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Abstract

Deep networks are well-known to be fragile to adversarial attacks. We conduct an
empirical analysis of deep representations under the state-of-the-art attack method
called PGD, and find that the attack causes the internal representation to shift
closer to the “false” class. Motivated by this observation, we propose to regular-
ize the representation space under attack with metric learning to produce more
robust classifiers. By carefully sampling examples for metric learning, our learned
representation not only increases robustness, but also detects previously unseen
adversarial samples. Quantitative experiments show improvement of robustness
accuracy by up to 4% and detection efficiency by up to 6% according to Area
Under Curve score over prior work. The code of our work is available at https:
//github.com/columbia/Metric_Learning_Adversarial_Robustness.

1 Introduction

Deep networks achieve impressive accuracy and wide adoption in computer vision [17], speech
recognition [14], and natural language processing [21]. Nevertheless, their performance degrades
under adversarial attacks, where natural examples are perturbed with human-imperceptible, carefully
crafted noises [35, 23, 12, 18]. This degradation raises serious concern — especially when we
deploy deep networks to safety and reliability critical applications [29, 43, 41, 20, 36]. Extensive
efforts [37, 31, 47, 7, 25, 12, 35, 48] have been made to study and enhance the robustness of deep
networks against adversarial attacks, where a defense method called adversarial training achieves the
state-of-the-art adversarial robustness [19, 16, 46, 49].

To better understand adversarial attacks, we first conduct an empirical analysis of the latent representa-
tions under attack for both defended [19, 16] and undefended image classification models. Following
the visualization technique in [28, 30, 33], we investigate what happens to the latent representations
as they undergo attack. Our results show that the attack shifts the latent representations of adversarial
samples away from their true class and closer to the false class. The adversarial representations
often spread across the false class distribution in such a way that the natural images of the false class
become indistinguishable from the adversarial images.

Motivated by this empirical observation, we propose to add an additional constraint to the model
using metric learning [15, 32, 44] to produce more robust classifiers. Specifically, we add a triplet
loss term on the latent representations of adversarial samples to the original loss function. However,
the naïve implementation of triplet loss is not effective because the pairwise distances of a natural
sample xa, its adversarial sample x′a, and a randomly selected natural sample of the false class xn are
hugely uneven. Specifically, given considerable data variance in the false class, xn is often far from
the decision boundary where x′a resides, therefore xn is too easy as a negative sample. To address this
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problem, we sample the negative example for each triplet with the closest example in a mini-batch of
training data. In addition, we randomly select another samplexp in the correct class as the positive
example in the triplet data.

Our main contribution is a simple and effective metric learning method, Triplet Loss Adversarial
(TLA) training, that leverages triplet loss to produce more robust classi�ers. TLA brings near both
the natural and adversarial samples of the same class while enlarging the margins between different
classes (Sec. 3). It requires no change to the model architecture and thus can improve the robustness
on most off-the-shelf deep networks without additional overhead during inference. Evaluation on
popular datasets, model architectures, and untargeted, state-of-the-art attacks, including projected
gradient descent (PGD), shows that our method classi�es adversarial samples more accurately by up
to 4% than prior robust training methods [16, 19]; and makes adversarial attack detection [52] more
effective by up to 6% according to the Area Under Curve (AUC) score.

2 Related Work

The fact that adversarial noise can fool deep networks was �rst discovered by Szegedy et al. [35],
which started the era of adversarial attacks and defenses for deep networks. Goodfellow et al. [12]
then proposed an attack — fast gradient sign method (FGSM) and also constructed a defense model
by training on the FGSM adversarial examples. More effective attacks including C&W [5], PGD
[19], BIM [ 18], MIM [ 9], DeepFool [23], and JSMA [27] are proposed to fool deep networks, which
further encourage the research for defense methods.

Madry et al. [19] proposed adversarial training (AT) that dynamically trained the model on the
generated PGD attacks, achieving the �rst empirical adversarial robust classi�er on CIFAR-10.
Since then, AT became the foundation for the state-of-the-art adversarial robust training method and
went through widely and densely scrutiny [3], which achieved real robustness without relying on
gradient masking [3, 13, 31, 4, 8]. Recently, Adversarial Logit Pairing (ALP) [16] is proposed with
an additional loss term that matches the logit feature from a clean imagex and its corresponding
adversarial imagex0, which further improves the adversarial robustness. However, this method has
a distorted loss function and is not scalable to untargeted attack [11, 22]. In contrast to the ALP
loss which uses a pair of data, our method introduces an additional negative example in a triplet of
data, which achieves more desirable geometric relationships between adversarial examples and clean
examples in feature metric space.

