1 locks: a Decentralized Lock Manager
locks is a decentralized lock manager. It provides a trans-
actional locking API for clients to request locks, detect dead-
locks caused by circular waits, and surrender locks to avoid
deadlocks. To acquire a lock x, a client sends a “request x”
message to the lock server process in locks. The server in

turn replies with the queue of the clients acquiring x, the
head of which is the current holder of the lock.
Although the authors claimed that the core locking pro-

tocol of locks has been model checked despite minor dif-
ferences in the implementation [52], we managed to find
multiple errors in it, described as follows.

Prematurely resetting version (locks-1). Inlocks, the
lock servers and clients maintain the wait queues of locks
in lock entries, tagged with monotonic version numbers to
identify outdated entries in delayed messages. When a lock
server S sees an available lock without any process waiting
to acquire, it will remove the entry of the lock from its local
state, effectively resetting the version of the entry. On the
other hand, according to its protocol, a client may propagate
its entries of some locks to another client that may or may
not be waiting for the locks, in order to detect circular waits
in a decentralized way. A concrete example is showed in
Figure 6, where three clients A, B, and C are acquiring locks
x and y with server S.

Initially A and B acquire locks x and y separately. Then A
and C attempt to acquire y, and S notifies all three nodes that
B is the current holder of y, and A and C are waiting in y’s
queue in this order. Later, B requests x and detects a circular
wait, so B surrenders y. It also propagates its entry of lock
x to C in 1 according to the protocol, even though C has
not yet requested to acquire x. This design of the protocol is
presumably for performance. After A and B exit, S removes
the entry of lock x in 2 because no one is requesting the lock,
while the client C still has the now stale entry it received
from B. When later C requests x from S, the request will
never complete, because S will reply with a fresh entry of
x “older” than C’s version. C will ignore the reply, and keep
waiting for the “up-to-date” entry that would never arrive.

Atomicity violation in server probing (locks-2). In a
cluster of nodes, when a client tries to acquire a global lock,
the client needs to communicate with remote lock servers
on other nodes. Since the remote servers may start later
than the request, the client spawns a prober process in the
remote node to wait for the server. The prober process first
queries for any process registered as server. If not, the
prober registers itself as watcher, and the server will send
notification to any process named watcher once it starts. If
the server starts after the probe query of server, but sends
notification before the prober registers watcher, as shown
in Figure 7, the notification will get lost and the prober will
never detect the server, causing a deadlock.

4.2 gproc and gen_leader: an Extended Process
Registry with Leader Election

gproc is a feature-rich process registry, subsuming the
primitive process registry of Erlang. It maintains the registry
across a cluster of nodes on a leader elected bygen_leader,
an implementation of leader election protocol. We tested



Server S Client A Client B Client C
A: request x

x(v1):[A]

B: request y

y(v1):[B]

A: request y

y(v2):[B,A]

C: request y

y(v3):[B,A,C]

B: request x

x(v2):[A,B]

circular wait detected
B: surrender y

y(v4):[A,C,B]

A: finish
y(v5):[C,B]

x(v2):[A,B]
1

x(v3):[B]

B: finish
delete entry for x

2

y(v6):[C]

C: request x

x(v1):[C]

ignore
“outdated” x

stuck!

Figure 6. The deadlock caused by prematurely version re-
setting. x and y are names of locks. Messages such as “x(v2):
[A,B]” represent lock queuing information with a version
number: The example is a message with version two, where
A holds the lock and B is waiting for it.

gproc and gen_leader and found errors in two of our
tests and one original test.

Delayed fault reports (gproc-1). We tested the bootstrap-
ping procedure of gproc by setting up the distributed en-
vironment of three nodes, and then run a simple request of
registering a process. We found that gen_leader could
not handle some corner cases in bootstrapping, and went in
to an unrecoverable state where some nodes can never join
the cluster. The simplified root cause of this error is showed
in Figure 3 and described in §2.

Reverted registration (gproc-2). We found an error of
the reg_other API, which registers a name with a remote
process in a different node from the caller. This error reverts

Prober Server

query for server
→ not found

register as server

send notification
to watcher

→ message lost

register as watcher

wait for notification . . .

server loop . . .

stuck!

