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Abstract
Web applications are getting ubiquitous every day because
they offer many useful services to consumers and businesses.
Many of these web applications are quite storage-intensive.
Cloud computing offers attractive and economical choices
for meeting their storage needs. Unfortunately, it remains
challenging for developers to best leverage them to minimize
cost. This paper presents GRANDET, an extensible storage
system that significantly reduces storage cost for web ap-
plications deployed in the cloud. GRANDET provides both
a key-value interface and a file system interface, support-
ing a broad spectrum of web applications. Under the hood,
it supports multiple heterogeneous stores and unifies them
by placing each data object at the store deemed most eco-
nomical. We implemented GRANDET on Amazon Web Ser-
vices and evaluated GRANDET on a diverse set of four pop-
ular open-source web applications. Our results show that
GRANDET reduces their cost by an average of 42.4%, and
it is fast, scalable, and easy to use. The source code of
GRANDET is at http://columbia.github.io/grandet.

Categories and Subject Descriptors C.2.4 [Computer-
Communication Networks]: Distributed Systems

General Terms design, economics, management

Keywords cloud economy, cloud storage, web application

1. Introduction
Web applications are getting more ubiquitous every day be-
cause they offer many useful services to consumers and busi-
nesses. Examples include Instagram and Flickr for hosting,
processing, and sharing images; YouTube and Vimeo for
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videos; Pandora and Spotify for music; and Dropbox and
Google Drive for files.

Many of these web applications can become quite
storage-intensive. At the initial deployment of these appli-
cations, a single server might be enough to host the data
from their limited number of users. However, as they become
more successful, hosting images, videos, files, and other data
objects from millions of users, their storage needs increase
dramatically. For instance, Facebook has over 500 million
users with 260 billion images, totaling 20PB [9]. Dropbox
has over 50 million users, storing 500 million files daily [17].

Cloud computing provides an attractive, economical
choice for meeting the storage (and computational) needs
of web applications. Besides the usual benefits of elastic
scaling and no hardware (over-)provisioning, each cloud
platform typically supports a range of storage options with
different performance, durability, and price characteristics.
For instance, Amazon Web Services (AWS) supports non-
persistent virtual disks (instance store), persistent virtual
disks (elastic block store, or EBS), and key-value object
store (simple storage service, or S3). Each of these options
typically has more sub-options, such as EBS on SSD or mag-
netic disks, and S3 with reduced redundancy or infrequent
access. This rich set of choices gives developers the flexibil-
ity to pick the best one that meets their applications’ needs.
Unsurprisingly, most web startups today choose to deploy
their apps in the cloud, so that they can focus their scarce
manpower and funding on features of their applications [39].

Unfortunately, despite all these storage options, it re-
mains quite challenging for developers to best leverage them
to minimize cost. For simplicity in programming, it is com-
mon practice for a developer to pick a store she thinks is
the best and places all objects of the same data collection
(e.g., all images) within the store. However, at its core, min-
imizing cost requires developers to make fine-grained deci-
sions on which store is the best for which object. The rea-
son is that the pricing models of different stores are quite
complex and subtle, depending on such factors as the size of
the object, the number of various types of access requests,
and the direction and amount of network transfers. Two ob-
jects in the same data collection may differ hugely regard-



ing these factors, and therefore should be placed at differ-
ent stores. Consider two AWS stores, EBS on SSD, which
charges a high price for storage and nothing for requests,
and S3, which charges a moderate price for both storage and
requests. A large but cold (i.e., few read and write requests)
object should be stored in S3, whereas a small but hot object
should be stored in EBS. It is both non-intuitive and imprac-
tical to require developers, especially those at startups with
scarce manpower and funding, to make such fine-grained
placement decisions on a per-object basis.

In addition, many of the factors affecting price are highly
dynamic, frequently requiring data objects to be migrated
from one store to another to minimize cost. For instance,
the hotness of an object varies over time; so the best store
for the object now may be the worst fit in the future. Even
the pricing models change over time due to technology im-
provements [6] and competitions [7]. It is impractical to re-
quire developers to predict these changes accurately or mi-
grate data objects manually.

Lastly, different stores provide heterogeneous interfaces,
and a web application written against one storage interface
(e.g., the file system interface) may not be able to use another
more economical storage option easily or at all. Many pop-
ular web applications, such as MediaWiki (the most popular
wiki app) and WordPress (the most popular blogging app),
still store data objects such as images in file systems. To run
these applications in the cloud without significant modifi-
cations, developers have to store the data objects, however
large they are, in a file system on top of EBS, an option po-
tentially much more expensive than storing the objects in
S3. While newer web applications tend to adopt S3, they
may still manipulate the data objects using existing utili-
ties that require the file system interface. Examples include a
photo gallery using ImageMagick to process images or gen-
erate thumbnails, a video sharing application using ffmpeg

to convert video formats, and a file sharing application us-
ing bzip2 to compress files. Thus, developers have to move
the objects explicitly between S3 and the file system. These
movements, if frequent, are not only complex to program
but also expensive to execute, because S3 charges for both
requests and network transfers.

Because of these reasons, it is difficult for developers
to place objects optimally for minimizing cost. The cost
of misplacement can be quite high. At a micro level, each
PUT request on S3 costs as much money as storing 5MB of
data for a day; so it is extremely costly to store frequently
accessed data objects on S3. The storage cost on EBS is up
to 8× as much as on S3; so putting an infrequently-accessed
large object on EBS is expensive, too. At a macro level, our
experiments show that misplacement costs up to 572% more.

We present GRANDET, an extensible storage system that
significantly reduces storage cost for web applications de-
ployed in the cloud. GRANDET provides both a file sys-
tem interface and an S3-like key-value interface, support-

ing a broad spectrum of web applications. Under the hood,
GRANDET supports multiple heterogeneous stores and uni-
fies them by placing each data object at the store deemed
most economical. Specifically, for each supported store,
GRANDET maintains a profile capturing the store’s pricing
model, availability, durability, and consistency guarantees,
and performance such as latency. It updates the performance
part of this profile by periodically running its profiler, and
the other parts based on crawling or user-supplied config-
urations. Given a data object, GRANDET runs its predictor
to predict the future workload on the object, and its de-
cider to determine, on a fine-grained, per-object basis, the
most economical store that meets the default or developer-
specified quality of service (QoS) requirements—even the
default is better than the typical web practice. GRANDET
preserves the availability, durability, and consistency that the
cloud stores provide. When the workloads or pricing models
change, GRANDET migrates data objects automatically as
needed to reduce cost. We explicitly designed GRANDET to
be extensible so that developers can add new stores easily.