Orthogonal to our method, the concurrent feature denoising method [46] achieves the state-of-the-art
adversarial robustness on ImageNet. While their method adds extra denoising block in the model,
our method requires no change to the model architecture. Another concurrent work, TRADES [49],
achieves improved robustness by introducing Kullback-Leibler divergence loss to a pair of data. In
addition, unlabeled data [39] and model ensemble [37, 25] have been shown to improve the robustness
of the model. Future work can be explored by combining these methods with our proposed TLA
regularization for better adversarial robustness.

3 Qualitative Analysis of Latent Representations under Adversarial Attack

We begin our investigation by analyzing how the adversarial images are represented by different
models. We call the original class of an adversarial image astrue class and the mis-predicted class of
adversarial example asfalseclass. Figure 1 shows the visualization of the high dimensional latent
representation of sampled CIFAR-10 images with t-SNE [40, 2]. Here, we visualize the penultimate
fully connected (FC) layer of four existing models: standard undefended model (UM), model after
adversarial training (AT) [19], model after adversarial logit pairing (ALP) [16], and model after
our proposed TLA training. Though all the adversarial images belong to the sametrue class, UM
separates them into differentfalseclasses with large margins. The result shows UM is highly non-
robust against adversarial attacks because it is very easy to craft an adversarial image that will be
mistakenly classi�ed into a different class. With AT and ALP methods, the representations are getting
closer together, but one can still discriminate them. Note that, a good robust model will bring the
representations of the adversarial images closer to their originaltrueclass so that it will be dif�cult to
discriminate the adversarial images from the original images. We will leverage this observation to
design our approach.
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(a) UM (b) AT (c) ALP (d) TLA

Figure 1: t-SNE Visualization of adversarial images from the sametrue class which are mistakenly
classi�ed to different falseclasses.The �gure shows representations of second to last layer of 1000 adversarial
examples crafted from 1000 natural (clean) test examples from CIFAR-10 dataset, where thetrue class is “deer.”
The different colors represent differentfalseclasses. The gray dots further show 500 randomly sampled natural
deer images. Notice that for (a) undefended model (UM), the adversarial attacks clearly separate the images
from the same “deer” category into different classes. (b) adversarial training (AT) and (c) adversarial logit
pairing (ALP) method still suffer from this problem at a reduced level. In contrast, our proposed ATL (see (d))
clusters together all the examples from the sametrueclass, which improves overall robustness.

(a) UM (b) AT (c) ALP (d) TLA

Figure 2: Illustration of the separation margin of adversarial examples from the natural images of the
corresponding false class.We show t-SNE visualization of the second to last layer representation of test data
from two different classes across four models. The blue and green dots are 200 randomly sampled natural
images from “bird" and “truck” classes respectively. The red triangles denote adversarial (adv) truck images
but mispredicted as “bird.” Notice that for (a) UM, the adversarial examples are moved to the center of the
false class, making it hard to separate from them. (b) AT and (c) ALP achieve some robustness by separating
adversarial and natural images, but they are still close to each other. Plot (d) shows our proposed TLA training
promotes the mispredicted adversarial examples to lie on the edge of the natural images false class and can still
be separated, which improves the robustness.

In Figure 2, we further analyze how the representation of images of one class is attacked into the
neighborhood of another class. The green and blue dots are the natural images of trucks and birds,
respectively. The red triangles are the adversarial images of trucks mispredicted as birds. For UM
model (Figure 2a), all the adversarial attacks successfully get into the center of the false class. The
AT and ALP models achieve some robustness by separating some adversarial images from natural
images, but most adversarial images are still inside the false class. A good robust model should
promote the representations of adversarial examples away from the false class, as shown in Figure 2d.
Such separation not only improves the adversarial classi�cation accuracy but also helps to reject the
mispredicted adversarial attacks, because the mispredicted adversaries tend to lie on edge.

Based on these two observations, we build a new approach that ensures adversarial representations
will be (i) closer to the natural image representations of their true classes, and (ii) farther from the
natural image representations of the corresponding false classes.

4 Approach

Inspired by the adversarial feature space analysis, we add an additional constraint to the model using
metric learning. Our motivation is that the triplet loss function will pull all the images of one class,
both natural and adversarial, closer while pushing the images of other classes far apart. Thus, an
image and its adversarial counterpart should be on the same manifold, while all the members of the
false class should be forced to be separated by a large margin.
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Notations. For an image classi�cation task, letM be the number of classes to predict, andN be
the number of training examples. We formulate the deep network classi�er asF� (x) 2 RM as a
probability distribution, wherex is the input variable,y is the output ground-truth, and� is the
network's parameters to learn (we simply useF (x) most of time);L (F (x); y) is the loss function.