Figure 7. The atomicity violation in server probing. “→ . . .”
denotes the result of its preceding operation.

a successful registration, silently dropping all messages sent
to the registered name. It happens as follows. Before the
a node A joins a cluster (maintained by gen_leader), it
has no knowledge of the cluster process registry because
no node in the cluster sends A updates. However, a process
in another node of the cluster can register A’s process P
with reg_other. Once A joins the cluster, it believes that
it has the most up-to-date registry about its own processes,
and removes the entry of P from the cluster registry. After
that, all messages to the previously registered name will be
silently dropped, breaking the contract of reg_other.

Lost requests with dying leader (gproc-3). It is impor-
tant for leader election to tolerate node failures. We created
a test where we first set up a cluster of three nodes, and
then concurrently kill the leader node (by shutting down
the gen_leader processes in the node) while issuing a
gproc request on another node. Normally, gproc would
usegen_leader to forward the request to the leader server.
If the leader is dead, the cluster would receive notifications
and go back to election, and the request would be buffered
until the new election is done. If the request is sent after the
leader is dead, but before the fault notification is received,
the request would be lost and never be replied.

4.3 mnesia: a Distributed Database System
mnesia is a feature-rich database system that comes with
the Erlang standard libraries (OTP). It provides ACID trans-
actions and replication across distributed nodes, and has
been the standard storage solution for distributed applica-
tions in Erlang. We found two errors when mnesia handles
requests with simultaneous faults in a cluster.

Atomicity violation in initialization (mnesia-1). We
tested the functionality of adding replicas of a table T by



sync_schema_commit(_Tid, _Store, []) ->
ok;

sync_schema_commit(Tid, Store, [Pid | Tail]) ->
receive

{?MODULE, _, {schema_commit, Tid, Pid}} ->
?ets_match_delete(Store,

{waiting_for_commit_ack, node(Pid)}),
sync_schema_commit(Tid, Store, Tail);

% [MORPHEUS] Bug! Failure notification

treated the same as commit ack

{mnesia_down, Node} when Node == node(Pid) ->
?ets_match_delete(Store,

{waiting_for_commit_ack, Node}),
sync_schema_commit(Tid, Store, Tail)

end.

Figure 8. The sync code for mnesia schema change,
where the message of fault notification “{mnesia_down,
Node}” is also treated as an acknowledgment of the commit.

requesting to replicate T from node A to node Bwhile restart-
ing mnesia in B. We found a deadlock when mnesia
handles the replication request in B during initialization.
When the test requests to replicate table T, mnesia will
produce transactions to update the list of replicas of T in
all nodes of the cluster. Concurrently, when B restarts and
initializes mnesia, it will process multiple transactions to
iteratively merge its schemas with other nodes. During the
test, mnesia in B will process two transactions X and Y for
schema merging, and transaction Z for adding B to the list
of replicas. The internal synchronization of mnesia makes
sure that X always commits before Z, but when Z is pro-
cessed before Y, Z will grab T’s schema lock in mnesia’s
lock manager, and try to commit. Because mnesia in B is
still in initialization, the committing of Z will be postponed
in a queue. When later Y starts in another process, it will
try to grab the same table schema lock, but Z is holding the
lock and waiting for the initialization. Y and Z thus form a
circular wait and deadlock.

Reverted copy removal (mnesia-2). We created another
test where we delete a node from the replicas of a table while
restarting the node. We found an error that the node reverts
the schema change after the restart. When mnesia runs
the last phase of committing the schema change, the node
A initiating the change needs to waits for all other nodes
to acknowledge their commits of the schema change. When
another node B shuts down after entering this phase (i.e. after
A sends the commit message to B), but before B persists the
commit, B will send a fault notification to A. A will take the
fault notification as an acknowledgment of B (see Figure 8),
and let the removal request succeed. Later when B is back, it
will replay its operation log without the last schema change,
and bring the outdated replica schema back.