We implemented GRANDET in AWS and evaluated
GRANDET on a diverse set of four popular open-source web
applications, namely CumulusClips, Piwigo, Elgg, and File-
Sender. Our results show that:
1. GRANDET significantly reduces the cost spent on storage

for web applications. On average, GRANDET reduces the
storage cost by 42.4%.

2. GRANDET has little overhead. It can be deployed with
little impact on application performance.

3. GRANDET scales well when the workload increases.
4. Web applications can use GRANDET to save cost with no

modification at all, and several lines of changes would
reduce the cost even further.

The remainder of this paper is organized as follows. The
next section introduces the background of cloud storage ser-
vices. §3 extends our motivation with a study and an exam-
ple. §4 describes GRANDET’s architecture. §5 shows the data
placement strategy. §6 presents the file system interface. §7
describes the implementation. §8 shows evaluation results.
§9 discusses some design implications, §10 presents related
work, and §11 concludes.

2. Background: cloud storage services
The variety of cloud storage options can be mainly divided
into two categories: file storage and blob storage. File stor-
age generally provides a disk or file system interface. Appli-
cations can mount it and manipulate data using file system
operations such as open(), read(), and write(). Exam-
ples of file storage are Amazon elastic block store (EBS),
Microsoft Azure file storage, and Google compute engine
persistent disks. On the other hand, blob storage generally
provides a minimal key-value interface, such as PUT, GET,
and DELETE. A blob is normally treated as a whole, and op-
erations such as partially updating a blob are absent. Exam-



Storage service Type Durability Availability Latency
Instance store file ephemeral 99.95% lowest
EBS (SSD) file 99.8-98.9% 99.999% lowest
EBS (magnetic) file 99.8-98.9% 99.999% low
S3 (standard) blob 1−10−11 99.99% medium
S3 (reduced) blob 99.99% 99.99% medium
S3 (infrequent) blob 1−10−11 99.9% medium
Glacier blob 1−10−11 n/a high

Table 1. Overview of AWS storage services (May 2016).

Storage Request (/million) Transfer (/GB)
Storage service (/GB) PUT GET In Out
EBS (SSD) 0.1 0 0 0 0.09
EBS (magnetic) 0.05 0.05 0.05 0 0.09
S3 (standard) 0.03 5 0.4 0 0.09
S3 (reduced) 0.024 5 0.4 0 0.09
S3 (infrequent) 0.0125† 10 1 0 0.09
Glacier 0.007 50 50 0 0.09

Table 2. Approximate monthly price (US dollars) for select
AWS storage services (May 2016). †S3 infrequent access
charges a minimum of 128KB storage for smaller objects.

ples of blob storage are Amazon simple storage service (S3),
Microsoft Azure blob storage, and Google cloud storage.

Even more options are available for each category of
cloud storage. For instance, Amazon Web Services (AWS)
supports four types of stores (see Table 1). Instance store
provides free, non-persistent virtual disks to an AWS elastic
compute cloud (EC2) instance. These virtual disks are non-
persistent because they are stored in the physical disks of the
host machine that happens to run the EC2 instance. Elastic
block store (EBS) provides persistent virtual disks, based on
either SSD or magnetic. Simple storage service (S3) is a key-
value store for objects, with standard, reduced-redundancy,
or infrequent-access options. Glacier is a backup store with
an extremely low cost and long read latency (3–5 hours).

Not only do these storage options have different service
levels, but they also have complex and diverse pricing mod-
els. A typical pricing model depends on the total storage
size, the number of each type of request, and the direction
and amount of network data transfer. Table 2 shows a snippet
of the pricing scheme for AWS storage services. Although
they have the same data transfer cost, the discrepancies in
storage pricing are up to an order of magnitude, and those in
request pricing can be as large as three orders of magnitude.
No option is cheaper across all dimensions. For example,
EBS (SSD) does not charge for I/O requests, but its storage
price is more than three times as high as S3. By contrast, S3,
despite charging less for storage, has high per-request cost.

To further illustrate the pricing discrepancies, let us study
how much money it costs to put one data object on each
of these storage services. Figure 1 shows the cost with (a)
variable object size and (b) variable number of requests. We
exclude data transfer cost in the figures for better clarity be-
cause it is the same for all these services. In each figure,
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Figure 1. Monthly cost with (a) variable object size and
(b) variable number of requests. Each line corresponds to
a storage service. Assuming (a) has fixed 100 GET requests
and (b) has fixed 1MB object size. Each request counts as
one EBS I/O.

Web application Category Web application Category
FileSender file sharing selfoss RSS reader
Piwigo photo sharing Tiny Tiny RSS RSS reader
OpenPhoto photo sharing Elgg social network
CumulusClips video sharing MediaWiki wiki
OpenCart shopping LionWiki wiki
PrestaShop shopping Wikka wiki
Zen Cart shopping Drupal CMS
Wordpress blog October CMS
NibbleBlog blog Anchor CMS
Chyrp blog

Table 3. List of studied web applications.

the optimal choice is the minimum of all lines (shaded), and
the threshold points are marked. We can see that the opti-
mal choice depends on both object size and the number of
requests, let alone each choice also has different durability,
availability, and latency.

Thus, the heterogeneity of service levels and pricing
schemes lead to extremely tough decisions that web applica-
tions should make when using cloud storage services. Mis-
placing data at non-optimal storage locations may not only
cause service degradation but also cost a lot of money, negat-
ing the benefits that the cloud brings.

3. Extended motivation and example
We motivated the design of GRANDET by studying 19 popu-
lar open-source web applications of various kinds, including
file sharing, photo and video sharing, shopping, blogging,
news-reading, social networking, wiki, and content manage-
ment systems (see Table 3 for the list). We observed two
insights from our study.