Assume that an adversary is capable of launching adversarial attacks bounded byp-norm, i.e., the
adversary can perturb the input pixel by� bounded byL p; p = 0 ; 2; 1 , let I (x ; � ) denote theL p
ball centered atx with radius� . We focus on the study ofuntargetedattack, i.e., the objective is to
generatex0 2 I (x; � ) such thatF (x0) 6= F (x).

Triplet Loss. Triplet loss is a widely used strategy for metric learning. It trains on a triplet inputn �
x ( i )

a ; x ( i )
p ; x ( i )

n )
o

, where the elements in the positive pair
�
x ( i )

a ; x ( i )
p

�
are clean images from the

same class and the elements in the negative pair
�
x ( i )

a ; x ( i )
n

�
are from different classes [32, 15].

x ( i )
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n are referred aspositive, anchor, andnegativeexamples of the triplet loss. The

embeddings are optimized such that examples of the same class are pulled together and the examples
of different classes are pushed apart by some margin [34]. The standard triplet loss for clean images
is as follows:

NX
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where,h(x) maps from the inputx to the embedded layer,� 2 R+ is a hyper-parameter for margin
andD(h(x i ); h(x j )) denotes the distance betweenx i andx j in the embedded representation space.
In this paper, we de�ne the embedding distance between two examples using the angular distance [42]:

D (h(x ( i )
a ); h(x ( j )

p;n )) = 1 �
j h (x ( i )

a ) �h(x ( j )
p;n )) j

jj h (x ( i )
a ) jj 2 jj h (x ( j )

p;n )) jj 2
, where we choose to encode the information in the

angular metric space.

Metric Learning for Adversarial Robustness. We add triplet loss to the penultimate layer's
representation. Different from standard triplet loss where all the elements in the triplet loss term are
clean images [32, 50], at least one element in the triplet loss under our setting will be an adversarial
image. Note that generating adversarial examples is more computational intensive compared with
just taking the clean images. For ef�ciency, we only generate one adversarial perturbed image for
each triplet data, using the same method introduced by Madry et al. [19]. Speci�cally, given a clean
imagex ( i ) , we generate the adversarial imagex0( i ) based onr x L (F (x); y) (standard loss without
the triplet loss) with PGD method. We do not add the triplet loss term into the loss of adversarial
example generation due to its inef�ciency.

The other elements in the triplet data are clean images. We forward the triplet data in parallel through
the model and jointly optimize the cross-entropy loss and the triplet loss, which enables the model to
capture the stable metric space representation (triplet loss) with semantic meaning (cross-entropy
loss). The total loss function is formulated as follows:

L all =
NX

i

L ce(f (x0( i )
a ); y( i ) ) + � 1L trip (h(x0( i )

a )) ; h(x ( i )
p ); h(x ( i )

n )) + � 2L norm

L norm = jjh(x0( i )
a )jj2 + jjh(x ( i )

p )jj2 + jjh(x ( i )
n )jj2

(1)

where� 1 is a positive coef�cient trading off the two losses;x0( i )
a (anchor example) is an adversarial

counterpart based onx ( i )
a ; x ( i )

p (positive example) is a clean image from the same class ofx ( i )
a ; x ( i )

n
(negative example) is a clean image from a different class;� 2 is the weight for the feature norm decay
term, which is also applied in [32] to reduce theL 2 norm of the feature.

Notice that, besides the TLA set-up in equation 1, an adversarial perturbed image can be the positive
example, and a clean image can be the anchor example (i.e., switch the anchor and the positive),
where we refer it as TLA-SA (Sec 5). We choose the adversarial example as the anchor for TLA
according to the experimental result. Intuitively, the adversarial image is picked as the anchor because
it tends to be closer to the decision boundary between the "true" class and the "false" class. As an
anchor, the adversarial example is considered in both the positive pair and the negative pair, which
gives more-useful gradients for the optimization. The modi�ed triplet loss for adversarial robustness
is shown in Figure 3.
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Figure 3: Illustration of the triplet loss for adversarial robustness (TLA). The red circle is an adversarial
example, while the green and the blue circles are clean examples. The anchor and positive belong to the same
class. The negative (blue), from a different class, is the closest image to the anchor (red) in feature space. TLA
learns to pull theanchorandpositivefrom the true class closer, and push thenegativeof false classes apart.