4.4 rabbitmq and ra: a Message Broker with Raft
Replication

rabbitmq is a sophisticated message broker service that
implements high-level messaging protocols with rich se-
mantics support and high performance. It provides highly
available “quorum queues” using ra, the implementation
of Raft consensus protocol [41]. The protocol maintains a
consistent log replicated across a cluster. Whenever user
requests come, the unique leader of the cluster, elected by
the protocol, serializes the requests, appends them into the
log, and safely replicates the log even in the presence of
partial failures. We created three tests for ra that concur-
rently issue requests of enqueue/dequeue operations, leader
elections, and configuration changes, where we found three
errors (ra-{1,2,3}). These errors are tricky such that the
interleavings triggering them are highly complex. Once Mor-
pheus produces these interleavings, however, diagnosing the
root causes becomes easy. One of the errors happens when a
ra server in a node is waiting for other servers to replicate
the log entries missing in this server. When a concurrent
election request comes to the server, ra will buffer this re-
quest but forget the requester information by mistake. Later
when the log replication is done, ra handles any buffered
requests on the server and replies them. Since the election
request was buffered without the requester, ra will panic
and crash unexpectedly. The other two errors involve ra’s
incorrect assumption that, when reverting to an old view
of cluster membership due to partial failures, nodes should
always have the old view stored locally.
Besides ra, we also tested mirrored_supervisor

module in rabbitmq, which maintains a replicated group
of special “supervisor” processes to manage other processes
across a cluster. We found an error (ms-1) in a test that
concurrently adds and removes supervisor processes from
the group. The test initially sets up a group of supervi-
sors A and B, requests to add a new supervisor C to the
group. To add C into the group, mirrored_supervisor
acquires the current list of members (currently A and B),
then it queries each member by sending messages. If B gets
shut down after the list is acquired but before B handles
the query. The query will produce an error unexpected by
mirrored_supervisor, leading to a crash.

5 Evaluation
Our evaluation of Morpheus focuses on the following re-
search questions:

1. How does Morpheus’s exploration algorithm, POS,
compare to systematic testing with state-of-the-art
partial-order reduction techniques? Although POS has
been shown effective in testing multi-threaded pro-
grams, it is unclear how much it helps testing dis-
tributed systems. (§5.1)



2. How effective does Morpheus find the errors with POS
and conflict analysis, compared with other randomized
strategies? (§5.2)

3. How much can conflict analysis improve Morpheus?
(§5.3)

4. What is the real-time performance of Morpheus? (§5.4)
We conducted all the experiments and studies in this

paper on workstations with two Intel(R) Xeon(R) E-2640
CPUs, 12 cores in total, and 64 GB of RAM, running Ubuntu
GNU/Linux and our patched version of Erlang/OTP 20.3 and
21.3 (required by ra).

5.1 Comparison with Systematic Testing
To understand how randomized testing compares with sys-
tematic testing in distributed systems. We implemented ran-
domized testing in Concuerror [15], a state-of-the-art system-
atic testing tool for Erlang equipped with advanced dynamic
partial-order reduction (DPOR) techniques [7, 11]. Our modi-
fication of Concurerror is small (∼500 LoC) as systematic test-
ing shares most parts of runtime control and isolation with
randomized testing, and only differs in scheduling strategies.
Concuerror is not suitable to test real-world systems for

multiple limitations. First, the test isolation of Concuerror
is incomplete, and cannot properly handle interactions be-
tween the target systems and some stateful modules used
by Concuerror. For example, most systems in Erlang use the
stateful application module to set up themselves, but
the module is not isolated by Concuerror. Secondly, Concuer-
ror simplifies real-time conditions by allowing time-outs to
fire regardless of their deadlines. The simplification makes
some common scenarios hard to test. For example, some tests
need to wait for a delay after issuing the testing requests
to make the result stable . We thus studied three simplified
scenarios: the chain replication protocol checked by Con-
cuerror in the previous work [10], the Erlang specification
for a Cassandra error, and the “lock-1” error we studied. For
a quick summary, POS outperformed systematic testing with
DPOR in all cases we studied.

crce: chain replication protocol in Corfu. Previous
work [10] demonstrated that Concuerror was able to find
violations of linearizability on the specification of the chain
replication protocol [49] as a part of Corfu distributed shared
log system [34]. The authors crafted four variants of the pro-
tocol specification, and they managed to find errors in two
of them, namely crce-2 and crce-3. We applied random-
ized testing on the same tests to compare with systematic
testing. We profiled the number of trials for systematic test-
ing to reach the first error. For randomized testing, we pro-
filed each of the algorithms by the average number of trials
needed for detecting an error over 100,000 trials.