Our first insight is that data files have diverse yet clus-
tered sizes and access patterns. For example, the original
photo or video files are large, while the thumbnails are
small. Additionally, some files are frequently read, such as
a celebrity’s photo, while other files stay cold after they are
stored, and the access pattern of files may change over time.
For example, Figure 2 shows the distribution of file size for
the Piwigo photo sharing application from our evaluation
workload based on real-world statistics (see §8 for work-
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Figure 2. CDF of file size for Piwigo.

load details). About 30% of all files are original images (7–
12MB), 13% are large thumbnails (600–800KB), 30% are
small thumbnails (90–160KB), and the rest are temporary
files. The reason that there are fewer large thumbnails is that
Piwigo generates them lazily, and many photos are not ac-
cessed yet. This diversity creates a great opportunity for op-
timization, because file size and access pattern are two dom-
inating factors on storage cost, as we have shown in §2.

Our second insight is that, despite their complexity, all the
19 applications manipulate data files only in simple ways.
Each file corresponds to a logical data object, such as a
photo or a video. These files are written sequentially and
free of sub-file updates. Therefore, both file storage and blob
storage are capable of storing these data objects.

Because of these two insights, we design GRANDET as a
transparent gateway for a variety of heterogeneous storage
services. Data objects are always stored at the optimal ser-
vice based on the characteristics of the data and workload
as well as the pricing and network condition. They are also
automatically migrated among the storage services when the
workload, pricing, or network condition changes. Next, we
present a motivating example about how the CumulusClips
video sharing application [15] stores and uses data, to illus-
trate how GRANDET can help it reduce storage cost.

When a user uploads a video file, CumulusClips stores it
to the file system and calls an external program, ffmpeg, to
convert the file to multiple formats, such as a high-definition
version for broadband connections and a low-definition ver-
sion for mobile devices. It also generates a static thumbnail
of the video. All these derived files are stored in the file sys-
tem, too. Later, viewers of the CumulusClips website see a
list of thumbnails. When the viewer clicks on a thumbnail,
based on her platform, one of the converted videos is played.

GRANDET helps CumulusClips by transparently han-
dling the storage for all files. Despite internally storing data
as key-value objects, GRANDET is mounted to Cumulus-
Clips’s uploads directory as a file system, and no modi-
fication to CumulusClips’s source code is required. When-
ever CumulusClips wants to write a file to the directory,
GRANDET puts the file to its optimal storage service based
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Figure 3. GRANDET deployment scenarios.

on its prediction of the file’s workload. For example, it would
put a small thumbnail on EBS if it predicts that the file would
frequently be read but put a large high-definition video on
S3. GRANDET also migrates data over time to reflect lat-
est conditions. For example, if an unknown video on S3
suddenly becomes a sensation (the “slashdot effect”), then
GRANDET would move it to EBS for cheaper request cost.

4. Architecture
We now give an overview of GRANDET’s deployment sce-
narios and present the architecture of GRANDET.

4.1 Overview
GRANDET unifies multiple heterogeneous cloud storages
into a single service. Its primary goal is to reduce storage
cost for web applications. Thus, instead of running as stan-
dalone servers that would incur additional cost, GRANDET
leverages piggyback deployment.

Figure 3 shows two typical deployment scenarios. For
single-instance web applications, the GRANDET service
simply co-locates on the same machine with the application
(Figure 3(a)). Large-scale web applications (e.g., MediaWiki
[49]) typically shard their files into multiple storage servers,
each storing a disjoint subset of the files, and mount them
via a distributed file system (e.g., NFS). In this case, each
shard independently runs a GRANDET service on it (Fig-
ure 3(b)). Because the files stored on each shard are disjoint,
GRANDET need not worry about consistency among shards.

GRANDET does not introduce new availability, durabil-
ity, or consistency concerns due to two reasons. First, each
object is stored on exactly one cloud storage; so the avail-
ability, durability, and consistency of GRANDET’s storage
are as good as the underlying cloud storage. The applica-
tion developer can specify the minimum availability, dura-
bility, and consistency requirement on a per-object basis (see
§4.3). Second, since the GRANDET service itself resides on
the same server as the web application or the storage shard,
they share the same availability.

4.2 GRANDET components
Figure 4 shows the components of the GRANDET service.
GRANDET’s frontend exports a key-value SDK for various
programming languages and a general file system interface
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Figure 4. GRANDET components. Components with a plug-
in symbol mean that developers can easily extend them.

to the web application or storage shards. The frontend and
the backend communicate via Unix domain socket IPC.

The GRANDET backend stores data as key-value objects.
It consists of five components. The Controller handles
all requests from the frontend and coordinates all the other
backend components. A set of Actors executes storage ac-
tions on a variety of storage backends. The Profiler peri-
odically probes the current pricing model and network con-
ditions for each storage backend, and stores them as profiles.
The Predictor keeps track of the frequency of all PUT, GET,
and DELETE requests, and predicts future request patterns.
The Decider decides upon the best storage option based on
the application’s requirements, the predicted request pattern,
and the storage profiles. Decisions are kept on the decision
store in Redis [35] and further persisted on EBS or S3.

We specifically designed GRANDET to be extensible, so
that developers can easily add new stores, support new lan-
guages, or change the prediction algorithm (see §7).

4.3 GRANDET workflow
All communications start with the application1 sending a
request to the Controller by using either the key-value
SDK or the file system interface, where the latter internally
represents files as key-value objects (see §6). Regardless of
frontend, the request is one of the following:

PUT. The application requests to store a data object to
GRANDET’s storage (Figure 5). The application should as-
sign a unique key to the data object based on its own needs.
For example, a photo sharing application may assign the im-
age file that Alice uploads to her Wedding album the key
alice:wedding:photo1. The value of the data object can
be an arbitrary length of binary content.

Along with the PUT request the application can specify its
requirements on the storage service for this particular data
object. The requirements include the minimum availability,

1 If deployed with sharded storage, it is actually the shard that sends the
request. However, there is no difference from GRANDET’s view.
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Controller

Request

type : PUT
key  : alice:wedding:photo1
value: <image object>
requirements: {
  min_availability = 99.99%
  min_durability   = 99.99%
  min_consistency  = eventual
  max_latency      = 300ms
}
hints: {user=alice, album=wedding}

Response

status: OK

FS or SDK

Backend

Figure 5. An example of PUT request and response.

durability, and consistency required, as well as the maximum
latency allowed. Only the services that meet these require-
ments are considered as candidates for storing this data ob-
ject (see Table 1 for an overview of storage services). Re-
quirements are optional. If the application does not specify
requirements, then GRANDET assumes all non-ephemeral
(i.e., not the EC2 instance store) and moderate-latency (i.e.,
not Glacier) services can be chosen. It is worth mentioning
that even this default assumption provides better guarantees
than a typical application’s setup, since both EBS and S3 are
at least 20× more reliable than typical commodity disks [4].