Negative Sample Selection.In addition to the anchor selection, the selection of the negative example
is crucial for the training process, because most of the negative examples are easy examples that
already satisfy the margin constraint of pairwise distance and thus contribute useless gradients
[32, 10]. Using the representation angular distance we prede�ne, we select negative samples as the
nearest images to the anchor from a false class. As a result, our model is able to learn to enlarge the
boundary between the adversarial samples and their closest negative samples from the other classes.

Unfortunately, �nding the closest negative samples from the entire training set is computationally
intensive. Besides, using very hard negative examples have been found to decrease the network's
convergence speed [32] signi�cantly. Instead, we use a semi-hard negative example, where we
select the closest sample in a mini-batch. We demonstrate the advantage of this sampling strategy by
comparing it with the random sampling (TLA-RN). The results are shown in Sec 5. Other strategies of
sampling negative samples such as DAML [10] could also be applied here, which uses an adversarial
generator to exploit hard negative examples from easy ones.

Implementation Details. We apply our proposed triplet loss on the embedding of the penultimate
layer of the neural network for classi�cation tasks. Since the following transformation only consists
of a linear layer and a softmax layer, small �uctuation to this embedding only brings monotonous
adjustment to the output controlled by some tractable Lipschitz constant [7, 24]. We do not apply
triplet loss on the logit layer but on the penultimate layer, because the higher dimensional penultimate
layer tends to preserve more information. We also construct two triplet loss terms on CIFAR-10 and
Tiny ImageNet, adding another positive example while reusing the anchor and negative example,
which achieves better performance [34, 6]. The details of the algorithm are introduced in the appendix.

5 Experiments

Experimental Setting. We validate our method on different model architectures across three popular
datasets: MNIST, CIFAR-10, and Tiny-ImageNet. We compare the performance of our models with
the following baselines:Undefended Model (UM)refers to the standard training without adversarial
samples,Adversarial Training (AT) refers to the min-max optimization method proposed in [19],
Adversarial Logit Pairing (ALP) refers to the logit matching method which is currently the state-
of-the-art [16]. We useTLA to denote the triplet loss adversarial training mentioned in Section 4. To
further evaluate our design choice, we study two variants of TLA:Random Negative (TLA-RN),
which refers to our proposed triplet loss training method with a randomly sampled negative example,
andSwitch Anchor (TLA-SA) , which sets the anchor to be natural example and the positive to be
adversarial example (i.e., switching the anchor and the positive of our proposed method).

We conduct all of our experiments using TensorFlow v1.13 [1] on a single Tesla V100 GPU with a
memory of 16GB. We adopt the untargeted adversarial attacks during all of our training processes,
and evaluate the models with both white-box and black-boxuntargetedattacks instead of the targeted
attacks following the suggestions in [11] (a defense robust only to targeted adversarial attacks is
weaker than one robust to untargeted adversarial attacks). In order to be comparable to the original
paper in AT and ALP, we mainly evaluate the model under theL 1 bounded attacks. We also evaluate
the models under other norm-bounded attacks (L 0; L 2). The PGD and 20PGD in our Table 1 refer to
the PGD attacks with the random restart of 1 time and 20 times, respectively. For black-box (BB)
attacks, we use the transfer based method [26]. We set� = 0 :5 for ALP method as the original paper.
All the other implementation details are discussed in the appendix.
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MNIST

Attacks Clean FGSM BIM C&W PGD PGD 20PGD MIM BB
(Steps) - (1) (40) (40) (40) (100) (100) (200) (100)

M
et

ho
ds

UM 99.20% 34.48% 0% 0% 0% 0% 0% 0% 81.81%
AT 99.24% 97.31% 95.95% 96.66% 96.58% 94.82% 93.87%95.47% 96.67%
ALP 98.91% 97.34% 96.00% 96.50% 96.62% 95.06% 94.93%95.41% 96.95%

TLA-RN 99.50% 98.12% 97.17% 97.17% 97.64%97.07% 96.73% 96.84% 97.69%
TLA-SA 99.44% 98.14% 97.08% 97.45% 97.50% 96.78% 95.64% 96.45% 97.65%
TLA 99.52% 98.17% 97.32% 97.25% 97.72% 96.96% 96.79% 96.64% 97.73%

CIFAR-10

Attacks Clean FGSM BIM C&W PGD PGD 20PGD MIM BB
(Steps) - (1) (7) (30) (7) (20) (20) (40) (7)

M
et

ho
ds

UM 95.01% 13.35% 0% 0% 0% 0% 0% 0% 7.60%
AT 87.14% 55.63% 48.29% 46.97% 49.79% 45.72% 45.21% 45.16%62.83%
ALP 89.79% 60.29% 50.62% 47.59% 51.89% 48.50% 45.98% 45.97%67.27%