Table 2 shows the results. POS had the similar performance
to random walk in crce-2, outperformed random walk in
crce-3 and systematic testing in both cases.

Table 2. Error-detection comparison on the chain replication
protocol. The “Systematic” column shows the number of
trials for systematic testing to find the error for each case.
The “Random walk” and “POS” columns show the average
number of trials for the algorithms to find the error in each
case.

Case Systematic Random walk POS
crce-2 81 4.29 4.39
crce-3 119 1351.35 17.43

C6023: Cassandra lightweight transactions. Inspired by
previous case study on distributed system errors [28], we
studied a sophisticated error [3] in the lightweight trans-
action protocol of Cassandra [2]. We modeled the error in
Erlang, and used Concuerror to check with systematic and
randomized strategies. We performed 100,000 trials for each
of the strategies. Systematic testing and random walk could
not find the error in all trials, while POS was able to hit the
error for 20 times.

The locks-1 error. For all the errors we have found with
Morpheus, only locks-1 is supported by Concuerror. The
detailed error is described in §4.1. Unfortunately, no DPOR
technique implemented in Concuerror worked - they all
timed out on planning the next interleavings to explore after
the first trial. We were not able to diagnose the issue, and
it may indicate errors in its DPOR implementations. We
instead ran the standard systematic testing. We ran the test
for 100,000 trials for each of the testing methods. Systematic
testing found no error; Random walk detected the error for
only one time; POS detected the error in 18,987 trials (i.e.
∼5.27 trials per error).

5.2 Morpheus Error-detection Performance
For all the errors we have studied in §4, we used Morpheus
on the tests with different randomized testing algorithms,
including random walk, PCT, and POS, with and without
conflict analysis (denoted with “+”). The original PCT algo-
rithm was for multi-threaded programs, but it still applies
here due to the instant message delivery in our concurrency
model. For PCT, we set 𝑑 , the number of preemptions, to five
without the knowledge of the errors. We profiled each of the
tests with 100 runs in POS to estimate the total number of
operations for PCT. Besides the basic POS, we also evalu-
ated the advanced version, which not only assigns random
priority to operations, but also re-assigns the priorities of
pending operations when any conflicts are observed for the
operations during the scheduling. We denote the advanced
version as “POS*” hereafter.

For each combination of testing algorithms and tests, we
performed 10,000 trials in 10 parallel tasks, so each task
ran 1000 trials. Each task starts with no history for conflict
analysis. We collected for each combination the hit-ratio, the



Table 3. Error-detection performance of different randomized testing algorithm. “+” means with conflict analysis. “Mean”
row summarizes each of algorithms with geometric means. “Ratio to POS+” row shows the ratio of overall performance
compared with POS+. “CA Improvement” row shows the improvements of conflict analysis on the average performance for
each algorithm. The summary of random walk is not available due to the missed errors.