The application can also give hints to GRANDET for a bet-
ter placement decision. Hints are also optional, and we have
implemented two default hints. §5 discusses the placement
strategy and default hints in detail.

Upon receiving the request, the Controller first asks
the Decider for the placement decision, which in turn looks
at the current profile for each storage service and asks the
Predictor for the predicted future request pattern. Based
on this, the Decider finds the most cost-effective storage
choice that satisfies all the application’s requirements, mem-
orizes the choice at the decision store, and returns the choice
to the Controller Then the Controller tells the corre-
sponding Actor to store the data object to the actual storage
and notifies the Predictor to bookkeep this action. Finally,
it tells the application that the PUT has completed.

GET. The application requests to retrieve a data object from
GRANDET’s storage. The Controller asks the Decider

to recall the previous placement decision from the decision
store and then asks the corresponding Actor to retrieve the
data object from the actual storage. The Controller also
asks the decider to check if the optimal placement decision
would change because the current workload, pricing scheme,
and network conditions may have changed. If not, it notifies
the Predictor to bookkeep this action and returns the data
object to the application. Otherwise, it also migrates the data
object to the new storage service and deletes the old copy.

DELETE. The application requests to delete a data ob-
ject from GRANDET’s storage. The Controller asks the
Decider to recall the previous placement decision from the



// PHP SDK interface

function put($key, $value, $requirements=[], $hints=[])

function get($key)

function del($key)

// Example: PUT an image with requirements and hints.

require_once ’grandet.phar’;

grandet\put(’alice:wedding:photo1’, $uploaded_image,

[’min_availability_required’ => 99.99,

’min_durability_required’ => 99.99,

’min_consistency_required’ => ’eventual’,

’max_latency_required’ => 300],

[’user’ => ’alice’, ’album’ => ’wedding’]);

// Example: PUT with no requirements and default hints.

grandet\put(’alice:wedding:photo2’, $another_image);

// Example: GET an image.

$image = grandet\get(’alice:wedding:photo1’);

Figure 6. GRANDET’s PHP SDK and usage examples.

decision store and then asks the corresponding Actor to
delete the data object from the actual storage. It also noti-
fies the Predictor to bookkeep this action.

4.4 Frontend interface
GRANDET has two types of frontend interface. The key-
value SDK provides bindings for these requests for various
programming languages such as C++, PHP, and Python. For
instance, Figure 6 shows GRANDET’s PHP interface and
examples of putting and getting an image. The interface is
similar to current cloud blob storage services such as S3.
Therefore, web applications that are already aware of S3-
like blob storages can just switch to GRANDET’s SDK and
seamlessly get all the cost-savings that GRANDET brings.

For applications that only work with file systems,
GRANDET also provides a file system interface using FUSE,
which applications can mount to their data directory directly.
§6 describes it in detail.

5. Deciding data object placement
The cornerstone of GRANDET is the decision engine for
placing each data object onto the optimal storage service.
It makes a decision each time the application PUTs or GETs a
data object. The decision engine closely follows the pricing
model of all storage options. As mentioned in §2, a typical
pricing model consists of three factors: storage (data size and
lifetime), request (type and amount), and data transfer. The
data size is known, and transfer prices are usually the same
for all services within the same cloud region. Therefore, the
key to making placement decision is predicting the future
access pattern of the data object.

5.1 Prediction of access pattern
GRANDET provides a framework that allows developers to
use any algorithm to predict access patterns (see §7.2). It
also provides a default predictor, which we now describe.

For each request for a certain object, the predictor uses
the request’s metadata to classify the object into the class
of objects similar to this object. The metadata includes the
object size, the object name, the requirements of the request,
and other hints (see §5.3) provided by the developer.

For each class, the predictor keeps track of the number
of GET and PUT requests issued on the objects in this class
recently, and it also records the number of recently accessed
objects and the average lifetime of the objects in this class.
Each record is kept for r seconds (typically a day or a week).

Suppose that for the class the current object belongs to,
there are g GET requests and p PUT requests recently, and
there are n objects accessed in this class, then the predictor
would predict that in the following t seconds, there would
be gt

nr GET requests and pt
nr PUT requests for this object. It

would also predict the object’s lifetime to be the average
object lifetime in its class. Note that even for objects in the
same class, their final storage decisions may differ, because
the numbers (g, p,n) are dynamic and other factors such as
object size may be different.

This default predictor is simple yet effective in our evalu-
ation (see §8). We believe that recent machine learning tech-
niques may empower even better algorithms, which can be
easily plugged into GRANDET (detailed in §7.2).

5.2 Decision making
GRANDET’s decider works with the predictor to decide
where to place the object. It uses the object size and the pre-
dicted access pattern to make the decision. For each back-
end, GRANDET’s decider uses its pricing model to calculate
the storage cost of the object in its predicted lifetime and
chooses the backend with the lowest cost.

The optimal placement decision for an object may change
over time because of changed workload, pricing scheme, or
network condition. A migration happens on a PUT or GET
request when the extra cost for migration is less than the
cost savings at the new storage service.

The extra cost for a GET-triggered migration is the total
cost of an additional PUT request, a DELELTE request, and
data transfer cost, while a PUT-triggered migration does not
need the extra PUT request. For migration within the same
Amazon cloud region, such as from S3 to EBS, data transfer
is free, and DELETE requests are also free.

5.3 Hints
The application can give additional hints to GRANDET for
better prediction. A hint is an arbitrary set of key-value pairs.
For example, a photo sharing application can provide the
hint {user=alice, album=wedding}when storing an im-
age file. The predictor will predict the workload of this file
by considering files with similar hints, such as images up-
loaded by the same user in the same album. Hints are op-
tional, and we have implemented two types of default hints if
the application does not provide any hint. For the file system
interface (see §6), the default hint is the directory hierarchy.
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For example, if the photo sharing application stores a file
at alice/wedding/photo1.jpg, the default hints would
be {hint1=alice, hint2=wedding}. For the SDK inter-
face (see §4.4), the default hints are the object’s key split by
colons. We evaluate the effect of hints in §8.4.