TLA-RN 81.02% 55.41% 51.44% 49.66% 52.50% 49.94% 45.55%49.63% 65.96%
TLA-SA 86.19% 58.80% 52.19% 49.64% 53.53% 49.70% 49.15%49.29% 61.67%
TLA 86.21% 58.88% 52.60% 50.69% 53.87% 51.59% 50.03% 50.09% 70.63%

Tiny ImageNet

Attacks Clean FGSM BIM C&W PGD PGD 20PGD MIM BB
(Steps) - (1) (10) (10) (10) (20) (20) (40) (10)

M
et

ho
ds

UM 60.64% 1.15% 0.01% 0.01% 0.01% 0% 0% 0% 9.99%
AT 44.77% 21.99 19.59% 17.34% 19.79% 19.44% 19.25% 19.28% 27.73%
ALP 41.53% 21.53% 20.03% 16.80% 20.18% 19.96% 19.76% 19.85% 30.31%

TLA-RN 42.11% 21.47% 20.03% 17.00% 20.05% 19.93% 19.81% 19.91% 30.18%
TLA-SA 41.43% 22.09% 20.77% 17.28% 20.82% 20.63% 20.50% 20.61% 29.96%
TLA 40.89% 22.12% 20.77% 17.48% 20.89% 20.71% 20.47% 20.69% 29.98%

Table 1: Classi�cation accuracy under 8 differentL 1 boundeduntargetedattacks on MNIST (L 1 =0.3),
CIFAR-10 (L 1 =8/255), and Tiny-ImageNet (L 1 =8/255). The best results of each column are inbold and the
empirical lower bound (the lowest accuracy of each row if any) for each method isunderlined. TLA improves the
adversarial accuracy by up to 1.86%, 4.12% , and 0.84% on MNIST, CIFAR-10, and Tiny ImageNet respectively.

5.1 Effect of TLA on Robust Accuracy

MNIST consists of a training set of 55,000 images (excluding the 5000 images for validation as in
[19]) and a testing set of 10,000 images. We use a variant of LeNet CNN architecture which has
batch normalization for all the methods. The details of network architectures and hyper-parameters
are summarized in the appendix. We adopt theL 1 = 0 :3 bounded attack during the training and
evaluation. We generate adversarial examples using PGD with 0.01 step size for 40 steps during
the training. In addition, we conduct different types ofL 1 = 0 :3 bounded attacks to achieve good
evaluations. The adversarial classi�cation accuracy of different models under various adversarial
attacks is shown in Table 1. As shown, we improve the empirical state-of-the-art adversarial accuracy
by up to1.86% on 20PGD attacks (100 steps PGD attacks with 20 times of random restart), along
with 0.28% improvement on the clean data.

CIFAR-10 consists of 32� 32� 3 color images in 10 classes, with 50k images for training and 10k
images for testing. We follow the same wide residual network architecture and the same hyper-
parameters settings as AT [19]. As shown in Table 1, our method achieves up to4.12% adversarial
accuracy improvement over the baseline methods under the strongest 20PGD attacks (20 steps PGD
attack with 20 times of restart). Note that our method results in a minor decrease of standard accuracy,
but such loss of generic accuracy is observed in all the existing robust training models [38, 49]. The
comparison with TLA-RN illustrates the effectiveness of the negative sampling strategy. According
to the result of the TLA-SA, our selection of the adversarial example as the anchor also achieves
better performance than the method which chooses the clean image as the anchor.

Tiny Imagenet is a tiny version of ImageNet consisting of color images with size 64� 64� 3 belonging
to 200 classes. Each class has 500 training images and 50 validation images. Due to the GPU limit,
we adapt the ResNet 50 architectures for the experiment. We adoptL 1 = 8=255for both training
and validation. During training, we use 7 step PGD attack with step size2=255 to generate the
adversarial samples. As shown in Table 1, our proposed model achieves higher adversarial accuracy
under white box adversarial attacks by up to0.84% on MIM attacks.
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Mini-Batch TT (s) Total TT (s) Clean FGSM(1) BIM(7) C&W(30) PGD(20) MIM(40)

N
eg

at
iv

e
S

iz
e

1 0 1.802 81.02% 55.41% 51.44% 49.66% 49.94% 49.63%
250 0.467 2.259 86.38% 59.05% 53.02% 50.49% 50.71% 50.31%
500 0.908 2.688 88.32% 60.02% 53.20% 51.30% 50.46% 50.07%
1000 1.832 3.621 86.71% 59.08% 53.25% 50.88% 51.22% 50.74%
2000 3.548 5.992 87.45% 59.23% 52.52% 50.57% 50.20% 49.79%

Table 2: The effect of mini-batch size ofnegativesamples on training time (TT) per iteration and
adversarial robustness (L 1 = 8=255) on CIFAR-10 dataset. The best results of each column are
shown inbold. The number of steps for each attack is shown in the parenthesis. The training time
grows linearly as the size of the mini-batch grows. The adversarial robustness peaks at size 500 to
1000, which validate that semi-hard negative examples are crucial for TLA.