Case RW RW+ PCT PCT+ POS POS+ POS* POS*+
locks-1 0.0042 0.0312 0.0895 0.1164 0.1521 0.2087 0.1562 0.2239
locks-2 0.0210 0.0117 0.0022 0.0071 0.0073 0.0124 0.0103 0.0140
gproc-1 0 0.0001 0.0015 0.0018 0.0031 0.0106 0.0008 0.0023
gproc-2 0 0.0190 0.0496 0.0781 0.0605 0.1170 0.0416 0.0648
gproc-3 0 0.0002 0.0431 0.0385 0.0156 0.0450 0.0027 0.0094
mnesia-1 0 0.0001 0.0219 0.0223 0.0141 0.0168 0.0091 0.0124
mnesia-2 0 0.0008 0.0075 0.0078 0.0117 0.0253 0.0104 0.0254
ms-1 0 0.0061 0.3000 0.2833 0.1489 0.2420 0.1505 0.2478
ra-1 0 0 0.0025 0.0036 0.0070 0.0120 0.0062 0.0126
ra-2 0 0 0.0010 0.0011 0.0053 0.0042 0.0063 0.0044
ra-3 0 0.0001 0.0003 0.0002 0.0032 0.0031 0.0032 0.0033
Mean N/A N/A 0.0089 0.0106 0.0151 0.0249 0.0109 0.0180
Ratio to POS+ N/A N/A 35.62% 42.66% 60.67% 100.00% 43.74% 72.01%
CA Improvement N/A 19.77% 64.82% 64.65%

number of trials that surfaced the error divided by the total
number of trials. The results are shown in Table 3. Note that
all three errors we found in ra appear in all our tests of ra
with different probabilities. We aggregated the results by the
three errors. The hit-ratio of each algorithm is summarized
in the “Mean” row with geometric means. Random walk
cannot detect 2 of 11 errors even with conflict analysis, thus
its geometric means are not available.
The basic POS with conflict analysis performed the best

in error-detection on average. It outperformed our baseline,
random walk, and PCT, on most of the errors, and the overall
advantage is 280.77%. The results also show that, to our sur-
prise, POS* (POS with priority reassignment) degrades the
error-detection performance by 28% from POS in average,
given the POS* worked better on multi-threaded programs in
prior work [57]. Further experiments confirmed that POS*+
did sample more partial-orders than POS+. These results
reveal a key insight: tools consider two shared memory op-
erations conflict only if they access the same exact location
(and at least one is a write), but two message sends conflict
if they target the same recipient process even when the han-
dling of the messages has independent effects. Therefore, the
partial-order relations defined on distributed systems tend
to be overly conservative. Some of the false dependencies
can be alleviated by fine-grained dependency tracking [32],
while semantic independence of operations is still hard to
efficiently identify on the fly.

5.3 Effect of Conflict Analysis
To understand how conflict analysis can reduce the useless
operations for Morpheus to explore, we profiled conflict anal-
ysis in two cases, gproc-1 and mnesia-2, for the total

Table 4. Results of conflict analysis with different signature
schemes on gproc-1 and mnesia-2. “Hit-ratio” denotes
the error-finding performance ofMorpheuswithout andwith
conflict analysis. “FNs” denotes falsely ignored conflicting
operations amortized by trials, and “FPs” denotes falsely
explored non-conflicting operations amortized by trials.

Case Operations Conflicts Hit-ratio
gproc-1 6593.39 325.59 0.0031
Scheme FNs FPs
PC 0.09 1192.16 0.0064 (206%)
{P,PC} 0.54 526.27 0.0106 (342%)

mnesia-2 10018.80 628.25 0.0117
PC 0.18 4612.02 0.0174 (149%)
{P,PC} 1.13 1442.74 0.0253 (216%)

number of operations, real conflicts, false negatives, and false
positives, under different signature schemes. The profiling
setting is the same as §5.2. For each case, we compared the
signatures of “{P,PC}” with the naïve signatures of “PC”,
considering only static locations. Table 4 shows the data.
Overall, the signatures of “{P,PC}” significantly reduced
false positives from the naïve scheme to the same level of the
real conflicts, and they combined are an order of magnitude
smaller than the total number of operations. False negatives
are extremely rare.

The overall improvement of conflict analysis to Morpheus
is shown in the “CA Improvement” row of Table 3. Conflict
analysis improves the performance of POS by up to 241.94%
in ra-1, and the average improvement is 64.82%.
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Figure 9. The real-time performance of Morpheus on
gproc-1 andmnesia-2 over 100 trials. The numbers next
to the bars show the runtime decomposition (except com-
mon).