6. File system interface
Providing POSIX-like file system semantics is arguably the
best way to support the widest range of legacy web applica-
tions seamlessly because it does not require modifications to
their source code. Hence, GRANDET also implements a file
system interface using FUSE. It can be directly mounted to
the web application’s data directory.

The design of GRANDET’s file system interface follows
our insight that most files are accessed wholly and sequen-
tially by web applications, such as photo and video files. So,
it is best to store each file as one object, as opposed to divid-
ing files into blocks. Besides, web applications often need to
rename files, such as moving a temporary file to its final di-
rectory. So, it is essential to support fast renaming, although
S3 does not support renaming objects other than a copy fol-
lowed by a delete. Last but not least, some web applications
generate many intermediate files when doing backend pro-
cessing, and remove them soon. So, it is desirable to skip
putting these intermediate files to the backend storage.

Figure 7 shows the implementation of GRANDET’s file
system interface. At the backend, it stores each file as a
UUID-keyed object and puts the actual file name in its meta-
data. At the frontend, it maintains a cache of file contents on
a RAM drive and keeps the file structure hierarchy and meta-
data (e.g., UUID, file size) in Redis. Therefore, renaming a
file only touches its metadata.

We next describe the file operations. On creat(), we
create a file in the cache and pass the file descriptor to the ap-
plication. On open(), we GET the file data from the backend
storage if it does not exist in the cache, then open the cached
file and return the file descriptor. For file manipulations such
as read, write, and truncate, we pass them through to the cor-
responding file system operations of the cache. We also up-
date our file structure for the new file size and modification
time. On close(), if the file content has been modified, we

Component LOC Component LOC Component LOC
S3 Actor 120 EBS Actor 236 Decider 230
Predictor 356 Controller 1401 Profiler 235
C++ SDK 159 PHP SDK 168 Python SDK 69
FS interface 1979 Console 349 Misc 1191
Total : 6493

Table 4. Lines of code of GRANDET’s components.

append it into an async-upload queue so that the file will be
PUT to the backend storage, and we block on fsync() until
the PUT is completed.

Our implementation PUTs file contents to the backend
storage asynchronously. It has two benefits. First, it skips
intermediate temporary files if they are deleted before the
actual PUT happens. Second, it allows an application to spec-
ify hints as extended attributes (xattr) efficiently after a file
has been closed, which is useful when the creation of the file
is beyond the application’s control, such as files generated
externally. For example, the CumulusClips video sharing ap-
plication executes ffmpeg to convert a video file to another
format. It can set xattr of the converted file after that.

Since GRANDET’s backend makes the decision on the op-
timal storage location based on each file’s predicted usage
pattern, the replacement algorithm on the cache is not criti-
cal. A simple LRU algorithm works well in practice.

7. Implementation and system extensibility
We designed GRANDET as an extensible framework where
each component, such as the storage services, the prediction
algorithm, or the frontend SDK, can be easily replaced or ex-
tended. We implemented the GRANDET backend in C++14,
the file system interface with FUSE [21], and key-value SDK
in various languages. We modified LIBAWS [8] to commu-
nicate with Amazon Web Services. Table 4 shows the num-
bers of lines of GRANDET’s components. Metadata such as
placement decisions are stored in Redis [35]. All compo-
nents can be easily extended by plugging in a new subclass,
or customized by changing a configuration file. This section
describes some implementation details.

7.1 Adding a storage service
GRANDET’s Actor executes actions, such as PUT, GET, and
DELETE, on the storage service. We implemented Actors for
EBS (SSD and magnetic) and S3 (standard, reduced redun-
dancy, and infrequent access). Supporting a new storage ser-
vice just requires adding a new subclass of Actor and im-
plementing its interface methods.

Figure 8 shows the interface of the Actor class. The
put(), get(), and del() are cloud storage operations.
The profile() method, when called by GRANDET’s
Profiler, updates the cloud service’s Profile, which in-
cludes pricing model and service conditions such as latency,
availability, durability, and consistency.

The Profiler is a cron job that periodically runs. When
triggered, it calls every Actor’s profile() method to up-



class Actor {
public:
virtual void ˜Actor()=default;

// cloud storage operations
virtual void put(const string& key, shared ptr<Value> val)=0;

virtual shared ptr<Value> get(const string& key)=0;

virtual void del(const string& key)=0;

// updates pricing model, latency, availability, durability, etc.
virtual void profile(shared ptr<Profile> profile)=0;

};

Figure 8. GRANDET’s Actor class.

date its profile. We implemented crawlers in our EBS and
S3 Actors to fetch and parse the pricing information from
the Amazon Web Services website. Profiles are stored as
JSON files so that users can also manually configure the
pricing model or service levels.

7.2 Adding a prediction algorithm
We implemented the prediction algorithm as described in
§5. Plugging a new prediction algorithm into GRANDET just
requires subclassing the Predictor class.

The Predictor has three listener functions, namely
notify put(), notify get(), and notify del(), which
are called whenever there is a PUT, GET or DELETE re-
quest. The Predictor thus keeps track of the current
workload. When making a decision, the decider calls
the Predictor’s predict put(), predict get(), and
predict lifetime() functions to get the predicted future
request frequency and expected lifetime.

7.3 Protocol and SDK
GRANDET’s frontend and backend communicate through
Unix domain socket IPC, and all messages are serialized in
Protocol Buffers [33]. GRANDET defines two types of pro-
tocol messages: Request and Response. A Request mes-
sage is one of three types: PUT, GET, and DELETE. It also
includes the key and value of the data object, the applica-
tion’s requirements such as minimum durability and maxi-
mum latency, and optionally hints for workload prediction
and other metadata. The Response message contains a sta-
tus code, and optionally the data object’s value if it is the
response to a GET request.

Therefore, the SDK for a programming language is just a
wrapper over Protocol Buffer and socket programming. We
have implemented the SDK for C++, PHP, and Python, with
70–170 lines of code each. We believe that supporting a new
language would similarly require little programming effort.

7.4 Optimization
To further improve performance, we also implemented two
optimizations to GRANDET’s basic design.

Shortcut for file access. When PUTting a file object that is
already on disk, the request payload only includes the file
name instead of the file content, and the GRANDET backend
reads the file directly from disk. Therefore, it avoids sending
the entire file from frontend to backend.