MNIST (LeNet) CIFAR-10 (WRN)

Attacks JSMA (L 0 ) PGD (L 2 ) C&W (L 2 ) DeeoFool (L 2 ) JSMA(L 0 ) PGD (L 2 ) C&W (L 2 ) DeeoFool (L 2 )

M
et

ho
ds AT 99.08% 96.61% 99.08% 99.13% 40.4% 36.8% 50.0% 67.7%

ALP 98.83% 96.28% 98.91% 98.95% 36.9% 38.6% 51.2% 43.5%
TLA 99.32% 97.38% 99.36% 99.35% 48.6% 41.1% 53.5% 80.8%

Table 3: Classi�cation accuracy of two baseline methods and TLA method on 4 unseen types of
attacks (L 0 andL 2 norm bounded). All the models are only trained on theL 1 bounded attacks. The
best results of each column are shown inbold. TLA improves the adversarial accuracy by up to
1.10% and 13.1% on MNIST and CIFAR-10 dataset respectively. The results demonstrate that TLA
generalizes better to unseen types of attacks.

Effect of the mini-batch size of negative samples of TLA.Compared with retrieving from the
whole dataset, the mini-batch based method can mitigate the computational overhead by �nding the
nearest neighbor from a batch rather than from the whole training set. The size of the mini-batch
size controls the hardness level of the negative samples, where larger mini-batch size makes harder
negative ones. We train models with different mini-batch size and evaluate the robustness of the
model using �ve untargeted,L 1 bounded attacks. As shown in Table 2, the total training time grows
linearly as the size of the mini-batch increases, which triples for size 2000 compared with size 1. The
adversarial robustness �rst increases and then decreases after the mini-batch size reaches 1000 (very
hard negative examples hurt performance). Being consistent with the observation in standard metric
learning [32, 51], our results show that it is important to train TLA with semi-hard negative examples
by choosing the proper mini-batch size.

Generalization to Unseen Types of Attacks.After training the models, both baselines and ours,
with L 1 bounded attacks, we evaluate them on unseenL 0-bounded [27] andL 2-bounded attacks [23,
5, 19, 5]. We setL 0 = 0 :1 andL 0 = 0 :02 bound for JSMA on MNIST and CIFAR-10 dataset
respectively. ForL 2 norm bounded PGD and C&W attacks, we set the bound asL 2 = 0 :1 and
L 2 = 32 on MNIST and CIFAR-10 respectively. We apply 40 steps of PGD and C&W on MNIST,
and 10 steps of PGD and C&W on CIFAR-10. We apply 2 steps for DeepFool attack for both
dataset. Due to the slow speed of JSMA, we only run 1000 test samples on CIFAR-10. Table 3 shows
that TLA improves the adversarial accuracy by up to 1.10% and 13.1% on MNIST and CIFAR-10
respectively, which demonstrates that TLA generalizes better to unseen attacks than baseline models.

Performance on Different Model Architectures. To demonstrate that TLA is general for different
model architectures, we conduct experiments using multi-layer perceptron (MLP) and ConvNet [47]
architectures. Results in Table 4 show that TLA achieves better adversarial robustness by up to 4.27%
and 0.55% on MNIST and CIFAR-10 respectively.

MNIST (MLP) Cifar10 (ConvNet)

Attacks Clean FGSM BIM C&W PGD Clean FGSM BIM C&W PGD
Steps - 1 40 40 100 - 1 7 30 20

M
et

ho
ds UM 98.27% 5.23% 0% 0% 0% 77.84% 3.50% 0.09% 0.08% 0.03%

AT 96.43% 73.25% 57.83% 62.60% 58.10%67.60% 40.26% 36.34% 33.17% 34.83%
ALP 95.56% 77.08% 64.39% 63.46% 64.13%66.18% 39.45% 36.15% 32.55% 35.32%
TLA 97.15% 78.44% 65.47% 67.73% 65.88% 67.48% 40.76% 36.77% 33.27% 35.38%

Table 4: Effect of TLA on different neural network architectures. The table lists classi�cation accuracy
under variousL 1 boundeduntargetedattacks on MNIST (L 1 = 0.3) and Cifar10 (L 1 = 8/255).
Overall, TLA improves adversarial accuracy.
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5.2 Effect of TLA on Adversarial vs. Natural Image Separation

Recall in Figure 2b and Figure 2c, the representations of adversarial images are shifted toward the
false class. A robust model should separate them apart. To quantitatively evaluate how wellTLA
training helps with separating the adversarial examples from the natural images of the corresponding
`false' classes, we de�ne the following metric.