5.4 The Real-time Performance of Morpheus
The runtime overhead of Morpheus comes from three as-
pects: (1) transforming the modules on the fly, (2) controlling
and executing the operations, and (3) analyzing the trace
after each trial. We evaluated the real-time performance on
gproc-1 and mnesia-2 over 100 trials. We also measured
the runtime of an empty test without Morpheus as the com-
mon time of a test. The results are shown in Figure 9. Overall,
we observed nearly two orders of magnitude of overhead due
to the heavy runtime manipulation, common in concurrency
testing with complete interleaving control. Module transfor-
mation took the majority of the overhead, which we believe
can be amortized by reusing the transformed modules across
trials. We evaluated a mini-benchmark of sending messages
in 1,000,000 round-trips, showing that Morpheus’s runtime
(94.02s) is 51.54% more efficient than Concuerror’s (142.48s).

6 Related Work
Randomized concurrency testing. Burckhardt et al. pro-
posed PCT [13] as the first randomized testing algorithm
that leverages the simple root causes of realistic concurrency
errors. Ozkan et al. later proposed PCTCT [42], adapting PCT
into the context of general distributed systems. Concurrent to
our work, Ozkan et al. recently proposed taPCT [43] that also
identifies conflicting operations. Unlike Morpheus, it relies
on discovering all conflicting operations in pre-processing,
an assumption often unmet by real-world programs such as
the ones we studied. Sen proposed RAPOS [45] that lever-
ages partial-order semantics for randomized testing as a
heuristics, but it does not provide probabilistic guarantees.
Jepsen [26, 33] tests real-world distributed systems by ex-
ploring their behaviors under random network partitions.
For Erlang programs, QuickCheck/PULSE [16] provides ran-
domized concurrency testing with a simple strategy akin

to random walk. Morpheus leverages the partial order sam-
pling [57] in Morpheus to further exploit the small scope
hypothesis.

Systematic concurrency testing. A number of systematic
testing tools have been proposed to apply model check-
ing on implementations of concurrent systems, including
CHESS [38], dBug [47],MoDist [53], DeMeter [23], SAMC [27],
and FlyMC [32]. Some of them are for Erlang programs, such
as McErlang [20] and Concuerror [15]. They explore the
concurrency of a system and verify the absence of errors
by exhaustively checking all possible interleavings. The ma-
jor limitation of systematic testing is its ineffectiveness to
handle the immense interleaving spaces to find even simple
errors. Partial-order reduction techniques [7, 8, 11, 19, 21] al-
leviate this problem by skipping equivalent interleavings. For
real-world systems, however, the interleaving spaces after
reduction are often still intractable for systematic testing.

Program analysis for finding concurrency errors. There
is a large body of work detecting concurrency error using
static analysis [39, 50], dynamic analysis [18, 31, 40], and
the combination of two [29, 30]. None of them alone can be
effectively applied to real-world distributed systems with
both coverage and precision.

Other approaches and language support for concurrency
testing. Coverage-driven concurrency testing [51, 56] lever-
ages relaxed coverage metrics to discover rarely explored
interleavings. Directed testing [44, 46] focuses on exploring
specific types of interleavings to reveal targeted errors such
as data races and atomicity violations. Some programming
languages, for example, Mace [25] and P# [17] provide first-
class support for building concurrent systemswith high-level
primitives, where our techniques can easily apply.

7 Conclusion
We have presented Morpheus, an effective concurrency test-
ing approach for real-world distributed systems in Erlang.
Morpheus leverages POS to exploit the simple root causes
of concurrency errors, targets the high-level concurrency
for systems written in Erlang to focus on the protocol-level
errors, and introduces conflict analysis to further eliminate
redundant explorations of reordering non-conflicting oper-
ations. Our evaluation showed that Morpheus effectively
found protocol-level errors in popular real-world distributed
systems in Erlang.
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A Artifact Appendix
A.1 Abstract
The artifact contains all experiment code and data for our
evaluation (Section 5). The experiments were running on
workstations running Ubuntu 16.04, with each of 64 GB of
RAM and 2 Intel Xeon E-2640 CPUs. To run all our experi-
ments, we provide Docker containers based on Ubuntu 18.04.