S3 authenticated URL. An application often GETs a data
object from GRANDET only to send it verbatim to the user
without any processing. For example, when a user clicks
“download original image” on the Piwigo photo sharing ap-
plication, Piwigo simply retrieves the data object for that
original image and send it back to the user. Thus, if the data
object is stored on S3, GRANDET incurs unnecessary over-
head by acting as a proxy for the data transfer. In order to op-
timize for this scenario, the application can specify a special
requirement in its GET request in the form of {url=true,
expire=600s}; so the GRANDET backend sends the appli-
cation a pre-authenticated URL for the S3 object with the
specified expiration time (600s here). The application can
thus redirect the user to download the image from the au-
thenticated URL directly.

8. Evaluation
We evaluated GRANDET on four popular open source web
applications: CumulusClips (video sharing) [15], Piwigo
(photo sharing) [32], Elgg (social network) [18], and File-
Sender (file sharing) [20]. We modeled the usage data for
each application according to the most popular website of
its type, namely YouTube, Flickr, Facebook, and Dropbox.
Appendix A details how we modeled the usage data. To
make cost evaluations manageable, we scaled down the us-
age to 100 users in one month, while preserving real-world
workload characteristics. We ran all experiments on EC2
m3.large instances with EBS and S3 in the US East region,
using Ubuntu Linux 14.04 and Redis with per-second fsync.

Our experiments aim to answer four questions:
§8.1 Does GRANDET reduce cost?
§8.2 Is GRANDET fast?
§8.3 Is GRANDET scalable?
§8.4 Is GRANDET easy to use?

8.1 Cost savings
For the monetary cost, we evaluated each application’s
end-to-end cost reduction, analyzed GRANDET’s operational
cost, and tested its ability to handle dynamic workloads.

8.1.1 End-to-end cost savings
The overarching goal of GRANDET is to reduce cost used by
web applications. Figure 9 shows a comparison of total stor-
age cost of evaluated web applications with different storage
backends.2 For each application, the first five bars are the
cost of placing all objects into a single storage service. The

2 Storage costs in this paper were reported by GRANDET based on the
precise storage space used and the number of requests recorded. We did
not use Amazon’s billing statement because it was too coarse-grained.
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last bar is the result of GRANDET’s dynamic placement. All
numbers are normalized by the theoretically optimal place-
ments, i.e., each object is placed at the best storage if the
entire workload was known beforehand (perfect prediction).

The results show that GRANDET always costs less than
any single-storage option. It saves a geometric mean of
42.4% over the best single-storage setting. For example,
GRANDET reduces Piwigo’s cost by 56.2%. The reason is
that Piwigo converts images into several resolutions, and im-
ages from different users and albums have distinct access
patterns that are hard to be programmed statically but easy
to be predicted dynamically by GRANDET.

Furthermore, for all but one applications, GRANDET’s
cost is within 10% of the optimal cost. For CumulusClips,
although it costs 45.7% more than optimal, it is still 48.0%
better than using any single storage backend.

It is worth noting that the cost saving ratio is independent
of the number of users because the cost is proportional to
the workload, which in turn is proportional to the number of
users. Therefore, GRANDET is effective in reducing the cost
for a broad spectrum of web applications.

8.1.2 Operational cost
To evaluate the operational cost that the GRANDET service
itself incurs, we monitored its memory and CPU usage while
running the Piwigo application. GRANDET only uses little
memory; so we focus on CPU usage.

Assume that someone sets up a Piwigo instance to serve
100K users. Per our usage model (see Appendix A), users
would upload 120K photos and view 2.4M photos in one
month. Meanwhile, 120K thumbnails would be generated,
and they would be viewed 64.8M times. Thus, there would
be a total of 2.52M large requests (95% read) and 64.92M
small requests (99% read) per month, or 0.972 large requests
and 25.1 small requests per second.

We evaluated GRANDET to see how many requests per
second (RPS) it can handle per percent of CPU usage. In the
worst case, GRANDET can handle 1.54 RPS per percent of
CPU usage with large requests (1MB, 95% read), and 29.5
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RPS per percent of CPU usage with small requests (4KB,
99% read). Plugging it into the above scenario, GRANDET
would consume 1.48% CPU to serve all requests. Since an
EC2 m3.large instance costs $38 per month and it has two
cores, GRANDET only costs $0.28 per month to serve 100K
users in this case, negligible versus the storage cost it saves.

8.1.3 Handling dynamics
We evaluated how GRANDET reacts to workload changes by
feeding it with an extreme case: we still send the requests ac-
cording to real workload, but instead of sending requests like
real users, we upload all data first and download afterward.
Figure 10 shows how GRANDET behaves in this situation by
showing the number of data objects stored in different stor-
age backends over time. We used Piwigo in this experiment.

In the upload phase, GRANDET decides to put almost
half of the objects on EBS magnetic, and most of the other
objects on S3. Because there are not many requests, storing
objects on S3 is cheap, and EBS SSD’s advantage of zero
request cost does not help much. On the other hand, EBS
SSD’s storage cost is high; so few objects are put on SSD.

When the download phase comes, the predictor learns
that some objects are frequently requested; so they are mi-
grated out of EBS magnetic because its cost per request is
higher than EBS SSD. Some objects are rarely requested,
and some objects are large; so they are kept on S3. Some ob-
jects are migrated to EBS SSD, which has zero request cost
and is ideal for objects with frequent access. The total num-
ber of objects is still increasing in this phase because some
objects are lazily generated when they are accessed.

This experiment shows that GRANDET can adapt to work-
load changes over time, and the predictor is frequently using
new information to optimize placement.

8.2 Performance
In order to understand GRANDET’s performance, we first
measured over a microbenchmark and then evaluated each
application’s end-to-end performance.



 10

 100

 1000

 10000

SSD(4K)
SSD(1M)

Magnetic(4K)

Magnetic(1M)

S3(4K)
S3(1M)

R
eq

ue
st

 p
er

 s
ec

on
d

Put

319

78

284

38
26

12

Get
10021

305

10446

303

75

23

Get (direct)
1726

61

1880

49

Figure 11. Performance of GRANDET backend. Evaluated
with 4KB and 1MB requests. Error bar is standard deviation.