Let f ci
k g denote theembedded representationsof all the natural images from classck , where

i = 1 ; : : : ; jck j, andjck j is the total number of images in classck . Then, the average pairwise within-
class distance of these embedded images is:� ntrl

ck
= 2

jck j ( j ck j� 1)

P j ck j� 1
i =1

P j ck j
j = i +1 D(ci

k ; cj
k ). Let

f c0q
k g further denote embedded representations of all the adversarial examples that are misclassi�ed

to classck , whereq = 1 ; : : : ; jc0
k j, andjc0

k j is the total number of such examples. Note that, classck

is the `false' class to those adversarial images. Then, the distance between an adversarial imagesc
0i
k

and a natural imagecj
k is: D (c

0i
k ; cj

k ), and the average pair-wise distance between adversary image

and natural images is:�
0adv
ck

= 1
jc0

k jj ck j

P j c0
k j

i =1

P j ck j
j =1 D(c

0i
k ; cj

k ). We then de�ne the ratior ck =
� adv

c k
� ntrl

c k

as a metric to evaluate how close the adversarial images are w.r.t. the natural images of the `false'
class while compared with the average pairwise within-class distance of all the natural images of
that class. Finally, for all classes we compute the average ratio asr = 1

M

P M
k=1 (r ck ). Note that, any

good robust method should increase the value ofr , indicating� adv is far from� ntrl , i.e., they are
better separated than the natural cluster, as shown in Figure 2d.

Dataset MNIST CIFAR-10 Tiny ImageNet
Perturbation Level L 1 = 0 :03 L 1 = 0 :3 L 1 = 8

255 L 1 = 25
255 L 1 = 8

255 L 1 = 25
255

M
et

ho
ds AT 1.288 1.308 1.053 1.007 0.9949 0.9656

ALP 1.398 1.394 1.038 1.210 0.9905 0.9722
TLA 1.810 1.847 1.093 1.390 0.9937 0.9724

Table 5: Average Ratio (r ) of mean distance between adversary points and natural points over the mean
intra-class distance. The best results of each column are inbold. The results illustrate that TLA increases the
relative distance of adversarial images w.r.t. the natural images of the respective false classes, which illustrates
that TLA achieves more desirable geometric feature space under attacks.

For every dataset, we estimate the ratios under two different perturbation levels of PGD attacks for
all the models. As shown in Table 5, stronger attacks (larger perturbation level) tend to shift their
latent representation more toward the false class. For Tiny-ImageNet, the adversarial examples are
even closer (r < 1) to the false class's manifold than the corresponding natural images to themselves,
which explains the low adversarial accuracy on this dataset. In almost all the settings, TLA leads to
higherr values of separation than the other baseline methods. This indicatesTLA is most effective in
pulling apart the misclassi�ed adversary examples from their false class under both small and large
perturbations attacks.

Dataset MNIST CIFAR-10 Tiny-ImageNet
Type Adv Natural Adv Natural Adv Natural

M
et

ho
d AT 93.01% 98.68% 47.46% 87.06% 20.20% 36.6%

ALP 95.20% 98.43% 48.85% 89.63% 20.33% 35.23%
TLA 96.98% 99.47% 51.74% 86.29% 20.72% 33.99%

Table 6: Accuracy of K-Nearest Neighbors classi�er withK = 50 , illustrating TLA has better similarity
measures in embedding space even with adversarial samples. The best results of each column are inbold.

We further conduct the nearest neighbor analysis on the latent representations across all the models.
The results illustrate the advantage of our learned representations for retrieving the nearest neighbor
under adversarial attacks (See Figure 4). Table 6 numerically shows that the latent representation of
TLA achieves higher accuracy using K-Nearest Neighbors classi�er than baseline methods.

