
MODIST: Transparent Model Checking of
Unmodified Distributed Systems

Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu,
Xuezheng Liu, Haoxiang Lin, Mao Yang, Fan Long,

Lintao Zhang, Lidong Zhou

Columbia University, Microsoft Research Asia,
Mirosoft Research Silicon Valley, Tsinghua University

Distributed system: hard to get right

 Complicated protocol + code
 Node has no centralized view of entire system

 Must correctly handle a large number of failures
• Link failure, message delay, machine crash

 Getting worse: larger scale, failures more likely

 Randomized testing
 Low coverage

 Non-deterministic

MODIST summary

 MOdel checker for DISTributed systems
 Comprehensive: check many corner cases

 “In-situ:” check unmodified, real implementations

 Deterministic: detected errors can be replayed

 Results
 Checked Berkeley DB replication, Paxos-MPS (managing

Microsoft production data centers) [D3S, NSDI08], and
PacificA [MSR-TR]

 35 bugs, 31 confirmed

 10 protocol bugs, found in every system checked

Outline

 Overview
 Real Berkeley DB bug

 How MODIST finds the bug

 Implementation challenges

 Errors

Berkeley DB replication

 Based on Paxos
 single primary, multiple secondaries
 Primary can read and write
 Secondary can only read

 When primary fails, secondaries can elect new
primary

 When duplicate primary detected, degrade
both and re-elect

 Bug is in leader election protocol

A real Berkeley DB bug

A B C

“I’m new primary”

C is primary
A-C link failure

“Duplicate primary!” “update”
time

A degrades itself

C degrades itself

OK

A real Berkeley DB bug

A B C

“I’m new primary”

C is primary
A-C link failure

“Duplicate primary!” “update”

A degrades itself

time

C degrades itself

Unexpected message!

MODIST: simple to use

$ cat bdb.conf
 # command # working dir # inject failure?
 ex_rep_mgr.exe –n 3 –m localhost:8000 … ./node1 1
 ex_rep_mgr.exe –n 3 –m localhost:8001 … ./node2 1
 ex_rep_mgr.exe –n 3 –m localhost:8002 … ./node3 1

$ modist.exe bdb.conf
 spawning process 1: ex_rep_mgr.exe …

 …
 fail link from process 1 to process 3
 …
 process 3 send to process 1
 …
 restarting
 spawning process 1: ex_rep_mgr.exe
 …

$ modist.exe bdb.conf –r traces/0/trace

Outline

 Overview
 Real Berkeley DB bug

 How MODIST finds the bug

 Implementation challenges

 Errors

Core model checking idea

 Goal: explore all states and actions

 Advantage: rare actions appear as often as
common ones, thereby quickly driving system
into corner case for errors

OS

Actions in Berkeley DB replication

OS

Berkeley DB Process

Messages

Thread
OS

 Normal actions
 Send message

 Recv message

 Run thread

 …

 Rare actions
 Delay message

 Fail link

 Crash machine

 …

Ideal: exploring all actions

more …

more
…

 Built-in checks
 Crash

 Deadlocks

 Infinite loops

 User-written checks
 Local assertions

 Global assertions
• [D3S, NSDI 08]

 MODIST amplifies

Avoiding redundancy

 Explore only one interleaving of independent
actions
 Partial order reduction [Verisoft, POPL97] [DPOR,

PLDI05]
 Our implementation handles both message passing and

thread synchronizations

C run thread

A send B

Equivalent!

A send B

Outline

 Overview
 Berkeley DB bug example

 How MODIST finds the bug

 Implementation challenges

 Errors

Challenges

 How to expose actions?

 How to check often-untested timeout code?

 How to simulate failures?
 Must be realistic to avoid false positives

 How to schedule actions?
 Must be deterministic for error replay

• E.g., asynchronous IO

 Must avoid deadlocks

 Must be extensible

Challenges

 How to expose actions?

 How to check often-untested timeout code?

 How to simulate failures?
 Must be realistic to avoid false positives

 How to schedule actions?
 Must be deterministic for error replay

• E.g., asynchronous IO

 Must avoid deadlocks

 Must be extensible

Exposing actions

 To check, must know and control actions

 Previous work on distribute system model
checking: users must expose actions
 MaceMC: write app in special language

 CMC: port app into fake environment
• We used it to check FS [FiSC, OSDI06]

• Difficult to check new app, OS

 MODIST uses in-situ checking architecture
[EXPLODE, OSDI06]: interlace control needed
into checked system

Architecture comparison

 Transparent
 Easy to port to new OS

Fake Fake

Fake

Fake environment

OS OS

OS

MODIST
backend

Frontend
 intercept API call
 RPC to backend

Central scheduler of all
intercepted API calls

Traditional approach MODIST

Frontend: simple

 Intercepted 82 API functions
 E.g., networking, thread synchronization

 Most wrappers are simple: return failure or
call real API function
 No need to re-implement API functions

 Average 67 lines per wrapper

Challenges

 How to expose actions?

 How to check often-untested timeout code?

 How to simulate failures?
 Must be realistic to avoid false positives

 How to schedule actions?
 Must be deterministic for error replay

• E.g., asynchronous IO

 Must avoid deadlocks

 Must be extensible

Checking timeouts

 System code heavily uses implicit timers

 Challenge: can intercept gettime(), but what to
return?
 Want to explore both branches
 Must know t + 10, but no API call
 Previous work: manual

db_timespec now;
now = gettime(); // return current time
if (now >= t + 10) // timeout check
 ... // timeout handling code
else
 … // no timeout

Static symbolic analysis

 Key observations
 Time values are used in simple ways

• Berkeley DB: db_timespec, mostly +,-, sometimes *,/
 Static analysis can pick up time values easily

 Programmers check timeout soon after current time
• Intuition: want current time to be “fresh”
• Berkeley DB: 12 out of 13 are within a few lines
 Track only short flows of time values

 Our solution: static intra-procedural symbolic
analysis to discover implicit timers
 Much simpler than state of art symbolic analysis

[KLEE, OSDI08]

Outline

 Overview
 Berkeley DB bug example

 How MODIST finds the bug

 Implementation challenges

 Errors

Errors

 Large, complex systems

 Total 35 bugs, all previously unknown, 31
confirmed

 Protocol bugs in every system, total 10

System KLOC Protocol
bugs

Impl.
bugs

Total

Berkeley DB 172.1 2 5 7

Paxos-MPS 53.5 2 11 13

PacificA 12 6 9 15

Total 237.6 10 25 35

Conclusion

 MODIST: in-situ model checker for
distributed systems
 Comprehensive, transparent, deterministic

 Effective
• Checked Berkeledy DB, Paxos-MPS, PacificA

• 35 bugs, 10 protocol bugs

 Real distributed protocols are buggy
 Interestingly, based on proven-correct protocols

 Bugs stem from concretitzation or customizations