8.2.1 Microbenchmark
To evaluate GRANDET’s performance on basic operations,
we evaluated each storage separately with a single client and
two sizes of requests. Figure 11 shows the number of re-
quests GRANDET can handle per second. Because the perfor-
mance of GET requests is affected by the file system cache,
we also measured the performance in the direct mode by
specifying O DIRECT on file system operations.

The performance of the EBS backends without cache
matches the results of FIO [22], which measures the per-
formance of the file system itself. Hence, GRANDET’s per-
formance is limited by the hardware and underlying OS, and
GRANDET itself incurs little overhead.

One interesting property of EBS disks is that they have
different burst and sustained performance. For example,
EBS SSD disks can reach burst throughput of 150MB/s,
close to Amazon’s specification [5]. But after a few seconds,
the throughput drops to about 60MB/s and keeps stable.

The cached GET requests of EBS backends are apparently
served from the cache. The limiting factor here is the CPU
speed. If the cloud provided better hardware, GRANDET
would have better performance accordingly.

The results are low for S3 because S3 has a high latency
for any request. Our profiler usually records the latency to be
20–30ms, and this latency limits the number of requests S3
can handle per second. Because S3 is not designed to handle
frequent requests and it has a higher per-request price, it
should not handle many requests.

Latency. For all scenarios in the above experiment, we also
measured the latency of each request. GRANDET always in-
curs less than 0.2ms latency, smaller than the standard de-
viation of latency for each case. Therefore, the GRANDET’s
impact on latency is negligible.

8.2.2 End-to-end performance
We evaluated GRANDET’s end-to-end performance on the
same four web applications. Because we use FUSE to imple-
ment the file system interface, we also evaluated the over-
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head incurred by FUSE itself. For comparison, we also ran
the evaluation on the state-of-the-art S3-based file system
s3fs [36]. Figure 12 shows the time used to complete the
workload of each application and storage setting. We nor-
malized all results to the baseline where all files were stored
directly on EBS SSD. For the first bar in each cluster, a folder
on the EBS SSD volume was mounted with the loopback
FUSE file system to the application’s data folder. The sec-
ond bar used GRANDET with only the EBS backend, so as
to show GRANDET’s overhead atop FUSE. The third bar used
s3fs. As a comparison, the fourth bar used GRANDET with
only the S3 backend. Finally, the last bar used GRANDET in
the default setting with all backends.

GRANDET’s overhead comes from several parts. The first
part is incurred by FUSE, which averages to 5.5% (the first
bar). The second part is incurred by GRANDET itself. Be-
cause using GRANDET with only the EBS backend has an
average overhead of 8.5% (the second bar), the overhead in-
curred by GRANDET itself is less than 3%. The third part is
incurred by the S3 backend, due to its higher latency than
EBS. Mounting S3 as a file system with s3fs shows a pro-
hibitive average overhead of 330% due to synchronous up-
loads and limited metadata cache (the third bar), whereas
GRANDET’s average overhead using only the S3 backend
is 18.3% (the fourth bar). Overall, GRANDET incurs a geo-
metric mean of 13.3% overhead (the last bar), which can be
offset by the cost it saves.

8.3 Scalability
To evaluate GRANDET’s scalability, we measured over both
a microbenchmark and a web application.

8.3.1 Microbenchmark
In order to see whether GRANDET can scale up, we evalu-
ated GRANDET with a variable number of concurrent threads
and variable request sizes on variable storages. The results
are similar, and for brevity, we show a typical one: S3 with
request size of 4KB. Figure 13(a) shows the performance of
the server when the number of concurrent clients increases.
The number of requests the server can handle per second in-
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Figure 13. (a) Scalability of GRANDET when using single
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creases almost linearly. It implies that the number of requests
one client can achieve is limited by the latency of the S3 ser-
vice, and the server scales well with the number of clients.

8.3.2 End-to-end scalability
We evaluated the end-to-end scalability of GRANDET by
measuring the number of end-to-end requests the sys-
tem can handle when the number of clients increases.
The requests go all the way through Nginx, PHP, FUSE
and the GRANDET backend. We chose the most scalable
application—FileSender—among all the applications we
studied, so that if there were any scalability issues with our
system, it would be revealed by the experiment. The File-
Sender application is the most scalable application because
of its simplicity: it does not perform any operations on the
files, but just lets other users download them.

Figure 13(b) shows the requests per second with a vari-
able number of concurrent clients. The results show that
GRANDET scales as well as FileSender. Regardless of
whether using GRANDET, FileSender does not scale past 32
concurrent clients, which is due to limited resource in the
EC2 m3.large instance, not GRANDET’s limitation.

8.4 Usability
GRANDET can run a web application unmodified and au-
tomatically save cost. We have also tested and confirmed
that three of today’s most popular web applications—
MediaWiki, Wordpress, and Joomla—work seamlessly with
GRANDET without any source code modification.

To further reduce cost, application developers can add
hints to data objects. In all our evaluations, we did not add
hints to CumulusClips or Elgg but added one hint to each of
Piwigo and FileSender. We found that compared with using
the default predictor, hints helped reduce cost by 9.3% for
Piwigo and 9.4% for FileSender.

9. Discussion
We now discuss some design implications of GRANDET.

Persistence over server crash. If the GRANDET server
crashes, all data objects that have been PUT onto EBS or S3

will persist. Metadata (e.g., placement decisions) rely on the
persistence of Redis, which can be configured as AOF (log-
based), RDB (snapshot-based; metadata lost since the last
snapshot can be rebuilt from the cloud, similar to fsck), or
both. For the file system interface, the local cache may not
persist, which would affect data objects in the async-upload
queue that have not yet been PUT to the backend storage.
GRANDET provides the same semantics as a file system by
blocking on fsync() until the PUT is complete.

S3 consistency. S3 provides read-after-write consistency for
new objects and eventual consistency for overwrites. There
are two ways to work around it. First, the application can
specify in each object’s requirement to avoid S3. Second,
GRANDET can use versioning in S3 placement decisions so
that each PUT operates on a new object.

Data replication across cloud regions. Because EBS
volumes can only be accessed within a cloud region,
GRANDET’s server must reside in the same cloud region
as all EBS volumes. However, since GRANDET exposes a
general key-value object store interface, it can be easily ex-
tended to multiple cloud regions by overlaying existing geo-
replication solutions atop GRANDET.