5.3 Effect of TLA on Adversarial Image Detection

Detecting mis-predicted adversarial inputs is another dimension to improve a model's robustness.
Forward these detected adversarial examples to humans for labeling can signi�cantly improve the
reliability of the system under adversarial cases. Given that TLA separates further the adversarial
examples from the natural examples of the false class, we can detect more mis-classi�ed examples by
�ltering out the outliers. We conduct the following experiments.
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Figure 4:Visualization of nearest neighbor images while querying about a “plane" on AT and TLA trained
models. For a natural query image, both methods retrieve correct images (left column). However, given an
adversarial query image (right column), the AT retrieves false “truck" images indicating the perturbation moves
the representation of the “plane" into the neighbors of “truck," while TLA still retrieves images from the true
"plane" class.

(a) MNIST (b) CIFAR-10 (c) Tiny ImageNet

Figure 5:The ROC curve and AUC scores of detecting mis-classi�ed adversarial examples. We train a GMM
model on half clean and half adversarial examples (generated with perturbation level� = 0 :03=1(40 steps)
for MNIST, � = 8 =255(7 steps) for CIFAR-10, and� = 8 =255(7 steps) for Tiny-ImageNet), and then test
the detection model on 10k natural test images and 10k adversary test images (generated with perturbation
level � = 0 :3=1(100 steps) for MNIST,� = 25=255(20 steps) for CIFAR-10, and� = 25=255(30 steps) for
Tiny-ImageNet). The numerical results for AUC score are shown in the legend. Note that both the ROC curve of
TLA is on the top and the AUC score of TLA is the highest, which shows TLA (our method) achieves higher
detection ef�ciency for adversarial examples.

Following the adversarial detection method proposed in [52], we train a Gaussian Mixture Model
for 10 classes where the density function of each class is captured by one Gaussian distribution. For
each test image, we assign a con�dence score of a class based on the Gaussian distribution density of
the class at that image, as shown in [45]. We assign these con�dence scores for all the 10 classes
for each test image. We then pick the class with the largest con�dence value as the assigned class of
the image. We further rank all the test images based on the con�dence value of their assigned class.
We reject those with lower con�dence scores below a certain threshold. This method serves as an
additional con�dence metric to detect adversarial examples in a real-world setting.

We conduct the detection experiment for mis-classi�ed images on 10k clean images and 10k adver-
sarial images. As shown in Figure 5, the ROC-curves and AUC score demonstrate that our learned
representations are superior in adversarial example detection. Compared with other robust training
models, TLA improves the AUC score by up to 3.69%, 6.45%, and 1.37% on MNIST, CIFAR-10,
and Tiny ImageNet respectively. The detection results here are consistent with the visual results
shown in Figure 2.

6 Conclusion

Our novel TLA regularization is the �rst method that leverages metric learning for adversarial
robustness on deep networks, which signi�cantly increases the model robustness and detection
ef�ciency. TLA is inspired by the evidence that the model has distorted feature space under adversarial
attacks. In the future, we plan to enhance TLA using more powerful metric learning methods, such
as the N-pair loss. We believe TLA will also be bene�cial for other deep network applications that
desire a better geometric relationship in hidden representations.
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Supplementary material for “Metric
Learning for Adversarial Robustness”

A Indiscrimination of Robust Representation of Adversarial Examples and
the True Class

Similar to Fig. 1 in the main text, we visualize the representations of clean and adversarial examples from the
same class for the remaining 9 classes on CIFAR-10 dataset across all models using t-SNE [[2]]. Visualizations
are shown in Fig. 6, Fig. 7, and Fig. 8.

Figure 6: t-SNE Visualizations of adversarial images from the sametrue class which are mistakenly
classi�ed to falseclasses. From left to right: UM, AT, ALP, TLA. These are representations of second to last
layer of 1000 adversarial examples crafted from 1000 clean test examples from CIFAR-10 dataset, where the
trueclass is the same for all the �gures in the same row and different for �gures of different row. The different
colors represent differentfalseclasses. The gray dots further show 500 randomly sampled cleantrue images.
Notice that for (a) undefended model (UM), the adversarial attacks clearly separate the images from thetrue
category into different classes. (b) adversarial training (AT) and (c) adversarial logit pairing (ALP) method still
suffer from this problem at a reduced level. In contrast, proposed ATL (see (d)) clusters together all the examples
from the sametrueclass, which improves overall robustness.

B Separation of Robust Representations of Adversarial Examples to the
False Class

Similar to Fig. 2 in the main text, we provide more visualizations of the representations on CIFAR-10 using
t-SNE to demonstrate the separation margin of adversarial samples to the corresponding false class. We plot the
representations of adversarial examples from classA which are �nally misclassi�ed as classB . We also plot
clean images from bothA andB . Visualizations are shown in Fig. 9, Fig. 10, and Fig. 11.
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