A.2 Artifact check-list (meta-information)
Obligatory. Use just a few informal keywords in all fields ap-
plicable to your artifacts and remove the rest. This information
is needed to find appropriate reviewers and gradually unify
artifact meta information in Digital Libraries.

• Algorithm: Partial order sampling with conflict analysis.
• Program: Customized benchmarks based on open-sourced
software, included in the artifact.

• Run-time environment: Linux supporting Bash, Python
3 with tabulate module, and Docker.

• Hardware: x86_64 architecture; 16 GB or more RAM
recommended.

• Metrics: Execution time, error-detection performance (# of
errors vs # of trials), complexity profiles of the benchmarks.

• Output: Raw logs - scripts included to generate tables from
the logs.

• Experiments: Container based experiments using scripts/-
makefiles. Runtime performance could vary based on hard-
ware. Other results could also vary in a small range since
the algorithms are randomized.

• How much disk space required (approximately)?: 15
GB minimal - may need more for copying data from contain-
ers. 50 GB recommended.

• How much time is needed to prepare workflow (ap-
proximately)?: 1∼2 hour to build the docker containers.

• How much time is needed to complete experiments
(approximately)?: ∼5000 hours - can be largely parallelized.
We used ∼1 week with effectively ∼30 CPUs.

• Publicly available?: Morpheus is open-sourced at https:
//github.com/xinhaoyuan/morpheus and https://github.com/
xinhaoyuan/firedrill (for the POS implementation)

• Code licenses (if publicly available)?: Apache 2.0
• Data licenses (if publicly available)?: Apache 2.0
• Archived (provide DOI)?: http://doi.org/10.17605/OSF.IO/
69H75

A.3 Description
A.3.1 How delivered
Experiment code. morpheus-asplos-2020-artifact.tgz
in http://doi.org/10.17605/OSF.IO/69H75 contains:

• The specifications of the Docker containers for running the
experiments.

• The Morpheus and Concuerror benchmark code used to
evaluate our system.

• Modified Concuerror supporting randomized testing algo-
rithms, i.e. random walk and POS.

Preparing the docker image would require a few hours and ∼1
GB of storage. Running the experiments in the containers would
produce uncompressed data. See below for their size.

Original data used by the paper. Available at http://doi.org/10.
17605/OSF.IO/69H75 asmorpheus-asplos-2020-data.tgz.
There are ∼13 GB of the uncompressed data.

A.3.2 Hardware dependencies
x86_64 architecture. 16 GB or more RAM recommended. Experi-
ments can be largely parallelized.

A.3.3 Software dependencies
Linux with support of Bash, Python 3 with tabulate module,
and Docker. tabulate can usually be installed by command
pip3 install tabulate

Our container specifications handle other software dependencies.

A.4 Installation
Download morpheus-asplos-2020-artifact.tgz from
http://doi.org/10.17605/OSF.IO/69H75. Extracting it will create a
directory artifact-evaluation. Enter the directory and run
build-docker-images.sh to build two containers for Er-
lang/OTP with version 20 and 21, patched with Morpheus support.
This results in Docker imagesmorpheus-benchmarks:otp-{20,21}
for the experiments under the two Erlang/OTP versions.

A.5 Experiment workflow
Our experiments run inDocker containers. Each experiment follows
the workflow of three steps:

1. Create and run the docker containers corresponding to each
experiment. The experiment is specified as jobs inMakefile
in the containers. Thus the commands for the experiment
are in the form of
docker run --name [CONTAINER-NAME] make \

[ARGS] -j [PARALLELISM]

You may change [PARALLELISM] accordingly to the num-
ber of CPUs (cores) in your machines.

2. After the containers terminate, copy their output (logs) from
the containers to the host using
docker cp [CONTAINER-NAME]:[OUTPUT-DIR] \

[HOST-DIR]

3. Use artifact-evaluation/get_tables.py script
to generate tables from the data.

A.6 Evaluation and expected result
A.6.1 Comparison with Concuerror (Section 5.1)
Experiments here compare systematic concurrency testing imple-
mented in Concuerror [15] with randomized testing algorithms,
namely random walk and POS.