Migration granularity. GRANDET migrates data lazily on a
per-object basis; so data objects that are not accessed would
not be migrated, even if better storage choices were avail-
able. One way to solve it is to have a thread periodically
scan through all objects to find migration possibilities. In
practice, the changes of workload on data objects are grad-
ual, so that a cold object would already be migrated before
its access drops to absolute zero.

EBS elasticity. Adjusting EBS volume size takes minutes
to finish. GRANDET can leverage existing orthogonal strate-
gies (e.g., [34]), or rely on application developers for allo-
cating EBS volumes. Amazon’s recently-announced elastic
file system (EFS) is fully elastic and does not have this issue.
GRANDET can support it by just adding an Actor for it.

Metadata overhead. GRANDET’s metadata is on the order
of tens of bytes per object, comparable to a regular file sys-
tem. It is negligible for data files in typical web applica-
tions, but may not be suitable for storing a lot of tiny objects.
Cloud database services, such as Amazon DynamoDB, com-
plements GRANDET for database or tiny-object storage.

10. Related work
GRANDET builds upon prior work that we now describe.

S3 lifecycle. Amazon has rudimentary support for moving
S3 objects to the infrequent-access option or Glacier. How-
ever, such transitions are one-way and limited to S3, and de-
velopers must set rules manually. GRANDET supports auto-
matic transitions across all storage options.

Cloud economics. Some recent work studies the economics
of cloud computing. Much of the work is focused on reduc-



ing the cost of computing, not storage. For example, Tak et
al. [41] discusses the cost factors for several cloud-based ap-
plication deployment options, and Conductor [48] optimizes
cloud service choices for MapReduces computations. Other
work touches upon storage. CloudCmp [30] provides a mi-
crobenchmark suite for measuring the cost and performance
of different cloud service providers. Developers can then in-
spect the benchmark results and pick a provider for their
application. GRANDET may leverage this microbenchmark
suite in its profiler implementation.

Cloud-backed file systems. Several systems provide a file
system interface atop a blob storage such as S3. Open source
projects, such as s3fs [36], s3ql [37], and goofys [1], can
mount an S3 bucket as a local file system. The BlueSky
network file system [45] employs a log-structured design
on the cloud storage. SCFS [12] enables sharing for cloud-
backed file systems. These systems assume general file sys-
tem workloads, and the main challenges they tackle are per-
formance issues, such as how to support random writes atop
a blob storage that does not support partial updates. Unlike
GRANDET, these systems do not exploit the characteristics
of files used by web applications or reduce monetary cost.

Multi-tier storage systems. Multi-tier storage systems are
widely used today, such as FAST [24], Easy Tier [28], 3PAR
[26], and some recent work [25, 38, 47, 52]. These systems
migrate data among traditional storages, while GRANDET
works with cloud storage services.

Cloud-of-clouds. Several pieces of work propose the idea
of storing data across multiple clouds. Some do so to repli-
cate the same data multiple times for fault tolerance. For
example, RACS [2] applies the RAID technology to cloud
systems. DepSky [11] uses multiple services for dependabil-
ity and security. MetaStorage [10] uses multiple services to
manage consistency-latency trade-offs. NCCloud [27] ap-
plies network coding to cloud storages for fault tolerance.
These systems aim to increase durability and availability, not
to reduce cost. In fact, by storing more copies of data, they
increase monetary cost, which GRANDET can help reduce.

Other pieces of work, including FCFS [34], iCostale [3],
Scalia [31], and SPANStore [50], store data across clouds
for reducing cost, a goal similar to GRANDET’s. FCFS only
has simulations showing potential savings of storing objects
across different cloud services, which serve as an excellent
motivation for GRANDET. ICostale and Scalia also do sim-
ulations only, and they consider only blob storages which
cannot support many popular web applications. To the best
of our knowledge, none of FCFS, iCostale, or Scalia provide
a system that developers can use. SPANStore also considers
only blob storages; so it also requires modifications to many
web applications. In addition, its coarse-grained placement
decisions only consider geographical locations. In contrast
to these systems, GRANDET makes fine-grained predictions
and decisions based on each data object’s own characteris-

tics and access pattern, and it works seamlessly with today’s
web applications without modifications.

11. Conclusion
We presented GRANDET, an extensible storage system that
significantly reduces storage cost for web applications de-
ployed in the cloud. It unifies multiple heterogeneous stores
by placing each data object at the most economical store and
provides both a file system interface and a key-value SDK.
Evaluation on a diverse set of popular open-source web ap-
plications shows that it reduces cost by an average of 42.4%,
and it is fast, scalable, and easy to use. Its source code is at
http://columbia.github.io/grandet.

Appendix A. Workload modeling
We now describe our workload modeling for each app.

CumulusClips. We modeled the usage data of Cumulus-
Clips according to YouTube [51], where a billion users up-
load 300 hours of video per minute [40] and an average video
has four minutes [14, 42]. So a user uploads 0.19 videos
a month on average. Each month, an average user views
76 videos [14]. The average video size is 8MB [13]. On
YouTube’s website, 20 recommendations appear with each
video; so in our model, for each video viewed, 20 thumbnails
are also viewed. A typical thumbnail has 400×300 pixels.

Piwigo. We modeled the usage data of Piwigo according
to Flickr [23], where 87 million users upload 3.5 million
images daily [43]. An average photo has 20 views [29]. On
the Flickr website, an album shows 27 thumbnails. Large
thumbnails have 1600×1000 pixels, and small ones have
640×400 pixels. A typical photo has 5120×3840 pixels.

Elgg. We modeled the usage data of Elgg according to Face-
book [19], where 500 million users upload 120 million pho-
tos daily [9]. The average photo size is 60KB [9]. On Face-
book’s website, a pop-up photo has 960×960 pixels and a
thumbnail in the timeline has 300×300 pixels. Each day, 10
billion photos are viewed, and the ratio of views between
thumbnails and original photos is 95% to 5% [9]. In our
model, we distribute a user’s views among her friends fol-
lowing a Pareto distribution with α = 1.5.

FileSender. We modeled the usage data of FileSender ac-
cording to Dropbox [16], where 50 million users upload
500 million files daily [17]. We use the average size of files
from file sharing servers, 153KB [44]. The popularity of the
shared files follows a Zipf distribution with α = 0.4 [46].
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