Use the following command to run the experiments in a con-
tainer:
docker run --name exp-concuerror \

morpheus-benchmarks:otp-20 make -C \

concuerror-tests all -j 10

This would take ∼15 CPU hours. When it is finished, copy the data
from the container:
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docker cp \

exp-concuerror:/root/concuerror-tests/data \

[HOST-DIR]

[HOST-DIR] could be e.g. data/concuerror. Please make
sure the directory data exists before copying.

The part of the original data is in data/concuerror of the
data archive.

A.6.2 Error-detection performance (Table 3)
Experiments here compare the error-finding performance of Mor-
pheus with other randomized concurrency testing algorithms.

The experiments require two containers of different Erlang/OTP
versions, using the following two commands to run them.
docker run --name exp-main-20 \

morpheus-benchmarks:otp-20 make -C \

morpheus-tests data-main-20 -j 10

and
docker run --name exp-main-21 \

morpheus-benchmarks:otp-21 make -C \

morpheus-tests data-main-21 -j 10

This is the most time-consuming part of the experiments - it
would take up to 4900 CPU hours, assuming each trial taking up
to 20 seconds. When they are finished, copy the data from the
containers to local directory:
docker cp \

[CONTAINER-NAME]:/root/morpheus-tests/data \

[HOST-DIR]

[CONTAINER-NAME] is one of exp-main-{20,21}, and
[HOST-DIR] could be, e.g.data/main/otp-{20,21}, respec-
tively. Please make sure the directory data/main exists before
copying.

The part of the original data is in data/main of the data
archive.

A.6.3 Conflict analysis (Table 4)
Experiments here evaluate the performance of conflict analysis and
its improvement to error-finding on two specific test cases.

Using the following command to run the experiments:
docker run --name exp-ca \

morpheus-benchmarks:otp-20 make -C \

morpheus-tests data-ca -j 10

This would take ∼200 CPU hours to finish. When it is finished,
copy the data from the containers to local directory:
docker cp exp-ca:/root/morpheus-tests/data \

[HOST-DIR]

[HOST-DIR] could be, e.g. data/ca. Please make sure the di-
rectory data exists before copying.

The part of the original data is in data/ca of the data archive.

A.6.4 Runtime performance (Figure 9)
Experiments here analyze the runtime overhead of Morpheus com-
pared with raw executions in Erlang.

Using the following command to run the experiments:
docker run --name exp-rt \

morpheus-benchmarks:otp-20 make -C \

morpheus-tests data-rt -j 10

This would take one to two CPU hours. When it is finished, copy
the data from the containers to local directory:
docker cp exp-rt:/root/morpheus-tests/data \

[HOST-DIR]

[HOST-DIR] could be, e.g. data/rt. Please make sure the di-
rectory data exists before copying.

The part of the original data is in data/rt of the data archive.

A.6.5 Expected results
Run get_tables.py on the reproduced data or original data (in
morpheus-asplos-2020-data.tgz) to get the tables of the
paper (modulo format changes). Note that if you copy data into
directories other than data/concuerror, data/main/...,
data/ca, anddata/rt, you need to use arguments--data-main,
--data-ca, etc. with get_tables.py. Use argument --help
to see the help information of the arguments.

We includeexpected_tables.txt in the experiment archive
for the expected results from the original data. For reproduction,
runtime performance could vary based on hardware performance.
Other results could also vary in a small range since the algorithms
are randomized.

A.6.6 Running smaller scale experiments
It is possible to run the experiments in a smaller scale by modifying
the following files in artifact-evaluation/exp-files/:

• concuerror-tests/Makefile
• morpheus-tests/Makefile

There are variables REPEAT and instance_repeat, control-
ling the number of trials to perform on each test case and algorithm.
After modifications to the variable, you would need to rebuild the
Docker image again using the shell script.

Note that if you change instance_repeat. You also need
to pass -r argument in get_tables.py to 10 (the number of
instances in Makefile) times the changed value, such as:
./get_tables.py -r 1000

if you set instance_repeat to 100.

A.7 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-review-badging
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